
THE GROUPS OF REGULAR COMPLEX POLYGONS 

D. W. CROWE 

1. I n t r o d u c t i o n . The two-dimensional uni tary space, U2, is a complex 
vector space of points (x, y) = (xi + 1x2, 3>i + ^y2), for which the distance 
between (x, y) and (xf, y') is defined by [{x — xf) (x — xf) + (3; — yf) (y — y')}^. 
A unitary transformation is a linear transformation which preserves distance. 
A line is the set of points (x, y) satisfying some complex equation ax + by = c. 
A uni tary transformation is a (unitary) reflection if it is of finite period n > 1 
and leaves a line pointwise invariant . Thus à uni tary matr ix represents a 
reflection if its two characteristic roots are 1 and a complex nth root (n > 1) 
of 1. 

Shephard (7) has introduced the notion of regular complex polygon as follows. 
Consider a configuration P consisting of points ("vertices") and lines ("edges") 
in U2 . If the group of automorphisms of P is generated by two reflections, one, 
say S, which permutes cyclically the vertices on an edge and another , T, 
which permutes cyclically the edges a t one of these vertices, then P is called 
a regular complex polygon. Now the finite groups in U2 generated by 5 and T 
can be interpreted as finite groups of orthogonal transformations in four-
dimensional Euclidean space, E4. These groups in E 4 have been enumerated 
by Seifert and Threlfall (6), using the fact t ha t each such group is homo-
morphic (either 2:1 or 1:1) to one of the finite groups of displacements in 
elliptic space of three dimensions enumerated by Goursat (5). The purpose 
of this paper is to find the groups in Goursa t ' s list corresponding to Shephard ' s 
groups. 

In §2 we find quaternion transformations q' = aqb corresponding to the 
generators of Shephard 's groups. In §3 these are used to associate groups 
2 and 9î of Clifford translat ions to Shephard 's groups. (This discussion closely 
follows t h a t of (6).) In §4 Goursat ' s groups are described analogously, leading 
to the natural homomorphism between Shephard 's groups and Goursa t ' s 
described in §5. T h e results are tabulated, and summarized in the Theorem. 

We write (Hn and S for cyclic groups of order n and 1 respectively. The 
polyhedral group defined by A11 = Bv = (AB)2 = E is denoted (2, /*, v), and 
the binary polyhedral group A* = Bv = (AB)2 is (2, /*, v). Wi th Sw the 
la t ter are the only finite groups of quaternions. For quaternions the exponential 
form exp swj/n means cos sir/n + j sin sir/n. T h e order of a group © is |®|. 

2. The quaternion representation of a unitary reflection. If the 
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point (x, y) = (xx + ix2, yi + iy%) in U2 is represented by the point 
(xi, %2, yu y2) m E4, then the transformation 

(2.1) (x[ + ix2, y[ + iy'2) = (x, y) (rx + ir2 sx + is2\ 
\fa + it2 U\ + iuj 

is represented by the transformation 

(2.2) (x[, xf
2, y[, y2j) = (xu x2, yh y2) , n Yl Sl S2 -

-r2 rl — s2 si 
t\ t2 U\ U2 

-t2 t\ — U2 U\, 

In particular, if 2.1 is a unitary reflection then 2.2 is proper orthogonal. The 
transformation 2.2 can in turn be expressed as a quaternion transformation (2) 

(2.3) q' = {ax + \a2 + ja3 + ka4) a (bx + ib2 + j63 + ki4) , 

where q = xx + ix2 + jyi + k;y2, q' = xx + ix2 + jyx + ky2, and Na = 
Nb = 1. Since in our case 2.2 corresponds to a unitary reflection, we have also 
a, = h (2, p. 141). 

The at and bt in 2.3 can be found in terms of the riy siy tu and u{ in 2.2 by 
applying 2.2 and 2.3 to (1 ,0 ,0 ,0) , (0 ,1 ,0 ,0) , (0 ,0 ,1 ,0) , (0 ,0 ,0 ,1) and 
1, i, j , k respectively, and equating coefficients. For example, applying 2.2 
and 2.3 to (1, 0, 0, 0) and 1 yields 

rx = aibi — a2b2 — a3&3 — #4&4, r2 = d\b2 + #2&i + a364 — #463, 
sx = dib% + a35i — a2b\ + aj)2, s2 = axb\ + a±bi + a2bz — dzb2. 

Repeating this in the other three cases yields 12 more equations. Adding and 
subtracting these 16 equations in pairs containing rx, r2, . . . , ux, u2 yields 16 
equivalent equations which reduce to 

a3 = a4 = 0 and 
2aibi = rx + U\, 2dibz = Si — ti, 
2dib2 = r2 — u2, 2dibA = s2 + fa, 
2d2bi = r 2 + W2, 2a2Z>3 = s 2 — fa, 

2d2b2 = ux — rx, 2a2&4 = — Si — £1. 

These equations readily give the quaternion transformation 2.3 correspond
ing to a unitary matrix. For example, if 

\0 exp2iri/n/ exp 2iri/ti 

we get 
d\bz = a253 = d\b± = a2^4 = 0. 

Since either d\ or a2 is different from zero this implies Z>3 = 64 = 0. Moreover, 
2ai#2 = — u2 = — 2a2bi, that is 

di/d2 = — Ô1/Ô2, 
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and since 
aibi — a2b2 = ri > 0 

we have b — a. Then 

2ajbi = 2a i = ri + ux = 1 + cos 2w/n, 

so that 
ai = =t cos ir/n = b\. 

We choose the upper sign. Finally 

2a2b\ = 2a2a>i = 2a2 cos ir/n = sin 27r/w, 

which yields 
a2 = sin ir/n = — £2. 

Consequently the quaternion form of 7" is 

(2.4) q' = (cos ir/n + i sin x/«) q (cos 7r/?z — i sin ir/n). 

In Table I at the end of this paper we list the groups of the regular complex 
polygons, writing pi[t]p2 for the group of the polygon pi{t}p2 in the notation 
of (4, p. 80). The generators 5 and T are taken from (7) except for the group 
2[n]2 for which the given 5 is not a reflection. For this group we let 

s = 5 _ 1 = / c o s 2 x / » s i n 2 x / « \ a n d T = ( l o \ 
\sin 2ir/n — cos 271772/ \0 — 1 / 

Professor Coxeter has pointed out that the defining relations for Shephard's 
groups are particularly simple in terms of S~l and T. Consequently we use 
these generators in preference to S and T. The quaternion form of S~l appears 
in the table. By 2.4, T is always (exp xi/^2) q (exp —iri/p2). 

3. The groups 8, 9?, I, r. If S~l is represented by q' = aqband Tbyq' = cqd 
we designate by S* the group generated by a and c, and by 9?* the group 
generated by b and d. These groups are either cyclic groups or binary polyhedral 
groups (2, JU, v) (1), and can thus be readily determined. We remark that in 
all cases 8* is cyclic. 

We turn now to a more detailed discussion of Shephard's groups in terms 
of the groups 8* and 9?*. Let © be such a group. Then © is a group of trans
formations q' = aqb, a G 8*, b Ç 9Î*. But not every transformation of the 
given form is in the group, and furthermore there are certain redundancies. 
The latter occur because the transformation q' = aqb is identical to the 
transformation q' = (-a)q(-b). There are no other redundancies of this 
nature, for if aqb = cqd for all q then c~la = db~l is a real number, say s, so 
that c = as-1 and d = sb. But Na = Nb = xVc = iVd = 1, so 5 = =b 1. We 
remove these redundancies by identifying the elements (a, b) and ( — a, —b) 
of 8* X 9Î*. (Observe that multiplication in 8* X $* is defined by (a, J) 
(c, d) = (ac, bd), which does indeed correspond to composition of the corres-
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ponding transformations since the commuta t iv i ty in 8* implies ac = ca.) For 
finite groups of quaternions the only case in which this identification is trivial 
is if either 8* or 9î* is a cyclic group of odd order. For our groups this is never 
the case. Essentially we thus form (8* X 9Î*)/Ê2, whose elements are the 
classes {(a, b)\. W e let 

8 = {{(a, 1)} : a G 8*} and SR = {{(1,5)} : J 6 » * } . 

T h e elements of 8 and 9? can be multiplied in the obvious manner : 

{(a, 1)} {(1,6)} = {(a, 6)}. 

Clearly 9? ^ 9Î* and 8 9Ë 8*, b u t 89Î ÊË (8* X 91*) /S 2 . Every element of 8 
commutes with every element of 9Î. T h e group ® is isomorphic to a subgroup 
of 89? and will be t rea ted as if it were itself a subgroup. 

Le t I = 8 r\ © and r = S R H ® . Then 1 is a normal subgroup of 8. For let 
L G 8 and / G I. Certainly LrHL G 8. There is some i? G 9? such t h a t 
Li? G ®, for 8 consists of exactly such elements L. Consequent ly 

L-H L = ( L ^ ) - 1 / (Li?) G ®. 

T h a t is, L _ 1 IL Ç ? P i ® = 1. Similarly, r is a normal subgroup of 9î. Fur ther 
more ïr is a normal subgroup in ® of order | | ï | | r | . For if / G 1 and r f r then 
(LR)~Hr (LR) = (L- 1 / L) (i?-V i?) G Ir. 

We say t h a t an element L G 8 is paired with an element R G 9Î if L/? G @. 
T h e cosets of I in 8 are in 1:1 correspondence (given by the pairing) with 
the cosets of r in 9î. For if L and L' are paired with R then LR, (LR^1 = L~lR~l 

and L'R are in ®. Therefore L^R^L'R = L~lL'R-lR = L " ^ ' G ®. T h a t is, 
L~1Lf G I, and consequently L and L ' are in the same coset of I. Conversely, 
if L and L ' are in the same coset and if L is paired with R, t h a t is, LR G ®, 
we have L'L~lLR = L'R G ®. T h a t is, L' is also paired with R. This corres
pondence is an isomorphism. For let L be in the coset corresponding to the 
coset containing R, t h a t is, LR G ®, and let L'R' G ®. Then 

LRL'R' = LL'RR' G ®, 

t h a t is LL' is in the coset corresponding to the coset containing RR!. 
This isomorphism 

(3.1) 8 / 1 ^ 9 ? / r 

enables us to determine I and r. For each of the |8 | elements of 8 is paired with 
the |r| elements of a coset of r in 9?, and each of the |9?| elements of 9Î is paired 
with each of the |I| elements of a coset of I in 8. These pairings give all the 
elements of ®, b u t each element appears twice, for if {(a, 1)} is paired with 
{(1, b)} then { ( - a , 1)} is paired with {(1, -b)} and {(a, 1)} {(1,6)} = 
{ ( - a , 1)} {(1, -b)} = {(a, b)}. T h a t is, |® | = J |8 | | r | = è|SR||I|. This gives |r| 
and |I| and consequently r and 1, since in all bu t two cases the normal 
subgroups of these orders are unique. We discuss these two cases separately. 
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If ® = 2[4R n even, we have 2 = e2», 9Î = (2, 2, n) and 1 = gn. In fact 
the 2n elements of 2 are 

exp swi/n, s = 1 , 2 , . . . , 2n. 

(Strictly speaking, these are the elements of 8*. But 2 = 8* and it is simpler 
to write =ba than {(=ba, 1)}. The same applies to 9? and 9Î*.) The 4n elements 
of 9? are 

exp siri/n and k exp swi/n, 5 = 1 , 2 , . . . , 2w. 

The possible choices of r, that is, of normal subgroups of index 2 in 9Î, are 
Ç£2n with elements exp swi/n, s = 1 , 2 , . . . , 2w, and (2, 2, w/2) with elements 

exp 2siri/n and k exp 2sTÎ/n, s = 1 , 2 , . . . , n. 

We know © contains the element T= {(exp wi/n, exp —iri/n)}. Since 
exp iri/n is not in I, but in the other coset of I in 2 we know exp — iri/n is 
not in r. But exp — wi/n is in S2w. Therefore r = (2, 2, n/2). 

In the case of groups 2[n]2, n divisible by 4, where2 = Gu, 9î = (2, 2, w/2) 
and 1 = S2, it can be verified in a similar manner that r = Sw and not 
(2, 2, »/4). For T = {(i, - i ) } is in ® and i is not in 1. But - i is in (2, 2, w/4), 
so r = Sn. (In this case the elements of 9î are exp 2s7rj/w and i exp 2sTr]/n, 
s = 1, 2, . . . , n.) 

Conversely, given the groups 2, 9Î, 1, r from our list we can always determine 
@ uniquely. To show this we need only show that if distinct isomorphisms 3.1 
are chosen, the groups @ arising from the corresponding pairings of cosets are 
isomorphic. In most cases 9?/r is Ê2 or ©, and there is thus only one isomor
phism. However, there are cases where 

m/x = <2, 2, »>/<£,=* ©4 
° r di/v = (2, 3, 3)/(2, 2, 2) ^ 6,. 

There is only one non-trivial automorphism of 64, and it is induced by an auto
morphism a of (2, 2, n), namely by ab = (i)b( — i), where the elements b of 
(2, 2, n) are again exp S7ri/^ and k exp STTÎ/W, s = 1, 2, . . . , 2w. This establishes 
an isomorphism between the two possible groups @ by the correspondence 
{(a, b)} : {(a, aZ>)}. Similarly, the only non-trivial automorphism of (2, 3, 3) / 
(2, 2, 2) is induced by the automorphism 

of the group (2, 3, 3) whose elements are ±1 , =bi, =bj, ± k , (±1 =b i db j =b k). 
That is, an isomorphism between the two groups obtained from the two 
possible pairings of cosets 2/1 with those of (2, 3, 3)/(2, 2, 2) is determined 
by the correspondence {(a, b)} : {(a, fib)}. 

4. The relevant Goursat groups. Goursat (5) has shown that the 
finite groups of motions in elliptic 3-space can all be obtained in an analogous 
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fashion from pairings of corresponding cosets of isomorphic quot ient groups 
of polyhedral or cyclic groups. Explicitly, consider a polyhedral or cyclic group 
8' with a normal subgroup V and a polyhedral or cyclic group 9?' with a normal 
subgroup r ' such t h a t 

(4.1) 8 7 1 ' ^ WW. 

Then | 8 ' | | T ' | = I^R'HI'I is the order of a group ©' whose elements are the pairs 
(a, b) for which b is an element of the coset of r ' in 3?' which corresponds to 
the coset containing a in the isomorphism 4.1 . T h e multiplication of elements 
of ©' is defined by (a, b) (c, d) = (ac, bd), and ©' is a subgroup of 8' X 5R'. 

In all bu t one of the cases which concern us the quot ien t groups 4.1 are 
either fè2 or 6 . Consequently the given construction for ©' is unambiguous. 
In the remaining case, where 9t' = (2, 3, 3) and r ' = (2, 2, 2), there are two 
dist inct ways of pairing the cosets of %'/V with those of 9 î ' / r ' . Bu t these two 
pairings again lead to isomorphic groups, for there is an automorphism of 
(2, 3, 3) which induces the non-trivial automorphism of (2, 3, 3 ) / ( 2 , 2, 2) as 
follows. Let (2, 3, 3) be the group of a regular te t rahedron, and let y be a 
rota t ion by angle T abou t a line joining the midpoints of opposite edges of a 
cube whose vertices are those of the te t rahedron and its dual . Then the 
transformation yby~l induces the non-trivial au tomorphism of (2 ,3 , 3 ) / ( 2 , 2 , 2 ) . 
Consequently an isomorphism between the two possible pair groups is given by 
the correspondence (a, b) : (a, yby~l). 

5. T h e h o m o m o r p h i s m f r o m S h e p h a r d ' s g r o u p s t o G o u r s a t ' s . Let 
a group © of our list be given by 3.1. Consider the na tura l homomorphism 
from the cyclic or binary polyhedral group £ to the corresponding cyclic or 
polyhedral group 8' obtained by identifying the elements dta of £. Let af be 
the image of =ha under this homomorphism. Similarly let b' be the image of 
zLb under the na tura l homomorphism of 9Î onto 9Î'. Clearly this induces a 
homomorphism from © onto some group ©' whose elements are of the form 
(a', b'). T h u s ©' is one of Goursa t ' s groups, for its elements are pairs from 
cyclic or polyhedral groups, and Goursa t ' s list includes all such. We distinguish 
two cases, (i) T h e elements ± a are not in the same coset of I in ?, and the 
elements àzb are not in the same coset of r in 9Î. T h e only groups for which 
this occurs are 2[n]2, n odd, and 2[4]n, n odd, t h a t is, the groups for which Ï 
and r are cyclic groups of odd order, (ii) T h e elements dba are in the same 
coset of 1 in S and the elements zLb are in the same coset of r in 9Î. This is the 
si tuation for all other groups in our list. 

Now in case (i) the homomorphism described from © to ©' is actual ly an 
isomorphism. For the only elements of © whose images are (ar, b') are {(a, b)} 
and {( — a, — b)\, since if {(a, b)} is in © there is no element {(a, — b)} in @. 
Bu t {(a, b)} = {( — a, —b)\, so the correspondence between the elements of 
©' and those of © is 1:1. This determines the order of ©', as well as S' and 9?', 
so t h a t we can find V and r ' immediately. In fact, V = Ï and r ' = r. 

https://doi.org/10.4153/CJM-1961-011-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-011-4


REGULAR COMPLEX POLYGONS 155 

In case (ii) the homomorphism of © to ©' is 2:1 since the distinct elements 
{(a, dtzb)} of @ both have (a', bf) as image. In particular the image of (1, ± J ) 
is (!', J ;), so if b 6 r then b' G r'. That is, r' is the image of r under the homo-

TABLE I 

Group 
Pi[*]p2 

Quaternion transformation 
corresponding to S"1 (§ 2) 

8/1 
(§3) (§3) 

2[4]n ( i )g ( -k ) 

2[»]2 (i)g(— i exp 2irj/wj 

« (i+.^)4-i|+J^"-^)_ 
31413 (l+'#(H^+^-^) 
31313 ( l +¥ )4+¥^ -^ k - ^ ) 

4.3.4 ( ^ + i^) s(^ + P^) 

5,e,2 ( i + li)4-il + iI_k^5) 

*13 (i+'i)4-'¥+^+kî!#) 
3,5,3 ( i + i^)4-,^l + j^-kl) 
5.3.5 (i + i i)4_^+ i i_kJ-) 

(« even) 
<E*,/(S. 
(w odd) 
64 /62 

(» even) 
64/6 
(M odd) 

61»/6; 

6 6 / 6 6 

6 6 / 6 2 

612/66 

68 /68 

S24/S12 

68/64 

6n /6 i2 

S2O/ S2O 

Ê3o/©30 

6 6 /6e 

610/610 

2, 2, n>/<2, 2, n/2> 

2,2, »>/<£. 

;2 ,2 ,« /2) /6 B 

2 ,2, « V S . 

2, 3, 3)/(2, 2, 2 

% 3, 3)/(2, 3, 3; 

2, 3, 3)/(2, 2, 2 

, 3, 4)/(2, 3, 3, 

2, 3, 4)/(2, 3, 4 

2, 3, 4)/(2, 3, 3 

2 ,3 ,4) /<2,3 ,3 

2, 3, 5)/(2, 3, 5 

2, 3, 5)/<2, 3, 5 

2, 3, 5)/(2, 3, 5 

2, 3, 5)/(2, 3, 5 

;2, 3, 5)/<2, 3, 5 

*r = 2 cos TT/5 = (1 + V5)/2. t<r = 2 sin x/5 B - r)*. 
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morphism taking ztb to b'. This determines the group r'. Order consider
ations alone determine the cyclic group V for which 2\V\ = |1|. 

The groups S, 9?, I, r appear in Table I. These tabulations then readily 
yield the Goursat groups in the form 4.1. Except for the cases 2[4]w and 2\n\2 
the results are summarized in the Theorem, for which the following notation 
is convenient: 

Let pi[t]p2 be the group generated by reflections 5 _ 1 and T, having the 
defining relations 

(5-i)P l = TP2 = Ej 5-17^5-1 . . . = TS~lT ... (t factors on each side). 

The centre of this group is the cyclic group S generated by (S~lT)tn if t is 
even or by (S~lT)1 if t is odd. The period of (S~lT)tl2 is 

2p1p2/k, where 2k = 2pxp2 + pit + p4 - pip2t 

(4, pp. 76, 77, 79). The quotient group p\\i\ P2/& is a polyhedral group 
(2, M, v). (7, p. 84). 

THEOREM. The group pi[t]pi (pi ^ 2) with centre S is 2:1 homomorphic 
to the group of motions in elliptic S-space defined by the isomorphism 

where 

(a) 2' and V are cyclic groups. 
(b) | 8 ' | =l.c.m.ipup2}. 
(c) 2\V\ = 131. 
(d) 3t' = pdt]p2/S-
(e) r' is the unique normal subgroup of 9î' such that |? / | |r / | = |9Î'||I'|. 

((a), (b), and (d) also hold in case pi = 2.) 
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