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In Rayleigh–Bénard convection experiments, the thermal coupling between the
sidewall and fluid is unavoidable. As a result, the thermal properties of the sidewall
can influence the flow structure that develops. To get a better understanding of the
influence of the sidewall, we performed a one-to-one comparison between experiments
and direct numerical simulations (DNS) in aspect ratio (diameter over height)
Γ = 1.00 samples. We focus on the global heat transport, i.e. the Nusselt number
Nu, and the local vertical temperature gradients near the horizontal mid-plane on the
cylinder axis and close to the sidewall. The data cover the range 105 . Ra . 1010

where Ra is the Rayleigh number. The Nu number obtained from experimental
measurements and DNS, in which we use an adiabatic sidewall, agree well. The
experiments are performed with several gases, which have widely varying thermal
conductivities, but all have a Prandtl number Pr≈ 0.7. For Ra& 107, both experiments
and DNS reveal a stabilizing (positive) temperature gradient at the cylinder axis. This
phenomenon was known for high Pr, but had not been observed for small Pr ≈ 0.7
before. The experiments reveal that the temperature gradient decreases with decreasing
Ra and eventually becomes destabilizing (negative). The decrease appears at a higher
Ra when the sidewall admittance, which measures how easily the heat transfers
from the fluid to the wall, is smaller. However, the simulations with an adiabatic
sidewall do not reproduce the destabilizing temperature gradient at the cylinder axis
in the low Ra number regime. Instead, these simulations show that the temperature
gradient increases with decreasing Ra. We find that the simulations can reproduce the
experimental findings on the temperature gradient at the cylinder axis qualitatively
when we consider the physical properties of the sidewall and the thermal shields.
However, the temperature gradients obtained from experiments and simulations do
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not agree quantitatively. The reason is that it is incredibly complicated to reproduce
all experimental details accurately due to which it is impossible to reproduce all
experimental measurement details. The simulations show, in agreement with the
models of Ahlers (Phys. Rev. E, vol. 63 (1), 2000, 015303) and Roche et al. (Eur.
Phys. J. B, vol. 24 (3), 2001, pp. 405–408), that the sidewall can act as an extra
heat conductor, which absorbs heat from the fluid near the bottom plate and releases
it into the fluid near the top plate. The importance of this effect decreases with
increasing Ra. A crucial finding of the simulations is that the thermal coupling
between the sidewall and fluid can strongly influence the flow structure, which can
result in significant changes in heat transport. Since this effect goes beyond a simple
short circuit of the heat transfer through the sidewall, it is impossible to correct
experimental measurements for this effect. Therefore, careful design of experimental
set-ups is required to minimize the thermal interaction between the fluid and sidewall.

Key words: Bénard convection

1. Introduction
Rayleigh–Bénard convection, i.e. the convection of a horizontal fluid layer heated

from below and cooled from above, is an excellent model system to study heat transfer
and thermally induced turbulence. For reviews we refer the reader to, for example,
Bodenschatz, Pesch & Ahlers (2000), Ahlers (2009), Ahlers, Grossmann & Lohse
(2009), Lohse & Xia (2010), Chillà & Schumacher (2012) and Xia (2013). Thermally
driven convection is relevant for atmospheric and oceanic flows as well as in numerous
industrial processes. One of the important questions is how the heat transfer, which
in dimensionless form is expressed as the Nusselt number Nu = QL/(λ∆), depends
on the Rayleigh number Ra≡ βg1L3/(κν), the Prandtl number Pr≡ ν/κ and the cell
aspect ratio Γ ≡D/L. Here D and L are the diameter and height of the convection cell,
respectively, g is the gravitational acceleration, β is the isobaric thermal expansion
coefficient, ν is the kinematic viscosity, κ is the thermal diffusivity and λ the thermal
conductivity. The temperature difference between the plates is given by ∆ ≡ Th −

Tc, where Th and Tc are the temperature of the bottom and top plate, respectively;
Q is the heat flux per unit area crossing the fluid layer. Next to the heat transfer,
also the time averaged temperature distribution and flow structure in this turbulent
system are of great importance. Here we use new experimental measurements, which
were performed using several compressed gases with Pr ' 0.7, and direct numerical
simulations (DNS) for Pr= 0.7 in cylindrical samples with Γ = 1.00 to address both
these issues.

For a fluid with a positive thermal expansion coefficient, the applied temperature
difference in Rayleigh–Bénard convection is destabilizing in the Earth’s gravitational
field. Therefore, convection occurs when the temperature difference is large enough.
It is well known that in high Ra number flow two thin thermal boundary layers, one
below the top plate and one above the bottom plate, sustain most of the temperature
difference (Ahlers et al. 2009). The sample interior, or bulk, is then at a nearly
uniform temperature close to TM ≡ (Th + Tc)/2. Naively, one would expect that the
temperature gradient in the bulk is destabilizing. Thus, it came as a surprise when
measurements for Ra near 109 (Tilgner, Belmonte & Libchaber 1993; Brown &
Ahlers 2007) and DNS for Ra = 106 (Schmalzl, Breuer & Hansen 2002; Breuer
et al. 2004) showed that the temperature gradient in the bulk is stabilizing. The
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measurements of time averaged local temperatures were for Pr ' 5 in the turbulent
state. The DNS clearly showed a stabilizing vertical gradient of the horizontally
averaged temperature for Pr= 100; but at that Pr and Ra= 106 the system, although
probably time dependent, most likely was not turbulent (Krishnamurti 1970). For
these high Pr number cases the thermal diffusivity κ is smaller than the kinematic
viscosity ν. Therefore, one could argue that plumes emitted from the boundary layers
have relatively long lifetimes and can travel along the sidewall to the opposite plate
and then drift back to the sample centreline, which creates a stabilizing gradient
in the sample interior. For lower Pr the plume lifetimes are expected to be shorter,
and therefore one expects that it is more difficult for plumes to drift back to the
sample centreline. However, surprisingly, we find that for Ra& 107 and Pr< 1, when
κ is larger than ν, the gradient at the sample centre remained stabilizing and of
approximately the same size as found experimentally for Pr ' 5. However, in § 4.2
we show that the large scale circulation (LSC) velocity increases with decreasing
Pr due to which plumes that are carried by the LSC can still cause a stabilizing
temperature gradient at the cell centre for low Pr number fluids.

The influence of the sidewall on heat-transport measurements has been considered
by several experimentalists, see, e.g. Ahlers (2000), Roche et al. (2001), Niemela &
Sreenivasan (2003) and Ahlers et al. (2009). Rayleigh–Bénard containers are more
complex (see, e.g. Niemela et al. (2000) and Zhong & Ahlers (2010)) than the
idealized system with an adiabatic sidewall and isothermal top and bottom plates,
which is usually considered in simulations. Experimental cells are limited by the
physical properties of the available materials and working fluids. Thus effects like the
finite conductivity of the sidewall and the configuration of the insulation and thermal
shields might influence the heat transfer and flow structures. Often these effects are
accounted for simply by subtracting the corresponding heat current transferred by an
empty convection cell. The phenomenological models of Ahlers (2000) and Roche
et al. (2001) already showed that the thermal coupling between fluid and sidewall
makes this procedure in principle inadequate to account for the sidewall effect. The
reason is that the vertical temperature profile in the sidewall differs from that in the
convecting fluid and therefore there is a lateral heat exchange between sidewall and
fluid, which can influence the flow dynamics. To further explore these issues, Verzicco
(2002) performed DNS of Rayleigh–Bénard convection in a cylindrical container with
Γ = 1/2 in which the effect of the finite conductivity of the sidewall was assessed. He
found that for Ra< 109 the sidewall effect can change the exponent α of the power
law Nu ∼ Raα by up to 10 %. Later simulations for the same geometry found that
changes in the sidewall configurations can trigger different flow organizations (Stevens,
Lohse & Verzicco 2014). To explore whether sidewall effects may be responsible for
the stabilizing gradients seen in experiments, we performed experiments with various
fluids and simulations with different sidewall configurations.

It is well known that the sidewall can have a strong influence on the critical
Rayleigh number Rac for the onset of convection (Buell & Catton 1983; Hébert et al.
2010). In that case, Ra and thus also Rac for a given geometry are determined by
the sidewall admittance, which measures how easily the heat transfers from the fluid
to the wall,

C=
Dλ

2dλw
. (1.1)

Here λ is the thermal conductivity of the employed gas, and d and λw are the
sidewall thickness and its thermal conductivity, respectively. For the ideal adiabatic
case, C=∞. Although it is not known whether C is the only important factor at high
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Ra, we were particularly motivated by its influence near the onset. We investigate this
by performing experimental measurements for 1 . C . 12 by using different gases
with nearly the same Pr' 0.7, but different conductivities, to vary C. In addition to
Nu, we determined the temperature gradients near the horizontal mid-plane both on
the cylinder axis and close to the sidewall. While these gradients were stabilizing
and (within our resolution) independent of the used fluid when Ra was high, they
did depend on the chosen gas (and thus on C) for Ra . 107. For comparison, we
performed simulations using the physical properties of neon with adiabatic boundary
conditions at the side as well as with a wall domain with wall properties equal to
those of the experiment included. While the adiabatic boundary condition corresponds
to C → ∞, see (1.1), the wall–neon combination has the same C = 3.9 as the
experimental system. We also consider simulations with helium as working gas in a
cell with a Plexiglas sidewall, which corresponds to C= 12, and additional insulation
layers and sidewall shields.

The presented simulations are complementary to the experiments as the simulations
allow us to study the flow structures in more detail. We also use the simulations
to test various sidewall configurations to assess the influence of different sample
designs. To achieve this we employ, in contrast to most DNS, a more realistic model
based on the Navier–Stokes–Brinkman equation in combination with the immersed
boundary method to simulate the effect of the sidewall and insulation layers as a
conjugate heat transfer problem. A similar modelling approach was followed by
Stevens et al. (2014). However, in contrast to the previous study, we now present a
direct comparison between experiments and simulations. In addition, Stevens et al.
(2014) mainly focused on the effect of the sidewall on the Nu number. However, now
we also assess the effect of the thermal sidewall properties on the LSC. We will show
that the sidewall can influence the LSC in such a way that a destabilizing temperature
gradient at the cylinder axis is created for lower Ra. Clearly, this continuous effort
to accurately model the interaction between the sidewall and flow dynamics using
DNS is necessary to get a better understanding of the effect this interplay may have
on the heat transfer and flow structures in Rayleigh–Bénard convection. However, we
emphasize that due to the complicated interactions between fluid and sidewall, and
the difficulty in identifying all relevant design parameters, it remains impossible to
reproduce all experimental details.

The paper has the following structure: in §§ 2 and 3 we describe the experimental
and numerical procedures. In § 4, we present the experimental measurements in
comparison with the simulation results obtained with an ideal adiabatic sidewall. In
an attempt to explain the differences between experiments and idealized simulations,
we discuss the effect of the sidewall on the heat transport and flow dynamics in § 5.
We conclude with a summary and conclusion in § 6.

2. The apparatus

The overall features of the apparatus were described in detail before by Zhong &
Ahlers (2010). We used a sample with thick copper top and bottom plates and a
Plexiglas (poly(methyl methacrylate)) sidewall of thickness dw = 6.4 mm. The inside
dimensions were L=D= 190.5 mm, yielding an aspect ratio Γ = 1.00.

A groove in the top and bottom plates directly below or above the sidewall
contained an ‘O’-ring that sealed the sidewall to the plates. Two aluminium brackets,
one above the top and the other below the bottom plate, pressed the plates against
the ‘O’-rings and the sidewall. This compression was achieved by six steel tension
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rods connecting the brackets and located at a diameter larger than that of the sidewall.
A thin Teflon capillary penetrated the sidewall at mid-height and was used to fill the
sample. Externally the capillary was connected to the fill line coming from the gas
supply cylinder, as well as to a pressure gage (Paroscientific Model 745) and another
volume known as the ‘hot volume’ (HV) (Mueller, Ahlers & Pobell 1976). The HV
had a size similar to that of the sample, and its temperature could be adjusted in
a feedback loop with the pressure gage to keep the sample pressure constant. Over
several days the HV temperature typically increased because of the gradual diffusion
of the sample gases through the Plexiglas sidewall of the sample. The diffusion
rate is higher for the lighter gases. At a pressure of 4 bars, the HV heating rate
was approximately 2 × 10−4 K s−1 when the sample was filled with helium and
approximately 5× 10−5 K s−1 when SF6 was used. The acceptable temperature range
for the HV was from 20 ◦C to 60 ◦C and this allowed operation for several days
without adding more sample gas. We used sample pressures from 4 bars to somewhat
below 1 bar.

The plate temperatures and the heat flux applied to a bottom-plate heater were used
to determine the Nu number Nu=λeff /λ, where λeff =LQ/∆, and Q is the heat current.
It is obtained as Q=Qt−Qp, where Qt is the total current and Qp the parasitic current,
mainly through the sidewall. The total power Qt dissipated in the bottom-plate heater
was determined from the heater current and voltage. The parasitic current Qp was
based on measurement with a nearly empty cell where no convection took place. That
measurement had to be corrected for the conductive heat current due to the remaining
quiescent gas to yield Qp. There were contributions to Qp from several sources. Some
of the currents passed through the foam insulation to an isothermal shield maintained
at TM. Another part was conducted by the tension rods to the water reservoir above
the top plate. The sidewall conducted the remaining part. The current Q = Qt − Qp
was used to obtain a preliminary estimate Nu0 of Nu. An estimate of the current Qw
passing through the sidewall based on the sidewall geometry and conductivity was
then used to correct Nu0 for the nonlinear sidewall effect, as discussed by Ahlers
(2000) and Roche et al. (2001), to yield our final estimate of Nu.

While the above corrections to Qt and Nu0 typically are only of modest size when
fluids such as water with relatively high conductivity are used, they become more
critical for gases where the conductivities can be much smaller. For example, at
25 ◦C the conductivities of water and SF6 differ by a factor of approximately 50. For
helium, the difference is approximately a factor 4. As we shall see below, there is
good agreement between the Nu values obtained using all different working gases
even though their conductivities vary significantly, see table 2, and the corrections to
Qt and Nu0 differ widely.

There were six Honeywell type 111-104HAK-H01 thermistors inside the sample. Of
these we used four in the present work. Their locations are given in table 1. Two
each were mounted near the end of a ceramic rod (Omega ceramic thermocouple
insulators of type FRA-005132) with an outside diameter of 0.90 mm as described
elsewhere (Ahlers, Bodenschatz & He 2014; Wei & Ahlers 2014; He et al. 2015).
Each thermistor lead passed through a 0.13 mm diameter hole in the rod and parallel
to the rod axis. The rods were inserted through holes, also of nominally 0.90 mm
diameter, in the 6.4 mm thick sidewall. The rods terminated near the outside of the
sidewall, and there they as well as the uninsulated leads were sealed to the sidewall
with epoxy. Four thermistors (held by two rods) were located on the sample axis. The
remaining two were located near the sidewall at ξ ≡ (D/2− r)/(D/2)= 0.13, where r
is the horizontal distance from the cylinder axis. This means that ξ = 1 at the centre
axis (r= 0) and ξ = 0 at the sidewall (r=D/2).
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ID R− r (mm) ξ z (mm) z/L θint

V0-1 95 1.00 75.9 0.398 15π/8
V0-4 95 1.00 97.1 0.510 7π/8
V1-1 12 0.13 93.2 0.490 π/8
V1-2 12 0.13 97.2 0.510 π/8

TABLE 1. The identifiers, ID, and the radial and vertical locations of the internal
thermistors. The sample height was L = 190.5 mm and the radius was R = 95.2 mm.
The angle θint (in rad) is the azimuthal location (relative to an arbitrary origin) for each
thermometer, measured in a counter-clockwise direction when viewed from above.

Sample T Pr β/κν 103λ C
(K) (s2 K−1 cm−4) W cm−1 K−1

SF6 298 0.786 4.18 0.129 1.02
Nitrogen 298 0.724 0.0965 0.258 2.04
Neon 298 0.664 0.0144 0.496 3.91
Helium 298 0.675 0.00151 1.52 12.0

TABLE 2. Properties of the employed fluids at 25 ◦C and P= 1 bar. The Plexiglas sidewall
conductivity was taken to be 0.0019 W cm−1 K−1. The properties Pr, λ and C are nearly
independent of the pressure P while β/(κν) is approximately proportional to P2.

While the vertical hole locations in the sidewall were known with high accuracy,
there were two possible contributions to the uncertainties of the vertical thermistor
locations. One came from any tilt of the rods relative to a line orthogonal to the
cylinder axis. We believe this to be very small, probably no more than 0.2 mm on
the sample axis and much less near the sidewall. Another possible contribution came
from the suspension of the thermistors by their 0.10 mm diameter platinum leads (see
e.g. figure 2 of He et al. (2015)). Because of the fragile nature of these leads, there
is an uncertainty of approximately 0.3 mm in the vertical position of the thermistor
centre. Thus the total uncertainty is close to 0.5 mm. Similarly, we estimate that
the uncertainty of the distance δz between the two thermistors used to measure the
temperature gradient is approximately 0.7 mm.

We used the thermistor pairs (V0-1, V0-4) on the centreline (ξ = 1.00) and (V1-
1, V1-2) near the sidewall (ξ = 0.13) for the temperature-gradient measurements, see
table 1 for details. Thus for ξ = 1.00 the separation between the two sensors was δz=
21.6± 0.7 mm, while for ξ = 0.13 it was only δz= 4.0± 0.7 mm. The corresponding
uncertainties of the gradients, due to the uncertainties of the measurement geometry,
were ±3 % for ξ = 1.00 and ±17 % for ξ = 0.13.

We used the gases listed in table 2. Nearly all of the measurements were made
with TM close to 25 ◦C. Some of the sample properties at 25 ◦C and a pressure P=
1 bar are also given in the table. Each gas could be employed up to 4 bars. This
allowed measurements over a little more than a decade of Ra for a given gas since
Ra for gases is approximately proportional to P2. The Ra-range covered was different
for each gas because the parameter combination β/κν is different, see table 2.

In this work, we neglected the influence of the adiabatic temperature gradient, which
can play a significant role in convection experiments using compressed gases (Landau
& Lifshitz 1987; Chavanne et al. 1996; Ashkenazi & Steinberg 1999), especially near
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their critical points. This gradient is given by
∆ad

∆
=
βTMgL

Cp∆
, (2.1)

where TM is the absolute mean temperature and Cp is the heat capacity per unit mass.
This gradient is largest for the heaviest gas; in our case for SF6. However, even for
SF6, the adiabatic temperature gradient was well below 10−3. Thus we did not make
any corrections for this effect.

For our experiments, the shift (T0 − TM)/∆ of the centre temperature T0 relative
to the mean temperature of TM spanned the range from 0.008 to 0.018. While
this corresponds to samples that are usually regarded as being well represented by
the Boussinesq approximation, these values are comparable to those that we report
for the temperature gradients. However, in our view, the two are unrelated. While
non-Oberbeck–Boussinesq (NOB) effects create unequal temperature drops across the
two horizontal boundary layers, they leave the temperature variation (and thus the
variations of any fluid properties) in the bulk quite small. Thus we think the modest
NOB effects do not affect the results on the temperature gradient in the bulk.

For most of the explored Ra number range in this work the LSC consists of a single
convection roll. In a perfect sample, where the only perturbation of the azimuthally
invariant geometry is the Coriolis force due to Earth’s rotation, one expects the
LSC orientation to have a broad distribution with a maximum slightly north of west
(see, e.g. Brown & Ahlers (2006, 2008b) and references therein). In a real sample,
the azimuthal invariance often is also broken by unintended inhomogeneities, and
the LSC circulation plane assumes a preferred orientation (Brown & Ahlers 2008a).
In our case, the insertion of the ceramic rods carrying the thermistors breaks this
invariance. Separate measurements using thermometers located in the sidewall at
the horizontal mid-plane of the sample and at eight azimuthal positions (Brown,
Nikolaenko & Ahlers 2005) showed that the downflow of the LSC had a preferred
orientation near θd = 0.3, i.e. very close to the location of the sensor position at
θint = π/8, see table 1. We would expect the downflow to be relatively cold, leading
to a reduced mean temperature. It is not clear whether the downflow influenced the
temperature gradient. As we only have one azimuthal measurement location, it is
not possible to determine any statistical (or systematic) uncertainties in the measured
mean temperature gradient. We expect that the preferred LSC orientation does not
influence the temperature-gradient measurements at the sample centre.

3. Numerical procedures
In the simulations, we solve the non-dimensional Navier–Stokes equations within

the Boussinesq approximation (Verzicco 2002; Stevens et al. 2014) in combination
with an immersed boundary method (Fadlun et al. 2000) to account for the heat
transfer in the sidewall and insulation layer. The corresponding equations read,

Du
Dt
=−∇p+

√
Pr
Ra
∇

2u+ θ ẑ+ f , ∇ · u= 0, (3.1)

Dθ
Dt
=

1
√

PrRa

ρf C
p
f

ρCp
∇ ·

(
λ

λf
∇θ

)
+ h, (3.2)

where f and h are forcing terms whose values depend on the particular locations in
the computational domain:

(i) f = 0 and h= 0 in the fluid domain. The (3.1)–(3.2) reduce to the Navier–Stokes
and convection–diffusion temperature equations.
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Sidewall

œ = Tc

œ = TM

œ = Th

œ = TM

Lsc

r
z

Rw

Rfg Ls

LF

Foam

Thermal shield
Thermal probes

FIGURE 1. (Colour online) Sketch of numerical set-up with sidewall, insulation layer and
thermal side shields. The aspect ratio of the fluid domain Γ = 2Rf /L= 1. The Plexiglas
sidewall has a thickness e=Rw−Rf = L/30 such that Rw= 0.53333L. The insulation layer
has a thickness LF = 0.2L. For the inner thermal side shields Lsc = 0.015L with square
cross-section. The outer thermal shield has a thickness of 0.02L and a height Ls = 0.96L,
and its inner edge is located at 0.6L from the cylinder axis. The outer surface of insulation
layer is assumed to be isothermal at θ = (Tc+ Th)/2= TM. The temperatures of the entire
bottom and top plates are fixed at Th and Tc, respectively. The thermal probes are placed
at z = 0.4L and z = 0.51L for ξ = 1.0 (r = 0), while they are placed at z = 0.49L and
z= 0.51L for ξ = 0.13 (r= 0.435L).

(ii) f is determined according to Fadlun et al. (2000) to ensure that u = 0 within
the solid parts, i.e. sidewall and thermal shields, see figure 1. Similarly, h is
computed to impose the desired temperature within the thermal shields while it
is set to zero within those solid regions where temperature is to be determined
as part of the solution.

(iii) f =−u/K in the insulation layer, where K is the porosity. Equation (3.1) is then
referred to as the Navier–Stokes–Brinkman equation. Here we use the same value
as Stevens et al. (2014), i.e. K= 10, to ensure that the velocities in the insulation
layer are an order of magnitude smaller than in the fluid. Within the insulation
layer we set h= 0 since no conditions on the temperature are imposed.

In the above equations, θ is the non-dimensional temperature, u the velocity, p
the pressure, ẑ the unit vector pointing in the opposite direction to gravity. No-slip
boundary conditions are employed at all solid surfaces and a constant temperature
of Th and Tc is used at the bottom and top plate, respectively. The equations
are non-dimensionalized by the fluid sample height L, the temperature difference
∆ = Th − Tc between the plates, and the free-fall velocity U =

√
βg1L. ρ, Cp and

λ are, respectively, the density, the constant pressure specific heat and the thermal
conductivity. The subscript f refers to the properties of the fluid, while the same
quantities have different values in the sidewall or the insulation layer; Rf is the radius
of the fluid domain and Rw the radius, including the sidewall thickness. The radial
dimension of the computational domain is Rw+ Lf , which also includes the insulating
foam layer and the thermal shields when present. This allows the entire domain to be
considered in a unified computational framework. Details about the implementation
of the above scheme can be found in appendix A.

In § 4, we compare the experimental measurements with simulations in which
we use an ideal adiabatic sidewall. Subsequently, in § 5, we consider the conjugate
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heat transfer problem of a finite-thickness sidewall with physical properties. Initially,
we only include the Plexiglas sidewall, assuming that the temperature boundary
condition on the ‘dry’ side (r = Rw) is isothermal at TM = (Tc + Th)/2 to mimic
the nearly constant environmental temperature provided by the insulation layer in
the experimental apparatus (Zhong & Ahlers 2010). We note that no temperature
boundary condition is required at the fluid–sidewall interface (r = Rf ) since the
temperature is solved within the entire computational domain. The bottom and top
plates are assumed to extend until the edge of the sidewall, although it should be
noted that this condition is strongly dependent on the method that is used to assemble
the horizontal plates and the sidewall.

Finally, we simulate the whole set-up sketched in figure 1, in which we also
include the insulation layer and the thermal side shields. The outer surface of
the insulation layer is assumed to be isothermal at θ = (Tc + Th)/2 = TM. The
temperatures of the entire bottom and top plates are fixed at Th and Tc, respectively.
This set-up resembles the configuration considered by Stevens et al. (2014), but
the geometrical parameters and physical properties are different and taken from the
reference experiment described in the previous section. The specific geometrical
parameters are given in figure 1, and the material properties are listed in table 2.
When compared to the case with just the Plexiglas sidewall, this situation is much
closer to the experimental apparatus, although we emphasize that the actual set-up is
still more complex than presented in these simulations.

Details about the simulations, the documented Nu number data and the used
resolution can be found in appendices B and C. In short, we consider three different
configurations, (i) a standard Rayleigh–Bénard cell with an adiabatic sidewall, (ii) a
Rayleigh–Bénard cell using neon (Pr = 0.7) as working fluid and just a Plexiglas
sidewall and (iii) a cell with a Plexiglas sidewall, additional insulation layer and
thermal side shields as indicated in figure 1 filled with neon and helium, respectively.
All simulations are performed for Γ = 1.00.

The code has been used before by Stevens et al. (2014), where validations against
different simulation (Shishkina & Thess 2009; Hébert et al. 2010; Scheel, Kim &
White 2012) and experimental results were provided. For all the simulations, the
Nu number is computed by determining the heat flux crossing the fluid through the
plates Qf =

∫ 2π

0

∫ Rf

0 λf∇θ |z=0 · n dS/(πR2
f ). This is slightly different from what is done

in the experiments where the total heat flux that enters through the hot plate is
measured (QT =

∫ 2π

0

∫ RT

0 λf∇θ |z=0 · n dS/(πR2
T)), which only afterwards is corrected for

the parasitic heat current flowing through the sidewall. It is worth noticing that the
latter is determined by empirical models. Therefore the uncertainty in this correction
might be responsible for some of the later encountered discrepancies between the Nu
numbers obtained from experiments and simulations. At the end of § 5, we discuss
other potential reasons for discrepancies.

In the simulations, we calculate the temperature gradients using flow data obtained
from the probe locations used in the experiments, see table 1. Even though we
performed the simulations for a very long time, up to 10 000 free-fall time units for
lower Ra and for approximately 300 time units for the highest Ra, the statistical
convergence of the simulation data is still not as good as for the experimental data.
To improve the convergence of the simulation data, we calculate the azimuthally
averaged temperature gradient close to the sidewall (ξ = 0.13). At the cylinder axis
(ξ = 1.00) we use the top–down symmetry in the simulations and report the average
temperature gradient obtained from two measurements, i.e. ones between z/L= 0.40
and z/L = 0.51 and ones between z/L = 0.49 and z/L = 0.60. Because, we cannot
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FIGURE 2. (Colour online) Value of Nu/Ra1/3 as a function of Ra for Γ = 1.00 and
Pr' 0.7. Solid line: prediction of the unifying theory (Grossmann & Lohse 2000; Stevens
et al. 2013) for Pr= 0.7. Open circles: DNS with an adiabatic sidewall for Pr= 0.7. Solid
symbols: experimental data of Niemela & Sreenivasan (2003) using helium at temperatures
near 5.3 K with Pr in the range from 0.68 to 0.71 (black square), new experimental results
using helium (Pr= 0.68, red down-pointing triangles), neon (Pr= 0.66, green diamonds)
and SF6 (Pr= 0.79, blue up-pointing triangles).

perform an azimuthal average at the cylinder axis the statistical uncertainty for the
temperature gradient is higher at the cylinder axis than close to the sidewall, especially
for Ra > 6× 108 when the simulation length is more limited.

4. Measurements compared to simulations with adiabatic sidewall
4.1. Results for the Nu number

Figure 2 shows a comparison of the compensated Nu versus Ra data obtained from our
new measurements, and the simulations in which an adiabatic sidewall is used. The
simulation results agree excellently with the predictions from the unifying theory for
Ra & 2× 106. However, for Ra . 2× 106, the simulations give a lower heat transfer
than the unifying theory, because the flow is no longer turbulent, and the unifying
theory does not apply to this regime. For comparison, figure 2 also shows, as solid
black squares, the experimental Nu results of Niemela & Sreenivasan (2003). While
these data agree with the DNS for Ra&1010, they are larger than the simulation results
for lower Ra, with the difference reaching 16 % below Ra ' 109. The experimental
measurements presented here agree very well with the DNS for Ra & 109. As Ra
decreases below 109, they gradually rise above the simulation results, although the
difference never exceeds 6 %. Interestingly, the measurement data also agree very well
with the simulation results for Ra . 2 × 106 and show the same maximum of the
compensated Nu number near Ra=106. It thus seems that the influence of the sidewall
on the measured Nu number is limited when appropriate corrections are applied to the
measurements.

4.2. Results for the temperature gradients
In figure 3 we report results for the dimensionless vertical temperature gradient
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FIGURE 3. (Colour online) The mean vertical temperature gradient (a) on the cylinder
axis (ξ = 1.00) and (b) close to the sidewall (ξ = 0.13). Please note the different scales
of the two vertical axes. Open circles: DNS results using an adiabatic sidewall. Solid
symbols: new experimental results using helium (red down-pointing triangles), neon (green
diamonds), nitrogen (red circles) and SF6 (blue up-pointing triangles). Solid orange squares
and pink left-pointing triangles: experimental results from Brown & Ahlers (2007) for
Pr= 4.4 and Pr= 5.5, respectively. Solid black right-pointing triangles: result of Tilgner
et al. (1993) for Pr= 6.6.

〈1Θz(ξ)〉 =
〈T(ξ , z2)〉 − 〈T(ξ , z1)〉

z2 − z1

L
(Th − Tc)

, (4.1)

where z1 and z2, z2 > z1, are positions along a vertical (z) axis pointing in a direction
opposite to gravity. Here 〈· · ·〉 indicates the time average. Note that in absence of
convection (when the temperature gradient is independent of z) 〈1Θz〉 = −1. A
positive value indicates a temperature profile that is stabilizing in the presence of
gravity.

Figure 3(a) shows results for ξ = 1.00, i.e. along the sample axis. One sees
that the experimental results using SF6 (solid blue up-pointing triangles, Pr = 0.786)
correspond approximately to 〈1Θz〉=+0.01, a small but definitely stabilizing gradient.
This result is only somewhat smaller than the earlier measurement by Tilgner et al.
(1993) for Pr = 6.6 (solid black right-pointing triangle) and of about the same size
as the data by Brown & Ahlers (2007) for Pr = 4.4 and Pr = 5.5 (solid orange
squares and pink left-pointing triangles). Our DNS results for Pr= 0.7 are shown as
black open circles; they also reveal a small stabilizing gradient and some wiggling
in the high Ra regime. The latter is presumably due to the uncertainty in the
temperature gradient measured at the cylinder axis in the simulations, for a more
detailed discussion see the end of § 3; clearly, the wiggling does not seem to be
statistically relevant.

For higher Pr it was argued that the stabilizing temperature gradient emerges due
to the relatively long lifetime of the plumes which allows them to travel along the
sidewall to the opposite plate and then drift back to the sample centreline, which
creates a stabilizing gradient in the sample interior (Tilgner et al. 1993; Brown &
Ahlers 2007). To get a better understanding of this phenomenon, we estimate the
plume lifetime τp = λ

2
θ/κ , where λθ is the thermal boundary layer thickness, and the
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LSC travel time from the bottom to top conducting plates τLSC = L/U, with U the
velocity of the LSC, from which we obtain that

τp

τLSC
=

PrRe
4Nu2

, (4.2)

where Re = UL/ν is the Reynolds number of the LSC. Our experiments and
simulations are in regime IVu of the unifying theory (Grossmann & Lohse 2001). To
estimate the scaling of τp/τLSC with Ra and Pr we use, for simplicity, that Nu∼Ra1/3

and the result from the unifying theory that Re ∼ Pr−2/3Ra4/9 in regime IVu. This
implies that τp/τLSC ∼ Ra−2/9Pr1/3, which means that the Pr dependence of τp/τLSC

is much weaker than one would naively expect. This shows that with decreasing Pr,
the increased LSC speed allows the transported plumes to still create a stabilizing
temperature gradient at the cell centre with a similar magnitude as in high Pr number
fluids. We also note that the decrease of τp/τLSC with increasing Ra is in agreement
with the observed reduction and eventual disappearance of the stabilizing mean
temperature gradient at the cell centre.

As Ra is decreased, there are experimental data taken with nitrogen (solid red
circles), neon (solid green diamonds) and helium (solid red down-pointing triangles)
as working fluid. Each fluid covers a different range of Ra, always showing a
stabilizing gradient at the higher Ra of the scanned range. As Ra decreases, the
temperature gradient becomes more destabilizing. Surprisingly, the Ra value of the
zero crossings depends on the fluid. Since all fluids have about the same Pr, the
quantitative difference must be related to a different relationship between the thermal
properties of the fluid and the sidewall. To a large extent, this can be captured
by the value of the sidewall admittance C, see (1.1). While C is the only relevant
parameter that determines the critical Rayleigh number Rac, it is not clear that C
alone determines the system behaviour in the turbulent state. However, we note that
the zero crossing of the gradient decreases monotonically with increasing C, see
table 2 for values of C. This suggests that for the adiabatic case (C → ∞) the
decrease in 〈1θz〉 with decreasing Ra vanishes, just as in the adiabatic DNS.

As Ra is reduced even further, the helium data indicate a sharp transition at Ra'
4× 105. For the other gases, the data do not extend to sufficiently small Ra to pass
through a transition. We note that the Ra value of the transition is consistent with the
onset of turbulence as reported by Heslot, Castaing & Libchaber (1987).

Returning to the DNS data for the system with adiabatic walls (open circles in
figure 3a), we see that they behave quite differently as Ra decreases. They remain
stabilizing down to the smallest Ra investigated (Ra ' 3 × 105), with the magnitude
of the gradient increasing as Ra decreases. Again, this is not inconsistent with the
experimental data when we consider that an adiabatic sidewall may be considered as
the limit C→∞. As Ra is further reduced, the temperature gradient in the simulations
becomes negative (unstable stratification) for Ra ≈ 104, while it becomes −1 at the
onset, just as expected.

Figure 3(b) shows the gradient near the sidewall for ξ = 0.13. Here the gradient
is destabilizing also for Ra & 108 but of quite a small magnitude. In this range, the
experimental data agree well with the adiabatic DNS results. The magnitude of the
gradient increases, i.e. the gradient decreases, quite rapidly when Ra decreases. Again
the Ra value where this rapid decrease begins depends on the used gas. Also here
we see a sharp transition as Ra is decreased further, for helium at Ra ' 3 × 105

and for neon at Ra ' 2 × 106. While all gases yield qualitatively similar behaviour,
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FIGURE 4. (Colour online) Comparison of the heat transport obtained in simulations
using an adiabatic sidewall (open black circles), using a Plexiglas sidewall with neon
as working fluid (open pink up-pointing triangles), using the Plexiglas sidewall with
working fluid neon with additional insulation layer and thermal side shields (open blue
down-pointing triangles) and using the Plexiglas sidewall with working fluid helium with
additional insulation layer and thermal side shields (open orange left-pointing triangles).
New experimental results using helium (Pr= 0.68, solid red down-pointing triangles) and
neon (Pr= 0.66, solid green diamonds).

the quantitative difference again is presumably due to the difference in the sidewall
admittance, see table 2.

We observe that the Navier–Stokes equations with the Boussinesq approximation,
once made non-dimensional, depend only on Ra, Pr, and through the boundary
conditions on Γ . The dependence of the temperature gradients on the specific fluid
properties suggests that other physical effects play a role. The main effect is the
conjugate heat transfer between the fluid and the sidewall system. As discussed
above, it is not clear whether the sidewall admittance C can entirely characterize
this phenomenon. To better understand this influence, we will discuss the effect of
the sidewall and its influence on heat transport and flow structures as observed in
simulations in the next section.

5. Effect of the sidewall
Figure 4 compares the heat transport obtained in simulations using the properties of

neon and helium as working fluid and those of Plexiglas for the sidewall, with and
without the additional insulation layer and thermal side shields as sketched in figure 1.
The reference results for an adiabatic sidewall are also reported. Figure 4 shows that
for Ra& 8× 105 the heat transport is slightly smaller than the reference case when the
Plexiglas sidewall is considered and at Ra= 107 the difference is approximately 4 %.
However, for Ra . 5 × 105 the heat transport in the cell with the Plexiglas sidewall
is higher than in the reference cell and at Ra = 2 × 105 this difference grows to
approximately 15 %. When the insulation layer and thermal shields are added, their
effects become significant only for Ra 6 2× 106 with lower heat transport.

To explain this influence, we analyse the heat flux through the sidewall (Verzicco
2002). Figure 5 shows the lateral local Nu number Nul(z) = 〈−∂rθ〉t,φ(z) where ∂r
denotes the partial derivative with respect to r, at the interface of the fluid (neon)
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FIGURE 5. (Colour online) Time and azimuthally averaged heat transfer through the
sidewall for (a) the simulations with neon with just the Plexiglas sidewall and (b) the
simulations with the Plexiglas sidewall, the additional insulation layer and thermal side
shields.

and the Plexiglas sidewall, and φ is the corresponding azimuthal angle over which
we average. This gradient is determined by extrapolating the results from the fluid
and sidewall domain separately while taking into account the conductivity ratio and
then match them at the exact location (r= Rf ) of the sidewall,

Nul =
Qw

λf∆/L
=

dT
dr

∣∣∣∣
r→R−f

=
λs

λf

dT
dr

∣∣∣∣
r→R+f

, (5.1)

where R−f and R+f indicate that the temperature gradient at the sidewall is determined
from the fluid and sidewall side, respectively. The largest heat flux through the
sidewall is measured near the junction between the sidewall and horizontal plates.
The profile reveals that the sidewall acts as an extra heat conductor, which absorbs
part of the heat from the fluid near the bottom plate and releases it into the fluid near
the top plate, thus acting as a short circuit. The relative importance of the short circuit
is higher for lower Ra. For all cases, the vertically integrated heat flux through the
entire sidewall is zero. Figure 5 shows that the lateral heat flux is skew–symmetric
about the mid-plane. This means that the effect of the sidewall on the Nu number is
not due to the main parasitic heat flux. Instead, the interaction between the sidewall
and fluid causes a change in the flow structure, which changes the heat transfer that
is supported by the flow. Figure 5 also reveals that for increasing Ra the heat flux
through the sidewall near the plate can be higher when the additional insulation layer
and thermal shields are added. The reason for this is the convection in the insulation
layer, which we discuss below.

Figure 6 shows the local heat transfer, i.e. Nulb(r) = 〈−∂zθ〉t,φ(r), as a function
of the radial position at the bottom plate for the different sidewall configurations
using neon as working gas. The simulations with the adiabatic sidewall show a
pronounced imprint of the LSC, due to which the local heat transport is highest at
r/L∼ 0.3–0.4. When approaching the sidewall, the temperature gradient at the plate,
and therefore the local heat transport, decrease. The pronounced imprint of the LSC
decreases with increasing Ra, while the position of the maximum local heat transport
shifts towards the sidewall. When the Plexiglas sidewall is added, the local heat
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FIGURE 6. (Colour online) Time and azimuthally averaged local Nulb number at the plate
as function of radial position for different Ra and different sidewall configurations with
the working fluid neon.

transport is significantly increased close to the sidewall, especially at low Ra, due
to the heat exchange between the sidewall and the fluid in the junction region. The
local enhancement of the heat transport close to the sidewall, which is driven by
the heat flux that passes through the sidewall, explains the higher overall Nu at low
Ra when compared to the adiabatic case. Figure 6 clearly shows that for increasing
Ra the heat transfer through the liquid overcomes all the secondary effects and the
local heat-transport distribution converges for the different sidewall configurations as
confirmed by the agreement of the heat transport in the high end of Ra observed in
figure 4.

Figure 7 shows the time and azimuthally averaged root mean square (r.m.s.)
temperature fluctuations, i.e.

√
〈θ ′〉φ,t, for Ra = 3 × 105, 106 and 107 for the three

different model set-ups. When only an adiabatic sidewall is considered, the temperature
fluctuations near the sidewall are the highest since the sidewall does not directly affect
the temperature. The fluctuations are instead strongly damped when the Plexiglas
sidewall is added; the reduction of the temperature fluctuations is caused by the
relatively high heat capacity and steady temperature of the sidewall, induced by the
isothermal condition imposed on the ‘dry’ side. This damping effect is absent with an
ideal adiabatic sidewall, which is why the sidewall temperature is allowed to fluctuate
freely. For the set-up with the additional insulation and thermal shield, we observe
that there is almost no convection within the insulation layer at Ra = 3 × 105 and
106. However, at Ra= 107 the thermal forcing strengthens and the convection in the
porous material intensifies. This enhances the relative heat flux through the sidewall
at Ra= 107, as shown in figure 5.

If we use the traditional definition of Ra number, and neglect the influence of the
porosity, the Ra number inside the foam can be estimated. When neon (β/kν= 0.0144
(s2 K−1 cm−4)) is used as working fluid, and we assume that the working fluid in the
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FIGURE 7. (Colour online) Azimuthally and time averaged r.m.s. temperature fluctuations
for (a) Ra= 3× 105, (b) Ra= 106 and (c) Ra= 107 using neon as working fluid. The left,
middle and right panels indicate the results for the adiabatic sidewall, Plexiglas sidewall
and Plexiglas sidewall with additional insulation layer and thermal shields.

foam is air (β/kν = 0.1034 (s2 K−1 cm−4)) and that the height and the temperature
difference in the foam are identical to the fluid inside the cavity, this gives that for
Ra = 107 the Ra number in the insulation layer is approximately Ra ≈ 7.2 × 107.
However, we should emphasize that the complete set-up of the calculation is very
complex and to define an appropriate Ra in the insulation layer is complicated.

Figure 8(a) shows that, in agreement with the experimental results, the temperature
gradient at the cylinder axis (ξ = 1.0) becomes destabilizing in the low Ra number
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FIGURE 8. (Colour online) The mean temperature gradient (a) at the cylinder axis (ξ =
1.00) and (b) close to the sidewall (ξ = 0.13). Solid symbols: new experimental results
using helium (red down-pointing triangles), neon (green diamonds), nitrogen (red circles)
and SF6 (blue up-pointing triangles). Open symbols: simulation results using an adiabatic
sidewall (open circles), using a Plexiglas sidewall with neon as working fluid (pink open
up-pointing triangles) and considering the Plexiglas sidewall with an additional insulation
layer and thermal side shields (blue open down-pointing triangles), the Plexiglas sidewall
with helium as working fluid with an additional insulation layer and thermal side shields
(orange open left-pointing triangles).

regime when the Plexiglas sidewall is added. In the centre of the cell the effect of
adding the additional insulation layer and thermal side shields is hardly visible. In
addition, the results are also nearly identical for the two different working fluids,
namely helium and neon, we consider in the simulations. This means that the
simulations do not capture the trend of the temperature gradient with C that is
observed in the simulations. However, we emphasize that a real laboratory set-up has
much elements than just a physical sidewall, an isolation layer of foam, and thermal
side shields. It is evident that the temperature gradient at the cylinder axis depends
on modelling choices such as the properties of the Plexiglas sidewall and the use of
isothermal condition at the outer edge of the domain, which may not represent the
experimental conditions accurately enough.

Close to the sidewall, for ξ = 0.13, we see that the addition of the insulation layer
and thermal side shields affect the temperature gradient in the simulations. Again the
simulations with helium and neon do not capture the trend with C that is found in
the experiments. We do not yet fully understand the origin of the differences with
the experimental observations. The reason is that there are many parameters, such as
porosity, the temperature boundary conditions at the outer surface of the insulation and
the thermal properties of the materials, which influence the specific results. All these
properties are not precisely known from the experiments, which makes it impossible
to match experiments and simulations exactly. We also note that the simulations are
perfectly azimuthally homogeneous, and the presented simulation data are averaged in
the azimuthal direction. The experimental measurements, in contrast, are performed
at one azimuthal location, which might not be fully representative of the azimuthal
average.
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FIGURE 9. (Colour online) The time and azimuthally averaged vertical and radial
velocities and temperature for (a–c) Ra = 3 × 105 and (d–f ) Ra = 1 × 107 with neon as
working fluid. (a,d) Adiabatic sidewall; (b,e) Plexiglas sidewall; (c, f ) Plexiglas sidewall,
additional insulation layer and thermal shields. Left panel: 〈uz〉t,φ , middle panel: 〈ur〉t,φ ,
right panel: 〈θ〉t,φ .

Finally, in figure 9 we show the azimuthally averaged mean velocity for the three
model configurations for Ra = 3 × 105 and Ra = 107. As explained in Kunnen et al.
(2011), the structure shown in these azimuthally averaged radial and axial velocity
maps are a result of a titled LSC as sketched in figure 10. It is immediately clear
from figure 9 that the addition of the Plexiglas sidewall results in a noticeable change
in the LSC. For the simulations with the adiabatic sidewall the temperature gradient
at the cylinder axis is stabilizing. In contrast, when the sidewall is added the adjusted
LSC, which is created due to the coupling between the fluid and sidewall dynamics,
supports a small destabilizing temperature gradient at the cylinder axis.

6. Summary and conclusions

We performed experiments and DNSs for a Γ = 1.00 cylindrical Rayleigh–Bénard
convection cell, focusing on the effect of the sidewall. We measured the heat transport
and the vertical temperature gradient in the horizontal mid-plane both on the cylinder
axis and close to the sidewall for 2× 105 6Ra6 4× 1010. We find agreement between
Nu obtained from experiments and simulations with an adiabatic sidewall for Ra. 107

and Ra & 109. For Ra & 108 we also find an agreement for the temperature gradients
at the cylinder axis measured in experiments and simulations, even when we use
an idealized adiabatic sidewall in the simulations. Both experiments and simulations
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FIGURE 10. Schematic side view of the tilted LSC in the cylinder. The dash-dotted line
is the axis of the cylinder.

showed a stabilizing (positive) temperature gradient, see (4.1), at the sample centre,
which had not been observed before for Pr ' 0.7 (Tilgner et al. 1993; Brown &
Ahlers 2007). Near the sidewall, both simulations and experiments show a small
destabilizing temperature gradient for Ra & 108.

However, for Ra . 108 significant differences between experiments and simulations
with an adiabatic sidewall are observed. In the simulations, the temperature gradient
at the cylinder axis remained positive and increased with decreasing Ra, while
the experimental values decrease and become negative. A relatively rapid decrease
occurred both at the sample centre and near the sidewall. The Ra range over which
this decrease occurred depended on the employed gas. The decrease appeared at a
higher Ra for a sample with a smaller sidewall admittance C. As Ra decreased past
Ra ' 106, the experimental data indicated a sharp transition, presumably from the
onset of the turbulent state as reported by Heslot et al. (1987). The C-dependence of
these features may explain why they were not seen in the DNS since the adiabatic
sidewall corresponds to C →∞ and the rapid decrease of the gradients occurs at
significantly lower Ra. Indeed, simulations show that the internal temperature gradient
becomes negative for Ra≈ 104 and is −1 at the onset as it should be.

Since the magnitude of the measured temperature gradient depends on the specific
working fluid, it seems that the influence of the sidewall on the flow structure is
crucial to explain local measurements of the vertical temperature gradient. Therefore,
we have simulated the effects of a physical sidewall on the heat transfer and flow
dynamics. Based on the experimental results, we used the properties of neon and
helium as a working fluid in the simulations. We find that for low Ra, the sidewall
indeed has pronounced effects, but these tend to decrease with increasing Ra. One of
the essential findings is that the thermodynamic coupling between the sidewall and
fluid can lead to significant reorganization of the flow. Thus the effect of the sidewall
is not necessarily caused by a parasitic heat flux through the sidewall only, but mainly
manifests itself due to changed characteristics of the flow. Specifically, it seems that
the sidewall stabilizes the large scale flow when compared to the case when just
an adiabatic sidewall is considered. As this constitutes an actual change in the heat
transfer, experimental measurements cannot be corrected for this.

The pronounced effect of the sidewall configuration on the flow properties is
beautifully shown by local measurements of the vertical temperature gradient
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discussed above. For low Ra, simulations with an adiabatic sidewall do not even
capture the destabilizing temperature gradient at the cell centre, while this feature
is reproduced when the sidewall is taken into account. In an attempt to mimic the
experimental apparatus as closely as possible, also the insulation layer on the dry
surface of the sidewall and the thermal shields have been included in the simulations.
From these simulations, it becomes clear that it is extremely complicated to capture
all interactions between fluid and sidewall, due to which it remains impossible
to reproduce all experimental details. The difficulties arise from the challenge of
identifying all relevant design parameters as well as the uncertainty of various model
parameters in the full three-dimensional DNS. An important finding is that the
simulations reveal that the heat exchange between the sidewall and fluid mainly
occurs in the region where the plates and sidewall are connection. This heat flux is,
in part, driven by the thermal side shields. Interestingly, this heat flux significantly
intensifies when convection in the foam starts. This means that in the design of
experiments special attention should be spent on reducing heat currents in this region.

An important conclusion is also that small details matter. While the simulations in
which the sidewall, insulation and thermal side shields are represented allow us to
reproduce various experimental observations quantitatively, they fail to capture other
observations. A notable example is that the simulations do not capture the variation
of the temperature gradient at the cylinder axis and close to the sidewall with the
sidewall admittance C. The reason for this must be that a real laboratory set-up is
much more involved and subtle than what we can consider in our simulations. It
is evident that even our simulations in which we consider the sidewall properties,
insulation layer and the thermal side shield with additional idealized boundary
conditions do not allow us to reproduce all experimental observations. The reason
for this is that tiny details matter, which should be considered as a warning for
experimentalists and people performing simulations.

The simulations reveal that the sidewall can act as an extra heat conductor, which
absorbs part of the heat from the fluid near the bottom plate and releases it into
the fluid near the top plate. This means that the sidewall can act as a short circuit
and the relative importance of this heat transfer circuit is more important at lower
Ra. This concept is the basic assumption in the models by Ahlers (2000) and Roche
et al. (2001). Both models consider excess heat entering (leaving) the sidewall at the
bottom (top) which then goes sideways into (out of) the fluid in the lower (upper)
half of the cell. The advantage of the Roche et al. (2001) model is that they devised
a one-dimensional model for this process in analytic form which makes computations
of the size of the effect easier than using the method by Ahlers (2000) who did
everything numerically by solving a two-dimensional heat-flow problem. However, the
downside of the Roche et al. (2001) model is that it contains an unknown parameter
which is supposed to be of order one. But changing this parameter from 0.8 to 1.2 for
instance has a significant effect on the sidewall correction. Thus a direct comparison
of the simulations with the models is very difficult as the models are based on various
assumptions, while the situation is considerably more complicated in the simulations
as we have an isothermal temperature boundary condition (T = 0.5) on the ‘dry’ side
of the Plexiglas sidewall, a three-dimensional temperature distribution in the sidewall
and a set of thermal side shields at various locations in the foam, while these aspects
are not represented in the models. All these aspects make a comparison to the model
very complicated, which goes outside the scope of the present study. As mentioned
above an important result of the present simulations is that the coupling of the
flow with a physical sidewall influences the actual heat transfer in Rayleigh–Bénard
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convection by changing the flow structure and the models by Ahlers (2000) and
Roche et al. (2001) cannot correct for this effect. Further research is required to
determine what designs can minimize these effects.
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Appendix A. Time discretization
In this appendix we discuss the implementation of the time discretization of the heat

equation (3.2), which reads

Dθ
Dt
=

1
√

PrRa

ρf C
p
f

ρCp
∇ ·

(
λ

λf
∇θ

)
+ h. (A 1)

Let us assume that a temperature θw must be imposed at the ith spatial node using the
forcing term h. If we write the time-discrete version of the above equation we have

θ n+1
i − θ n

i

1t
+ (u · ∇θ)i =

1
√

PrRa

ρf C
p
f

ρCp
∇ ·

(
λ

λf
∇θ

)
i

+ hi, (A 2)

which we can recast as
θ n+1

i − θ n
i

1t
= RHSi + hi, (A 3)

with

RHSi =
1

√
PrRa

ρf C
p
f

ρCp
∇ ·

(
λ

λf
∇θ

)
i

− (u · ∇θ)i. (A 4)

Following what Fadlun et al. (2000) did for the velocity u, if we want θ n+1
i ≡ θw we

have to plug this equivalence into (A 3) and solve for hi, which yields

hi =−RHSi +
θw − θ

n
i

1t
, (A 5)

which is equivalent to enforcing directly the temperature θw at the desired node.
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Appendix B. Details of simulations with adiabatic sidewall

As is indicated in tables 3 and 4 we ensured that an adequate resolution in the
bulk (Stevens, Verzicco & Lohse 2010) and boundary layers (Shishkina et al. 2010)
has been used for all simulations. For example, for Ra = 2 × 1010, Pr = 0.7 and
Γ = 1.00 we use a grid resolution of 3072 × 512 × 1024 in the azimuthal, radial
and axial, direction, respectively. This means that this simulation is considerably better
resolved than similar simulations considered before. For example, in Stevens et al.
(2010) we found that for Ra = 2 × 1010, Pr = 0.7 and Γ = 0.5 reasonably accurate
results are obtained on a 512× 128× 512 grid. Later, in Stevens, Lohse & Verzicco
(2011) we concluded that a grid of 768 × 192 × 768 leads to better converged flow
statistics for this case. However, this still implies that a resolution of 1536×384×768
would already have been sufficient for the simulation at Ra= 2× 1010, Pr= 0.7 and
Γ = 1.00. Similarly, according to the estimates by Shishkina et al. (2010) there should
be 12 points inside the boundary layers for a simulation at Ra = 2 × 1010. In this

Ra Nθ ×Nr ×Nz NBL Nuf Nuh NuV

2× 105 128× 48× 96 21 4.73 4.73 4.73
3× 105 128× 48× 96 19 5.79 5.79 5.79
5× 105 128× 48× 96 18 6.87 6.87 6.87
7× 105 128× 48× 96 16 7.66 7.66 7.68
8× 105 128× 48× 96 16 7.97 7.97 7.98
1× 106 128× 48× 96 15 8.57 8.57 8.61
2× 106 192× 64× 128 18 10.55 10.55 10.58
4× 106 192× 64× 128 16 12.86 12.87 12.92
6× 106 192× 64× 128 15 14.51 14.51 14.58
8× 106 192× 64× 128 14 15.79 15.79 15.79
1× 107 192× 64× 128 13 16.78 16.78 16.74
2× 107 256× 96× 192 12 20.39 20.37 20.39
4× 107 256× 96× 192 10 24.67 24.68 24.67
6× 107 384× 128× 256 14 27.58 27.64 27.57
1× 108 384× 128× 256 12 31.86 31.77 31.86
2× 108 384× 128× 256 10 39.03 39.03 39.03
4× 108 384× 128× 256 23 47.45 47.48 47.35
6× 108 1536× 256× 512 21 53.73 53.63 53.98
1× 109 1536× 256× 512 19 62.74 62.74 62.80
2× 109 1536× 256× 512 16 77.90 77.83 78.26
4× 109 1536× 256× 512 14 96.99 97.17 97.02
6× 109 3072× 512× 1024 30 108.86 109.37 108.94
1× 1010 3072× 512× 1024 27 126.71 127.40 125.22
2× 1010 3072× 512× 1024 23 159.70 159.21 159.95
4× 1010 3072× 512× 1024 20 200.00 200.00 200.66

TABLE 3. Simulations for Pr= 0.7 and Γ = 1.00 with an adiabatic sidewall. The columns
from left to right indicate the Ra number, the used resolution in the azimuthal, radial and
axial directions (Nθ ×Nr ×Nz), the number of grid points in the boundary layers close to
the plates and the Nu number over the full (Nuf ) and last half (Nuh) of the considered
simulation interval, and the volume integral of heat flux NuV = 1 +

√
RaPr〈uzT〉V,t over

the whole simulation interval.
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study we used 23 in the boundary layer. Therefore, based on the experience from
previous studies, in which we tested the required resolution, we are confident that the
simulations in this study are very well resolved. The simulations in which the sidewall
and foam layers are added follow the same strict resolution criteria.

Appendix C. Data simulations with physical sidewall

Case Nθ ×Nr ×Nz
ρsCp

s

ρf C
p
f

λs

λf

ρiC
p
i

ρf C
p
f

λi

λf

Neon with Plexiglas sidewall,
see table 5

192× 96× 128 1861.2 4.184 — —

Neon with Plexiglas sidewall,
insulation and thermal side shields,
see table 6

192× 128× 128 1861.2 4.184 60 0.793

Helium with Plexiglas sidewall,
insulation and thermal side shields,
see table 7

192× 128× 128 2030.7 1.24 65.5 0.264

TABLE 4. Summary of the simulations using neon and helium as working fluid for 2×
105 6 Ra 6 107. We performed simulations with just the Plexiglas sidewall and using the
Plexiglas sidewall with the additional insulation layer and thermal shields as indicated in
figure 1. For Ra= 107 there are 16 grid points in the Plexiglas sidewall and 48 grid points
in the insulation layer; ρ, Cp and λ are, respectively, the density, constant pressure specific
heat and thermal conductivity. The subscripts f , s and i refer to the fluid, sidewall and
insulation, respectively. The Nu data are given in tables 5–7 as indicated.

Ra Nu

2.0× 105 5.57± 0.01
3.0× 105 6.12± 0.01
4.0× 105 6.53± 0.02
5.0× 105 7.23± 0.01
8.0× 105 7.86± 0.01
9.0× 105 8.15± 0.01
1.0× 106 8.37± 0.02
1.3× 106 9.05± 0.02
1.5× 106 9.40± 0.02
1.8× 106 9.87± 0.01
2.0× 106 10.15± 0.02
3.0× 106 11.39± 0.02
4.0× 106 12.37± 0.02
6.0× 106 13.85± 0.03
8.0× 106 15.06± 0.02
1.0× 107 16.06± 0.04

TABLE 5. The Nu number data for the simulations with neon and a Plexiglas sidewall,
see table 4.
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Ra Nu

2.0× 105 5.04± 0.01
3.0× 105 5.68± 0.01
4.0× 105 6.13± 0.01
5.0× 105 6.55± 0.01
6.0× 105 6.91± 0.02
8.0× 105 7.60± 0.01
1.0× 106 8.13± 0.01
1.5× 106 9.26± 0.01
2.0× 106 10.06± 0.02
3.0× 106 11.36± 0.02
4.0× 106 12.32± 0.01
5.0× 106 13.15± 0.01
6.0× 106 13.84± 0.02
8.0× 106 15.02± 0.03
1.0× 107 16.11± 0.03

TABLE 6. The Nu number data for the simulations with neon and a Plexiglas sidewall
with additional insulation layer and thermal side shields, see table 4.

Ra Nu

2× 105 5.23± 0.01
3× 105 5.65± 0.02
4× 105 6.21± 0.02
5× 105 6.70± 0.01
7× 105 7.38± 0.02
8× 105 7.78± 0.03
9× 105 8.02± 0.02
1× 106 8.30± 0.05
3× 106 11.42± 0.03
5× 106 13.21± 0.05
1× 107 16.10± 0.07

TABLE 7. The Nu number data for the simulations with helium and a Plexiglas sidewall
with additional insulation layer and thermal side shields, see table 4.
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