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In moderately coupled plasmas, a significant fraction of the internal energy resides in
electric fields. As these plasmas are heated or compressed, the shifting partition of
energy between particles and fields leads to surprising effects, particularly when ions and
electrons have different temperatures. In this work, quasi-equations of state (quasi-EOS)
are derived for two-temperature moderately coupled plasma in a thermodynamic
framework and expressed in a simple form. These quasi-EOS readily yield expressions
for correlation heating, in which heating of the electrons causes a rapid increase in ion
temperature even in the absence of collisional energy exchange between species. It is also
shown that, remarkably, compression of moderately coupled plasma drives a temperature
difference between electrons and ions, even when the species start at equal temperatures.
These additional channels for ion heating may be relevant in designing ignition schemes
for inertial confinement fusion.

Key words: strongly coupled plasmas, fusion plasma, plasma heating

1. Introduction

Plasmas in which electrons and ions have different temperatures are a subject of
intense interest, in part because this regime is relevant for both magnetic confinement
and inertial confinement fusion (ICF) (Strachan et al. 1987; Edwards et al. 2013; Eliezer
et al. 2015; Han et al. 2022). Temperature separation can have a substantial impact on
plasma properties including pressure, heat capacity, fast particle stopping power and
driver–target coupling, which significantly affect the fusion yield in a system near ignition
(Rinderknecht et al. 2015; Fan et al. 2016). In a plasma consisting of electrons and
ions at comparable temperatures with masses me and mi respectively, the electron–ion
energy exchange rate is smaller than the electron–electron energy exchange rate by a
factor of me/mi and smaller than the ion–ion energy exchange rate by a factor of

√
me/mi

(Braginskii 1958; Scullard et al. 2018). The temperature equilibration between species can
therefore be much slower than the thermalization of a single species, and so it is useful to
treat the two species as equilibrium systems in quasi-steady state at different temperatures
(Boercker & More 1986; Dharma-Wardana & Perrot 1998).
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2 H. Fetsch, T.E. Foster and N.J. Fisch

This work studies a pair of fundamental questions relevant to two-temperature plasma.
First: How is energy partitioned between electrons, ions and electric fields? Second: If
the system is perturbed, e.g. by heating or compression, how do the temperatures of both
species evolve? We answer these questions in a regime where first-principles analytical
treatment is possible, and we find that the intrinsic asymmetry between ions and electrons
leads to intriguing effects.

1.1. Quasi-equations of state
It is natural to approach these questions using an equation of state (EOS), which
allows prediction of the system’s internal properties as well as the evolution of these
properties under various constraints (Lindl et al. 2004; Fortov et al. 2007; Craxton
et al. 2015; Tully, Hawker & Ventikos 2016). When quantum effects are negligible and
the number of particles in a Debye sphere is large, plasma can often be treated using
the EOS of ideal gas. However, non-ideal corrections to the EOS are important in a
vast array of applications, including modelling solar oscillations (Stix & Skaley 1990;
Christensen-Dalsgaard & Däppen 1992), predicting nuclear reaction rates (Heckler 1994)
and generating corrections to plasma opacity (Hummer & Mihalas 1988). Such EOS
generally take a single temperature as a parameter and so are not generally valid in
two-temperature plasma because standard thermodynamics does not apply to systems out
of thermodynamic equilibrium.

A physical system that exhibits near-steady-state behaviour despite being far out of
thermal equilibrium can be described by an effective EOS, or ‘quasi-EOS’. Like a classical
EOS, a quasi-EOS gives relationships between a system’s macroscopic properties, such
as internal energy, pressure and heat capacity, but holds even away from true thermal
equilibrium, at least on the time scales of interest. Such quasi-EOS have been formulated
for systems as diverse as metals (Petrov et al. 2015), warm dense matter (Harbour et al.
2018), turbulent fluids and plasmas (Volkov 1999; Davidovits & Fisch 2019) and the
intergalactic medium (Ricotti, Gnedin & Shull 2000). Other examples of quasi-EOS
include the compression of plasmas laden with either linear waves (Schmit, Dodin & Fisch
2010) or nonlinear waves (Schmit et al. 2013), as well as rotating plasmas (Geyko & Fisch
2017). In these cases, there is excess heat capacity associated with collective behaviour,
whether turbulence, waves or rotation.

In the case at hand, excess heat capacity appears as a result of internal electrostatic
potential energy. The importance of potential energy in a thermal system is captured by
the coupling parameter, which is heuristically given by Γ = 〈Uφ〉/T , the characteristic
inter-particle potential energy divided by the thermal energy. As the density increases or
the temperature decreases, the magnitude of the potential energy Uφ can rise to become
comparable to the temperature. A weakly coupled plasma is one in which Γ � 1, meaning
that thermal kinetic energy is dominant. In this work, we focus on cases in which the
potential energy, while still smaller than the kinetic energy, is not so small as to be
negligible. We refer to plasma in this regime as ‘moderately coupled’. At the high densities
achieved in ICF implosions, especially in the dense stage immediately before ignition,
moderate-coupling effects often become important (Hu et al. 2011). Many of the effects
discussed in this work have also been observed in the context of ultracold neutral plasma
(UCP) (Bergeson et al. 2019).

Several models have been developed for quasi-EOS in two-temperature plasma
using various combinations of computational, empirical and semi-analytical techniques
(Boercker & More 1986; Kraeft et al. 1998; More et al. 1988; Chen & Han 1999;
Gleizes, Chervy & Gonzalez 1999; Ramshaw & Cook 2014; Triola 2022). First-principles
analytical models are rare because the complex physics of dense plasmas, including
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Temperature separation in moderately coupled plasma 3

degeneracy, ionization and many-body correlations, usually renders such treatments
intractable. However, analytical models offer valuable insight into the fundamental physics
of two-temperature plasma. By manipulating parameters and evaluating limits, analytical
expressions offer a powerful tool to disentangle the essential physical effects at work.
Although the regime of applicability for analytical theory is more restrictive than for
simulation, rigorous analytical results can serve as a benchmark and complement to
computational studies. In this work, we develop a first-principles analytical quasi-EOS
for two-temperature moderately coupled plasma and use it to determine the evolution of
electron and ion temperatures on time scales where collisional energy transfer between
species can be neglected.

1.2. Approach in this work
Although it will not be assumed beforehand in this work, the natural expansion parameter
for the electrostatic potential energy is ε = 1/4πΛ, where as usualΛ = nλ3

D represents the
number of particles in a Debye sphere (Kelly 1963),1 n is the number density, and λD is the
Debye length. The plasma parameter is related to the coupling strength as Λ ∝ Γ −3/2. We
seek corrections to the plasma EOS, to leading order in ε, relevant in a moderately coupled
plasma. The regime of applicability of our weak-coupling approximation is discussed
further in Appendix A.

This work presents a novel derivation of the EOS of a moderately coupled plasma
by statistical methods. Although some of the results could be obtained by other means
(Salpeter 1963; Ecker & Kröll 1964; Boercker & More 1986; Triola 2022; Foster, Fetsch
& Fisch 2023), the approach taken here yields a simple and physically transparent formula.
Through its simple form, the quasi-EOS obtained in this work provides insight into
the mechanisms of collisionless heating and allows the prediction of novel effects in
temperature separation between species. Because the standard procedures of statistical
mechanics fail in non-equilibrium systems, we take advantage of the fact that electrons
equilibrate much faster than ions and therefore can be considered ergodic for any fixed
set of ion positions. Using this separation of time scales, we define an ensemble in which
the electron and ion subsystems are statistically independent except for the constraint that
electrons equilibrate with each other rapidly enough to balance the force applied by the
ions at every ion microstate. This approach is in line with that of other authors who have
approached the problem (Salpeter 1963; Ecker & Kröll 1964; Boercker & More 1986),
and is reminiscent of the widely used Born–Oppenheimer approximation (Essén 1977;
Dharma-Wardana & Perrot 1998).

Using this quasi-EOS, we derive intriguing effects unique to two-temperature plasma
in the moderate coupling regime. We find that, upon compression, it is possible to change
the temperatures of the two species by different amounts, generating a greater temperature
difference than would be expected by following ideal-gas adiabats. We additionally
study how the ion temperature responds when the electron temperature is increased or
decreased. We show that heating the electrons causes the ions to heat as well, even when
collisional energy exchange is disallowed; interestingly, the change in ion temperature
depends on the rate at which the electron temperature is varied. This ‘correlation heating’
or ‘disorder-induced heating’ effect has been observed in experiments and simulations
(Murillo 2001; Kuzmin & O’Neil 2002; Gericke & Murillo 2003; Killian et al. 2007; Lyon
& Bergeson 2011; Lyon, Bergeson & Murillo 2013) and studied analytically (Morawetz
et al. 2001; Foster et al. 2023). Our approach complements this previous work by offering
a simple and physically transparent formula.

1The numerical prefactors on these quantities are discussed in Appendix A.
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In complementary work, Foster et al. (2023) study moderately coupled two-temperature
plasma in the same regime using kinetic theory. Relying on time scale separation as in
this paper, the ions are found to behave as a one-component plasma (OCP), interacting
through a shielded potential due to electron screening. The result obtained for heating of
ions following sudden electron heating exactly matches the result in this paper. However,
the kinetic formalism provides additional information by capturing the evolution of the
ion distribution function over time, demonstrating that this heating takes place on the
time scale of the ion plasma frequency. The rigorous descriptions of the evolution toward
quasi-equilibrium after sudden heating offer valuable insights. These complement the
statistical formalism of this paper, which is more easily able to describe compression and
multiple modes of heating, but not the transient state of the system during equilibration.

For the sake of generality, we work with arbitrary interaction potentials through
most of the derivation, and then specialize to Coulomb potentials in the final steps to
obtain concrete results. Extensions to physical systems interacting through other effective
potentials are briefly discussed. In the final results of this work, we assume weak
coupling of both electrons and ions; however, intermediate results depend only on weakly
coupled electrons and therefore could be applied to systems where the ions are strongly
coupled and the ion structure factor has been determined through some other means, such
as molecular dynamics simulations, solving the hypernetted chain equation or various
analytical approximations (Slattery, Doolen & DeWitt 1980; Gregori et al. 2007; Shaffer,
Tiwari & Baalrud 2017).

1.3. Outline of the paper
This paper is organized as follows. In § 2, we introduce approximations to extend standard
techniques from statistical mechanics to a two-temperature system with large time scale
separation. We then apply this procedure to derive partition functions for both species, and
we discuss how thermal averages can be computed. In § 3, we specialize our results to a
two-temperature plasma with Coulomb interactions, and obtain simple, explicit formulas
for quantities such as the energy, entropy and two-particle correlations for each species. In
§ 4, we use these quantities to study the response of the system to changing parameters. We
derive simple analytical expressions for the temperature change of both species resulting
from compression and from heat input to electrons. Finally, in § 5, we discuss the results for
energy partition, compressional heating and correlation heating graphically and by taking
instructive limits. The physical mechanisms of energy exchange that can be identified in
this way, beyond their academic interest as fundamental plasma phenomena, may remain
qualitatively similar outside of the moderate-coupling regime and therefore could be of
interest in the design of experiments even beyond the regime treated in this work.

2. Two-temperature partition function
2.1. Set-up

In this section, we define the physical system under consideration as well as relevant
notation. We outline the formalism that will be used to separate the electrons and ions
by time scale and relate the partition functions of the subsystems. We then proceed
to derive thermodynamic potentials for each subsystem in terms of general interaction
potentials. Finally, we outline the procedure for deriving thermal expectation values. The
central results of this section are thermodynamic potentials for each species under various
constraints. These are listed for electrons with general ion structure factor (2.27), for
electrons with equilibrium ions (2.36) and for ions (2.35).
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We consider a homogeneous, net-neutral, non-magnetized plasma in volume V
consisting of Ne electrons and Ni = Ne/Z ions with charges qe = −e and qi = +Ze, where
for simplicity only a single ion charge state is considered. The mass, position and velocity
of particle j of species s are written respectively as ms, rs,j, vs,j and the electron and ion
densities are ne = Ne/V and ni = Ni/V respectively. For now, we set the entire system to
temperature T = 1/β. The electrostatic potential at location r generated by a particle of
species s at location rs,j is denoted by ϕs(r − rs,j) and so the total potential at location r
due to particles of species s is

φs(r) =
Ns∑
j

ϕs(r − rs,j), (2.1)

and the energy associated with each species is defined as

Es = EKs + Eφs, (2.2)

where the kinetic energy is, as usual,

EKs =
Ns∑
j

1
2

msv
2
s,j. (2.3)

The electrostatic energy is given by

Eφs =
Ns∑
j

qs
(
φs(rs,j)− ϕ(0)

)
, (2.4)

where the second term inside the summation subtracts self-energy, the energy of a particle
placed at the centre of its own potential well.

There is additionally an inter-species interaction energy Eint, which we can write as the
energy of electrons placed in the potential generated by ions, i.e.

Eint =
Ne∑
j

−eφi(re,j). (2.5)

Having defined each component of the system’s microscopic energy, we can proceed
with a statistical description. As we will see, partitioning the interaction energy in the
two-temperature case is a non-trivial problem. The remainder of this section is devoted
primarily to capturing the effect of the interaction energy in a systematic way even out of
equilibrium.

2.2. Time scale separation
The partition function offers a statistical description of a system from which various
averaged quantities can be determined by taking the appropriate derivatives. For a
single-temperature equilibrium plasma, the partition function can straightforwardly be
written as

Z =
∫

V
dXi dXe exp {−β(Ee + Ei + Eint)} . (2.6)

Here, dXi, dXe are the phase-space integration measures for the ions and electrons
respectively, normalized so that dXs = (1/Ns!)(ms/2π�)3Ns d3Ns rs d3Nsvs. The subscript V
denotes that the spatial integrals are taken over a fixed volume V .
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When electrons and ions have different temperatures, the standard partition function
formalism does not apply. In the absence of interactions, the partition function would be
separable into ion and electron parts, and we could simply write the Boltzmann factor for
each species using the energy of that species divided by its temperature. To describe the
partition of the interaction energy, some authors have attempted to define an effective
‘cross-temperature’ (Seuferling, Vogel & Toepffer 1989; Triola 2022). However, there
is no consensus on a procedure for choosing this temperature, and no guarantee that a
particular choice of effective cross-temperature will yield appropriate physical behaviour.
Some models involving a cross-temperature have been shown to correspond well with
simulation (Shaffer et al. 2017); while this validation is useful, a first-principles approach
is useful for analysing processes where, for example, energy is added to the system and
must be somehow partitioned between species.

To resolve ambiguity associated with the interaction energy, we adopt an approach,
similar to that used by Boercker & More (1986), in which the electron dynamics is much
faster than the ion dynamics. We allow the electrons to come to equilibrium at temperature
Te within a fixed potential established by the ions. The ions then equilibrate with each other
at temperature Ti under constraints imposed by the rapidly established electron shielding.
Boercker & More make an ansatz for the way that electron screening affects the ion
partition function, which is similar to the Born–Oppenheimer approximation (Essén 1977;
Dharma-Wardana & Perrot 1998). Denoting the electron free energy as Ae, they apply an
additional factor of exp{−Ae/Ti} weighting every ion configuration in the ion partition
function (Boercker & More 1986). In this way, the electrons provide an effective potential
that modifies the exp{−Ei/Ti} term corresponding to bare ion–ion interactions.

In our approach, we incorporate electron response into the ion dynamics using the
similar constraint that electrons are in equilibrium at all ion configurations. In other words,
the electrons respond rapidly compared with the time scale on which ion configurations
change, equilibrating among themselves such that they generate an effective force, which
balances exactly the effective force applied by the ions. These effective forces are
discussed in more detail below; in brief, the ion subsystem is an equilibrium system
that generates a (generalized) force acting on the ions themselves and driving the system
toward a thermodynamically favourable state, analogously to the pressure in standard
thermodynamics. Positioned in screening clouds around the ions, the electrons also
generate a force that acts on the ions, but this force in general drives them toward a
different configuration. Our approach imposes that, since the electrons have sufficient time
to equilibrate following every change in ion configuration, these forces must be in balance.

We describe our system in a generalized Gibbs ensemble, with generalized displacement
Sii (defined below) parameterizing the ion two-point correlation function, and generalized
entropic forces Fe,Fi acting on this displacement from each subsystem. It is convenient
to approach the problem using entropic potentials (Planes & Vives 2002), in part because
the resulting expressions make fewer references to species’ temperatures and generalize
more readily.

2.3. Definitions
The statistical formalism used in this work is worked out in more detail in Appendix D,
starting from basics. Here, we briefly summarize the approach and define quantities that
are used in subsequent sections.

Formally, we consider the electrons and ions to be independent subsystems in contact
with heat reservoirs of temperatures Te and Ti respectively. As in many constructions of
the canonical ensemble, these baths need not be external to the system, but rather each
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subsystem can be some subvolume of one species, which is allowed to exchange heat with
the rest of that species.

We begin in the canonical ensemble, describing a subsystem of ions in volume V at
temperature Ti = 1/βi. We define the normalized Fourier-space ion distribution to be

ρ̃i(k) = 1√
Ni

Ni∑
j

exp
{−ik · ri,j

}
. (2.7)

Now we use the assumption that statistical quantities in our system are translationally
invariant, so that the correlation functions depend only on spatial separation, i.e. if gab is
the two-particle position-space correlation function, then gab(r2, r2) = gab(r2 − r1). Then
the ion–ion structure factor (a normalized Fourier-space two-particle correlation function)
depends on only a single k argument and is defined as

Sii(k) = |ρ̃i(k)|2. (2.8)

We will eventually choose Sii as the thermodynamic variable2 parameterizing the
ion positions, even though the integral form of the partition function (2.9) appears to
require knowledge of ρ̃i, which is not uniquely determined by Sii. Translational invariance
ensures that ρ̃i will not appear linearly in the thermodynamic potentials. Higher-order
correlations (e.g. ρ̃i(−k)ρ̃i(−q)ρ̃i(k + q)) could appear, but to the order of coupling
strength considered in this theory, we will not encounter them.

The ion partition function in the fixed-Sii ensemble is

Zi(βi,V, Sii) =
∫

V,Sii

dXi exp{−βiEi(Xi)}, (2.9)

where the subscripts V, Sii indicate that we only integrate over regions of ion phase space
that are consistent with the known volume V and known structure factor Sii. We note that
the ion phase space is represented by the positions of the Ni discrete particles and so, in
general, different values of Sii occupy different phase-space volumes in the integral over
dXi. The configurational entropy associated with fixing Sii therefore varies with the choice
of Sii.

We now consider a subsystem of electrons in the same volume at inverse temperature
βe. Because we have grouped the interaction energy Eint into the electron subsystem, the
total energy of the electrons depends on the configurations of both ions and electrons.
However, we will choose a form for the interaction energy in which the dependence on
ion configuration enters only through ρ̃i. Therefore, we can write the electron partition
function Ze as

Ze(βe,V, Sii) =
∫

V
dXe exp{−βe(Ee(Xe)+ Eint(Xe, ρ̃i))}, (2.10)

where the ρ̃i used as a parameter of Eint is any Fourier-space distribution ρ̃i compatible
with the fixed Sii. By the argument above, the phase on ρ̃i is irrelevant as long as we

2This choice differs subtly from the formalism reviewed in Appendix D in which we begin in the canonical ensemble
and all extensive variables except entropy are held constant. Here, Sii is an intensive variable and its conjugate variable
(V̂Fi) introduced below is extensive. We nevertheless begin by fixing Sii because is a more conventional variable and
more physically meaningful.
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8 H. Fetsch, T.E. Foster and N.J. Fisch

are considering only two-particle correlations, as we do here. We can then write the
corresponding entropic Massieu potential as

Φe(βe,V, Sii) = lnZe. (2.11)

See Appendix D for more detailed discussion of the thermodynamic potentials used
in this work. In short, the Massieu potential is an entropic analogue to the Helmholtz
free energy, Ae = −TeΦe, which is convenient in this two-temperature system because its
use means that fewer species-dependent temperature factors appear in our thermodynamic
relations and that entropic quantities for the subsystems add without relative weighting
factors.

With these expressions, we could describe the thermodynamics of electrons and ions
in some volume if we knew the ion distribution in that volume. In general, however,
we do not know Sii a priori; rather, we want to solve for its thermal average under the
constraint of some known extensive quantity. The natural quantity is the generalized force
applied to the electrons by the ions, which we can find by requiring that the electrons
come to equilibrium separately for every ion microstate. This assumption is discussed in
detail through examples in Appendix E. We transform to an ensemble in which we apply
a constraint on this force and allow Sii to fluctuate.

For the ion subsystem, we consider Sii(k) at all k, and define the entropic force as the
conjugate variable (V̂Fi), where V̂ = V/(2π)3 is the volume scaled by a factor that is
convenient with the present Fourier transform convention. The quantity Fi (without the
factor of volume) is the one that we will most often use. In the canonical ensemble, we
would impose that the ion subsystem be in contact with some external reservoir, enforcing
that the reservoir shares the same Sii as the ions but allowing Fi to fluctuate.

If instead Fi is known in the reservoir (and therefore Sii is of course allowed to fluctuate),
then we can write the partition function by the same procedure as in (D15), giving

ζi(βi,V, (V̂Fi)) =
∫

V
dXi exp{−βiEi(Xi)− Fi · Sii}, (2.12)

where as shorthand, we have defined a dot product over functions of k such that

g · h .= V
∫

d3k
(2π)3

g∗(k)h(k). (2.13)

In order to write this change of ensembles in the form of a Legendre transform, we
define the average 〈q〉 over ion configurations of some quantity q in the standard way as

〈q〉 =
∫

V
dXiq(Xi)pi(Xi), (2.14)

where the ion probability density is

pi(Xi) = ζ−1
i exp{−βiEi(Xi)− Fi · Sii(Xi)}. (2.15)

The entropic potential Ψi = ln ζi in the fixed Fi ensemble is then

Ψi(βi,V, (V̂Fi)) = Φi(βi,V, 〈Sii〉)− Fi · 〈Sii〉. (2.16)
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We can do the same for the electron subsystem to write an electron partition function in
terms of the entropic force Fe acting on the electrons,3 which gives

ζe(βe,V, (V̂Fe)) =
∫

V
dXe exp{−βe(Ee(Xe)+ Ex(Xe))− Fe · Sii}, (2.17)

while the electron Planck potential is

Ψe(βe,V, (V̂Fe)) = Φe(βe,V, 〈Sii〉)− Fe · 〈Sii〉. (2.18)

Now, in order to evaluate the ion partition function, we need a prescription for fixing Fi.
We start by finding the electron response to a given ion distribution, which is the entropic
force Fe, found from the electron Massieu potential using

(V̂Fe) =
(
δΦe

δSii

)
βe,V

. (2.19)

We now say that the reservoir with which the ions are interacting is the electron
subsystem. The force from the reservoir can therefore be identified with the force Fe due
to the electrons. We apply this condition at all wavevectors q, i.e. Fe(q)+ Fi(q) = 0. This
constraint is discussed in more detail through a toy model in Appendix E. Defining the
temperature ratio τ = Te/Ti for convenience and noting that the force FR applied by a
reservoir of temperature TR is related to the entropic forces by FR = TRFR, the equilibrium
condition becomes

0 = TeFe + TiFi,

Fi = −τ 1

V̂

(
δΦe

δSii

)
βe,V

.

⎫⎪⎬⎪⎭ (2.20)

It is understood that everywhere Fi appears in future expressions, we insert the entropic
force as determined by the equilibrium constraint (2.20). We note that this constraint relies
only on the other parameters of the two subsystems, which in this case are {βi,V, βe}.
Therefore, we can write a form forΨi that depends only on volume and on the temperatures
of the two species, where electron equilibrium for all ion configurations is implicitly
assumed. We write this version of the ion Planck potential as

Ψ̂i(βe, βi,V) = ln ζi, (2.21)

where the hat on Ψ̂ is meant as a reminder that the arguments βe, βi,V are no longer
the natural variables of the Planck potential, and therefore the expected thermodynamic
relations may no longer hold when taking partial derivatives of Ψ̂i. For instance, if Fi
depends on βi (which we will find later in the case of interest), we have in general that(

∂Ψ̂i(βe, βi,V)
∂βi

)
βe,V

�=
(
∂Ψi(βi,V, (V̂Fi))

∂βi

)
Fi,V

, (2.22)

where the derivative of Ψi(βi,V,Fi) is taken at constant (V̂Fi), and then the (generally
βi-dependent) expression for (V̂Fi) is substituted in the final step.

3The prefactor V̂ = V/(2π)3, included to make the dot product unitless, causes us to write Fe rather than (V̂Fe) in
this exponent.
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2.4. Electron subsystem
With this formalism in place, we can apply it to describe a plasma of electrons and ions
with a large separation of dynamical time scales.

We first evaluate the electron energy and partition function. We work in Fourier space
with the electrostatic potential

φ̃(k) =
∫

d3r φ(r) exp(−ik · r), (2.23)

and normalized Fourier-space electron distribution

ρ̃e(k) = 1√
Ne

Ne∑
j

exp(−ik · re,j). (2.24)

For generality, and notational simplicity, we will describe the electrostatic potential in
terms of Green’s functions Cab(k) acting on the particle distributions; these functions can
be specified at the end of the calculation, allowing the derivation to apply for a variety
of effective potentials. Gathering temperature, volume and charge factors in the Green’s
function definitions for convenience, the potential seen by the electrons is defined to be

φ̃(k) = −V
Te

e
1√
Ne

[
Cee(k)ρ̃e(k)+ Cei(k)ρ̃i(k)

]
. (2.25)

This definition allows the potential energy to be written in simple form as

Eφe = TeCeeρ̃e · ρ̃e + TeCeiρ̃i · ρ̃e − TeCee · 1. (2.26)

The final term in this equation, included to remove the contribution from self-interactions,
has a possibly counterintuitive form but is discussed further in Appendix B.1.

The calculation of the electron partition function using this expression is presented in
detail in Appendix B.2. Here, we present only the results that will be used elsewhere in
the work.

It follows from (B23) that the Massieu potential for the electrons is

Φe = −V
2

∫
d3k
(2π)3

[
ln (2Cee + 1)− C2

ei

2Cee + 1
Sii − 2Cee

]

− ln Ne! + Ne ln

((
meTe

2π�2

)3/2

V

)
. (2.27)

The entropic force applied by the electrons to systems with which they are in force
balance is then

Fe(k) =
1
2 C2

ei(k)
2Cee(k)+ 1

. (2.28)

The condition of force balance (2.20) requires that

Fi(k) = −τ
1
2 C2

ei(k)
2Cee(k)+ 1

. (2.29)

We can now use this expression for Fi to write the ion partition function in the
generalized Gibbs ensemble, in which we impose electron equilibrium for all ion
configurations.
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2.5. Ion subsystem
Now using the definitions of ζe, ζi from (2.17) and (2.12), we can write the partition
functions for each subsystem. The electrons are straightforward because the additional
force term can be taken outside of the integral over electron configurations, meaning
ζe(βe,V, (V̂Fe)) = exp(−Fe · 〈Sii〉)Ze(βe,V, 〈Sii〉). The ion partition function that we are
interested in finding is

ζi =
∫

dXi exp{−Ei/Ti − Fi · Sii}. (2.30)

As we did for the electrons, we will write the ion–ion interaction potential in a general
form using Green’s functions, so that the ion potential energy is

Eφi = TiCiiρ̃i · ρ̃i − TiCii · 1. (2.31)

Then the ion partition function in the generalized Gibbs ensemble is

ζi = ZKiZ self
φi

∫
d3Ni ri,j exp {−Cii · Sii − Fi · Sii} , (2.32)

where the self-energy correction has been factored out into Z self
φi . This partition function

can also be written as

ζi = ZKiZ self
φi

∫
d3Ni ri,j exp

{−C′
iiρ̃i · ρ̃i

}
, (2.33)

where C′
ii = Cii + Fi is an effective ion–ion interaction Green’s function. This integral

has the same form as (B10), if we make the symbolic substitutions Cii → C′
ii,Cei → 0,

meaning that we can immediately write the result of the integral over ion positions (cf.
Appendix B.2) as

ζφi = exp
{
−V

2

∫
d3k
(2π)3

[
ln
(
2C′

ii + 1
) − 2Cii

]}
, (2.34)

and so the full ion Planck potential becomes

Ψi(βi,V,Fi) = −V
2

∫
d3k
(2π)3

[ln(2Cii + 2Fi + 1)− 2Cii]

− ln Ni! + Ni ln

((
miTi

2π�2

)3/2

V

)
. (2.35)

Physically, this means that the ions interact as a OCP under some effective potential, which
is a combination of the bare Coulomb potential and a term due to electron screening.

For completeness, we can also transform the electron Massieu potential to the new
ensemble, giving the electron Planck potential explicitly as

Ψe(βe,V,Fe) = −V
2

∫
d3k
(2π)3

[
ln (2Cee + 1)− 2Cee −

(
C2

ei

2Cee + 1
− 2Fe

)
〈Sii〉

]

− ln Ne! + Ne ln

((
meTe

2π�2

)3/2

V

)
. (2.36)

In the system of interest, kinetic degrees of freedom are fully separable and so the
kinetic part of the partition function always yields the ideal-gas result in our classical
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12 H. Fetsch, T.E. Foster and N.J. Fisch

model. We will therefore sometimes only work with the electrostatic components of the
thermodynamic potentials, Φφe, Ψφe, Ψφi, corresponding to only the electrostatic energy.
These are defined explicitly in Appendix B.1.

We could in principle now substitute the electron force given by (2.28) and get explicit
expressions for the Planck potentials Ψ̂e, Ψ̂i in terms of only the externally imposed
variables βe, βi,V . However, in the generalized Gibbs ensemble that we have set up,
differentiating the partition function should be done while holding the force fixed; it is
therefore most useful to keep the potential in this expanded form for the following steps,
and apply our knowledge of the force only in the final step.

The equations for the Planck potentialsΨe (2.36) andΨi (2.35) serve as equations of state
for the subsystems of a two-temperature plasma. Together, they comprise a quasi-EOS.
It bears repeating that, within the regime of applicability of our assumptions, these
expressions could be applied to arbitrary two-particle interactions. In § 3 we will specialize
to a specific physically relevant case, but first we discuss the procedure for generating
thermal averages from these equations of state.

2.6. Thermal expectation values
Using the Planck potentials for each species, we can calculate various quantities at thermal
equilibrium. It will be of interest to calculate some quantities when the electrons are at
equilibrium but the ion structure factor is held fixed, as well as when both subsystems are
at equilibrium. We have already defined Sii in (2.8). We can define electron–electron and
electron–ion structure factors as well; since in this work we are only interested in time
scales longer than the electron equilibration time, quantities will always be averaged over
electron configurations. The new structure factors are therefore defined as

See(q) =
∫

dXepe(Xe)ρ̃
∗
e (q)ρ̃e(q)

Sie(q) =
∫

dXepe(Xe)ρ̃
∗
e (q)ρ̃i(q)

⎫⎪⎪⎬⎪⎪⎭ , (2.37)

where the electron probability density is

pe = Z−1
e exp{−βe(Ee + Eint)}, (2.38)

in the canonical ensemble. Since pe depends on Sii, so do See and Sie. When the ions are
also at equilibrium, we can substitute the equilibrium ion–ion structure factor 〈Sii〉 in order
to find the other equilibrium structure factors 〈See〉, 〈Sie〉.

We will start with the ion structure factor, which can be found by differentiating the ion
Planck potential with respect to Cii to be

〈Sii(q)〉 = 1 − 1

V̂

(
δΨi

δCii(q)

)
V,Fi

, (2.39)

where we denote by the subscript that the generalized force should be held constant
because (V̂Fi) constitutes an independent thermodynamic variable, which should be
unaffected by the differentiation even if the final formulas for this quantity depend on
Cii. The factor 1/V̂ = (2π)3/V simply removes the prefactor on the integral that appears
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in the expression for Ψi. Some manipulation yields

〈Sii(q)〉 = 1

1 + 2Cii(q)− τ
C2

ei(q)
2Cee(q)+ 1

. (2.40)

Here, we have used Fe = 1
2 C2

ei/(2Cee + 1) from the derivation of the entropic force in
(2.28). The ion–electron structure factor is similarly given by

Sie(q) = − 1

V̂

(
δΦe

δCei(q)

)
Sii,V

, (2.41)

which simplifies to

Sie(q) = − Cei(q)
2Cee(q)+ 1

Sii(q). (2.42)

Finally, for the electrons, the structure factor is given by

See(q) = 1 − 1

V̂

(
δΦe

δCee(q)

)
Sii,V

, (2.43)

and therefore

See(q) = 1
2Cee(q)+ 1

+ C2
ei(q)

(2Cee(q)+ 1)2
Sii(q). (2.44)

Using these structure factors, we could obtain the potential energy directly by
integrating, but it is informative to derive it instead from the partition function by
differentiating the Planck potential with respect to the temperature. The energy of each
species is given by

Ua = −
(
∂Ψa

∂βa

)
V,Fa

. (2.45)

The kinetic part gives the usual ideal-gas result. For the electrostatic part, using the fact
that we absorbed the temperatures into the definitions of the Green’s functions, and so
each temperature appears only as βa in the corresponding Cab, we can differentiate with
respect to each Green’s function. The potential components of each species’ energy are
then

Uφi = −Ti
1

V̂
Cii ·

(
δΨi

δCii

)
V,Fi

Uφe = −Te
1

V̂
Cee ·

(
δΨe

δCee

)
V,Fe

− Te
1

V̂
Cei ·

(
δΨe

δCei

)
V,Fe

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.46)

These derivatives are the same ones that yielded the structure factors above, meaning
that the energy can also be written as

U = 3
2 NeTe + 3

2 NiTi + TeCee · (See − 1)+ TeCei · Sie + TiCii · (Sii − 1). (2.47)

This is exactly the prescription for integrating the structure factor that we would
otherwise have used to calculate the energy directly from known two-particle correlations.
This is a useful check on the formalism adopted here, in that the two-time scale equilibrium
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procedure has not left artefacts in the thermodynamic state functions that we get from
ζe and ζi. The partition function approach adopted here also includes a prescription for
dividing the potential energy between electrons and ions, which would not be uniquely
specified when simply integrating the structure factor and potential to find the total energy.
The electron electrostatic energy, given as a function of the structure factor for greater
generality, is

Uφe(Te; Sii) = TeV
∫

d3k
(2π)3

Cee

(
1

2Cee + 1
− 1 + C2

ei

(2Cee + 1)2
Sii

)
− TeV

∫
d3k
(2π)3

Cei
Cei

2Cee + 1
Sii. (2.48)

When the ions are at equilibrium, we can substitute the Sii derived above, and the
electron electrostatic energy reduces to

Uφe(Te,Ti) = TeV
∫

d3k
(2π)3

(
− 2C2

ee

2Cee + 1
+ Cee

(2Cee + 1)
C2

ei

(2Cee + 1)(1 + 2Cii)− τC2
ei

)
− TeV

∫
d3k
(2π)3

C2
ei

(2Cee + 1)(1 + 2Cii)− τC2
ei
. (2.49)

Finally, the ion electrostatic energy is

Uφi(Te,Ti) = TiV
∫

d3k
(2π)3

Cii

⎛⎜⎜⎝ 1

1 + 2Cii − τ
C2

ei

2Cee + 1

− 1

⎞⎟⎟⎠ . (2.50)

We define the entropy in this work using the Gibbs definition S = − ∫
dXsps ln ps where

ps is the phase-space probability density of species s. The ion entropy, described by the
generalized Gibbs ensemble, can then be written as

Si = ζ−1
i

∫
dXi (ln ζi + βiEi + Fi · Sii) exp(−βiEi − Fi · Sii)

Si = Ψi + βiUi + Fi · 〈Sii〉.

⎫⎬⎭ (2.51)

If system is constrained by known Sii rather than by the condition of force balance,
then we can still compute an entropy for the electrons, but we should use the canonical
ensemble instead of the generalized Gibbs ensemble. In this case the electron entropy is
given by

Se = Φe + βe(Ue + Ux). (2.52)

This is equivalent, when the ions are at equilibrium, to the expression
Se = Ψe + βe(Ue + Ux)+ Fe · 〈Sii〉 found from the generalized Gibbs ensemble.

3. Two-component Coulomb plasma
3.1. Coulomb potentials

Having obtained general expressions for the thermodynamic potentials of electrons and
ions, we can specialize to a case of interest. This requires specifying the functional form
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of the electron–electron, ion–ion and electron–ion interactions. In this section, we specify
such forms and calculate explicit expressions for the resulting thermal averages.

To describe a classical plasma consisting of electrons and ions, we choose Green’s
functions corresponding to the Coulomb potential. It is necessary to include the factors
of temperature, charge, and particle number that we grouped into the Green’s functions
to simplify notation in (2.25). Including a factor 1

2 to avoid overcounting within the same
species, the Coulomb Green’s functions are

Cee(k) = 1
2

Ne
4πe2

VTe

1
k2

= 1
2
κ2

k2
,

Cei(k) = −
√

NeNi
4πZe2

VTe

1
k2

= −
√

Zκ2

k2
,

Cii(k) = 1
2

Ne
4πZ2e2

VTi

1
k2

= 1
2
χ 2

k2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.1)

where k = |k| and we have defined the inverse screening lengths for electrons and ions,
respectively, as κ = √

4πe2ne/Te and χ = √
4πZ2e2ni/Ti. These quantities are inversely

proportional to single-species Debye lengths for electrons and ions. We can likewise define
the total inverse screening length in the usual way as k2

D = κ2 + χ 2. In these variables, the
entropic force from the electron subsystem given by (2.28) is then

Fe = 1
2

1
k2

Zκ4

κ2 + k2
. (3.2)

Notably, the effective Green’s function C′
ii = Cii + Fi for ion–ion interactions then

simplifies to

C′
ii = 1

2
χ 2

k2 + κ2
, (3.3)

which is a Yukawa potential of screening parameter κ . The ions can therefore be treated
as an isolated gas interacting through a Yukawa potential in a uniform neutralizing
background. This is consistent with other theoretical predictions and with observations
of UCP (Gericke & Murillo 2003; Chen et al. 2004; Foster et al. 2023).

With the potentials defined in (3.1), the electrostatic part of the electron Massieu
potential, which is a function of Sii, is

Φφe(βe,V, Sii) = −V
2

∫
d3k
(2π)3

[
ln
(
κ2

k2
+ 1

)
− κ2

k2
− 1

k2

Zκ4

κ2 + k2
Sii

]
. (3.4)

The electrostatic part of the ion Planck potential is

Ψφi(βi,V,Fi) = −V
2

∫
d3k
(2π)3

[
ln
(
χ 2

k2
− 2τFe + 1

)
− χ 2

k2

]
. (3.5)

Finally, when the ions are at equilibrium, the electron Planck potential can be written in
terms of the equilibrium ion–ion structure factor as

Ψφe(βe,V,Fe) = −V
2

∫
d3k
(2π)3

[
ln
(
κ2

k2
+ 1

)
− κ2

k2
−
(

1
k2

Zκ4

κ2 + k2
− 2Fe

)
〈Sii〉

]
.

(3.6)
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16 H. Fetsch, T.E. Foster and N.J. Fisch

3.2. Structure factors
We can immediately substitute the above Green’s function definitions, as well as the
expression (3.2) that we derived for the force scaling factor, to get the structure factors
from (2.40), (2.42) and (2.44). For each pair of species we have

〈Sii〉(k) = k2 + κ2

k2 + κ2 + χ 2
,

〈Sie〉(k) =
√

Zκ2

k2 + κ2 + χ 2
,

〈See〉(k) = k2

k2 + κ2
+ 1
τ

κ2χ 2

(k2 + κ2)(k2 + κ2 + χ 2)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

These expressions recover the known results for structure factors (and equivalently,
position-space correlation functions) in two-temperature plasma (Salpeter 1963; Ecker &
Kröll 1964). The structure factors can be made more physically transparent when written
in terms of the deviation from those of an ideal gas, where correlations between particles
vanish. In a system of uncorrelated particles, the structure factor for species a, b is given
by Sab = δab where δ is the Kronecker delta. This comes from the fact that in the formula
for the structure factor

〈Sab(k)〉 = 〈ρ̃∗
a ρ̃b〉 = 1√

NaNb

∑
j

exp{ik · ra,j}
∑
�

exp{−ik · rb,�}, (3.8)

the double summation includes j = � terms, in which the same particle appears in both
summations, in cases where a = b. Each of these terms yields 1 while the other terms,
which each describe a correlation between two distinct particles, average to zero in an
ideal gas. We can write the structure factors as

〈Sii(k)〉 = 1 − χ 2

k2 + κ2 + χ 2
,

〈Sie(k)〉 =
√

Zκ2

k2 + κ2 + χ 2
,

〈See(k)〉 = 1 − κ2

k2 + κ2
+ 1
τ

κ2χ 2

(k2 + κ2)(k2 + κ2 + χ 2)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

For finite k, the deviations from ideal-gas behaviour for both electron–electron and
electron–ion structure factors vanish as expected when κ → 0, corresponding to large
electron temperature. Similarly, the deviation in ion–ion structure factor vanishes as
χ → 0, corresponding to large ion temperature. We note, however, that the electron–ion
structure factor remains non-zero when χ → 0. This means that, although the ions become
uncorrelated with each other in the large ion temperature limit, the finite-temperature
electrons can still react to each ion configuration, allowing some electron–ion correlation
to persist.
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3.3. Energy
The ion electrostatic energy at equilibrium, calculated from (2.50), is given by

Uφi = Ti
V

4π2
χ 2

∫ ∞

0
dk

[ −χ 2

k2 + κ2 + χ 2

]
, (3.10)

which is easily integrated to find

Uφi = −Ti
Vχ 4

8πkD
. (3.11)

For the electrons, the potential energy as a functional of Sii is given from (2.48) by

Uφe(Te; Sii) = Te
V
2

∫
d3k
(2π)3

κ2

k2

[ −κ2

k2 + κ2
+
(

Zκ4

(k2 + κ2)2
− 2

Zκ4

k2(k2 + κ2)

)
Sii

]
. (3.12)

For equilibrium ions, i.e. an ion structure factor given by (3.9), the electron potential
energy becomes

Uφe = Te
V

4π2
κ2

∫ ∞

0
dk

[ −κ2

k2 + κ2
+ Z

κ4

(k2 + κ2)(k2 + κ2 + χ 2)
− 2Z

κ2

k2 + κ2 + χ 2

]
,

(3.13)
which reduces to

Uφe = V
8π

Teκ
3

[
−1 + Z

κ2kD − κk2
D − κχ 2

χ 2kD

]
. (3.14)

Adding the energies of each species gives the total electrostatic potential energy as

Uφ(Te,Ti) = V
8π

[−Teκ
3 − Ti(k3

D − κ3)
]
. (3.15)

This result is identical to the one obtained by Foster et al. (2023). It also matches
calculations by Triola (2022), discussed further below.

Although the partition of potential energy into the electron and ion subsystems
given by (3.14) and (3.11) is not trivial, the combined energy has a straightforward
physical interpretation. It is a well-known result (Kelly 1963) that in weakly coupled
Coulomb-interacting plasma at thermal equilibrium, the potential energy is

Uequilib
φ (T) = − V

8π
Tek3

D. (3.16)

In (3.15), we can identify the term −(V/8π)Teκ
3 as the potential energy of a gas

of electrons interacting directly through a Coulomb potential, and identify the term
−(V/8π)Ti(k3

D − κ3) as the potential energy of a gas of ions interacting through a shielded
potential.

It is also useful to write the energy in terms of simple dimensionless parameters. As
above, we write the temperature ratio as τ = Te/Ti. In terms of the plasma parameter
Λ = nλ3

D, where N = (1 + Z)Ni and n = N/V , the total electrostatic energy is

Uφ(Te,Ti) = − TiN
8πΛ

[
1 + τ − 1

(1 + τZ)3/2

]
. (3.17)

Here, the energy includes a term with the same form as the equilibrium result
Uequilib
φ = −TN/8πΛ, plus a term proportional to (τ − 1), which clearly vanishes in the

equal-temperature case.
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In the regime of interest, our (3.15) is equivalent to the potential energy derived in recent
work (Triola 2022) studying equations of state in two-temperature plasma. However, an
advantage of the approach here is the fact that it affords a clear prescription for partitioning
the potential energy into electron and ion components. Some methods exist, but they differ
depending on one’s chosen scheme for assigning the ‘cross-temperature’ that applies
to electron–ion interactions. Our approach, although more restricted in requiring the
large mass ratio limit me/mi � 1, has the advantage of providing a natural separation
between electron and ion energies, given in (3.14) and (3.11). This separation is necessary
when we want to predict the evolution of electron and ion temperatures in response to
heating or to volume changes. In the subsequent sections, we further develop the separate
thermodynamic descriptions of the two species, and then apply these descriptions to
calculate changes in electron and ion temperatures.

3.4. Entropy
In order to track heat flow into the two subsystems separately, it is necessary to compute
the entropy separately for each species. If both species are individually in equilibrium, we
should use the generalized Gibbs ensemble and apply (2.51) to calculate both entropies. If
Sii is known instead, then we can calculate the electron entropy in the canonical ensemble
using (2.52). The calculation in either case is similar and is outlined as follows.

In the generalized Gibbs ensemble, it is first necessary to calculate explicitly the Planck
potential of each species from (3.4) and (3.5). Because we will not need to take derivatives,
we can substitute the force from (3.2) to obtain Ψ̂i(βe, βi,V) and Ψ̂e(βe, βi,V). For the ions
first, we have

Ψ̂φi = −V
2

∫
d3k
(2π)3

[
ln(k2 + κ2 + χ 2)− ln(k2 + κ2)− χ 2

k2

]
, (3.18)

which evaluates to

Ψ̂φi = V
12π

(k3
D − κ3). (3.19)

The Planck potential for the electrons simplifies greatly when substituting the
generalized force from (3.2), giving

Ψ̂φe = −V
2

∫
d3k
(2π)3

[
ln
(
κ2

k2
+ 1

)
− κ2

k2

]
, (3.20)

and therefore

Ψ̂φe = V
12π

κ3. (3.21)

For finding the entropy of each species, it is finally necessary to compute the term
associated with the entropic force, which for species s we will denote Sfs. For the electrons,
this term is defined as

Sfe
.= Fe · Sii, (3.22)

which integrates to

Sfe = V
8π

Z
κ4

kD
. (3.23)
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The entropic force contribution Sfi
.= Fi · Sii to the ion entropy results from a nearly

identical calculation as

Sfi = −τ V
8π

Z
κ4

kD
. (3.24)

Then, in total, the electrostatic component Sφe of the electron entropy simplifies to

Sφe = − V
24π

κ3 − V
8π

Z
κ4

kD + κ
, (3.25)

and the electrostatic component Sφi of the ion entropy is

Sφi = V
12π

(k3
D − κ3)− V

8π
χ 2kD. (3.26)

We can also find the electron entropy in the canonical ensemble, corresponding to a
known Sii. When the ions are at equilibrium this Sii is the equilibrium structure factor 〈Sii〉,
and so we would have Φe(βe,V, Sii) = Ψ̂e(βe,V, (V̂Fe)). For arbitrary ion correlations,
we instead use (2.52) for the electron entropy, which along with (2.27) for the Massieu
potential and (3.12) for the electron energy gives

Sφe = −V
2

∫
d3k
(2π)3

[
ln
(
κ2

k2
+ 1

)
− κ2

k2
+ κ2

k2 + κ2

−
(

Z2κ4

k2(k2 + κ2)
+ 2

Zκ4

k2(k2 + κ2)
− Zκ4

(k2 + κ2)2

)
Sii

]
. (3.27)

We can now use these entropy expressions to study adiabatic processes, in which the
entropy of one or both species remains constant.

4. Results
4.1. Overview

In this section, we apply the equations of state for two-temperature electron–ion Coulomb
plasma to describe what happens if the plasma is compressed or heated. Many of the
central analytical results of this work are presented here. Namely, (4.3) and (4.4) describe
the temperature change for each species as the system undergoes adiabatic compression.
In (4.8) and (4.10), we present the general and specific cases, respectively, of a new, simple
formula for the change in ion temperature due to correlation heating after heat is deposited
suddenly into the electrons.

4.2. Compression
In experimental conditions that give rise to moderately coupled two-temperature plasma,
it is common that the system also undergoes expansion or compression (Beule, Ebeling
& Förster 1997; Kodama et al. 2001; Koenig et al. 2005; Fortov et al. 2007; Eliezer et al.
2015; Loisel et al. 2017). It is therefore of interest to predict how the electron and ion
temperatures will evolve during volume changes. We consider here a reversible process in
which no heat is transferred to or from the system. Because heat transfer is additionally
forbidden between the electron and ion subsystems, the entropy of each system remains
constant throughout the process. This provides two constraints on the temperatures, which
are sufficient to solve for the change in electron and ion temperature in response to a
change in volume.
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For brevity, we define the partial derivatives of entropy to be

πa
.=
(
∂Sa

∂V

)
,

σab
.=
(
∂Sa

∂Tb

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.1)

We then calculate temperature changes by enforcing constant entropy to each order
in ε. The calculation is outlined in detail in Appendix C.1. Applying the results, we have
to leading order for both species simply(

dTa

dV

)(0)
= −2

3
Ta

V
, (4.2)

which is the ideal-gas result for adiabatic compression. To next order, we have the
temperature change for the electrons as(

dTe

dV

)(1)
= −2

3
Te

Ne

κ3

48π

[
−1 − 3Z

κ

kD + κ

]
, (4.3)

while for the ions the temperature change is(
dTi

dV

)(1)
= −2

3
Ti

Ni

κ3

48π

[
−1 − k3

D + κ3

κ3
+ 3

kD

κ

]
. (4.4)

For both species, the first-order correction to the temperature change during expansion
is positive for all electron and ion temperatures. Since the zeroth-order contribution (4.2)
is negative, the result is that in a weakly coupled plasma, the magnitude of the temperature
decrease during expansion is smaller than that of an ideal gas. Similarly, compression of a
weakly coupled plasma will increase the temperature of both species, but slightly less than
it would for an ideal gas. It is evident that the first-order corrections to the two species’
temperatures are different. We further explore the implications of this finding in § 5.

4.3. Reversible correlation heating
Our results can also be used to determine how changes in electron temperature and
ion temperature couple to each other. There exist many processes in two-temperature
plasma that transfer energy unequally to the two species. These include X-rays, which
heat electrons through reverse bremsstrahlung; radiative cooling, which primarily cools
electrons; cyclotron resonance heating, which can heat either species depending on the
frequency; shocks, which primarily heat ions; and viscous dissipation, which generally
heats ions (Haines et al. 2006). Eventually, collisions will transfer energy between species
in order to equalize the electron and ion temperatures. However, if the energy input
happens much faster than electron–ion equilibration, we may ask whether energy is
nevertheless transferred between species on a fast time scale.

Working at constant volume, we apply temperature change dT (0)a to species a slowly
enough that the entropy of species b is constant, following a similar procedure to that used
above to study compression. Heuristically, where ω is the rate of change of Ta and νbb is
the collision frequency for particles of species b with each other, we say that ω � νbb is a
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sufficient condition for the process to be treated as adiabatic for the dynamics of species b.
The first-order conservation of entropy condition gives

0 = σ
(1)
ba dT (0)a + σ

(0)
bb dT (1)b . (4.5)

Then using the expressions for derivatives of entropy that we have in (C5), it is
straightforward to find that(

dTi

dTe

)(1)
V

= Ti

Te

1
Ni

V
24π

κ2kD

(
1 − κ

kD

)2

,(
dTe

dTi

)(1)
V

= Te

Ti

1
Ne

V
24π

κ2kD

(
1 − κ

kD

)2

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.6)

Therefore, as the temperature of one species is increased slowly, the temperature of
the other species increases. This comes about because σei, σie < 0 and so the potential
component of the entropy of species b decreases as Ta increases; the kinetic component
of Sb then has to increase in order to keep the entropy constant, which requires Tb to
increase. In statistical terms, species b becomes more spatially correlated as species a
is heated; in order to preserve the entropy Sb, the disorder must increase in some other
degrees of freedom of b. In this case, those other degrees of freedom are the velocities,
and increasing their entropy requires the temperature to increase.

This ‘correlation heating’ is collisionless in that it occurs due to spatial rearrangement
of particles of each species, without reference to the collision rate between species. We
have put no constraints on the inter-species energy exchange rate νie, and so collisional
energy exchange can be made much slower than the rate ωb at which we expect the
spatial distribution of species b to rearrange itself. The physical mechanisms of correlation
heating become more transparent when we study the effects of suddenly depositing a large
amount of heat into one species, rather than the slow and reversible heating that we have
just analysed.

4.4. Sudden heating
The formalism in this work can be applied in some cases where the plasma is not even
in a two-temperature quasi-equilibrium state. For example, we can make well-defined
thermodynamic statements about the electron subsystem before the ion subsystem has had
time to equilibrate. We can use this to answer the question of how energy is partitioned
when we suddenly transfer heat only to the electrons. For example, a sudden burst of
X-rays may transfer energy to the electrons while barely affecting the ions; we may then
ask how energy flows into the ion distribution over a longer time scale. We analyse a
process consisting of the following steps:

(i) Instantaneously, energy Qe is deposited into the electron velocity distribution.
(ii) On a time scale ∼ νee

−1, the electrons come to equilibrium at their new temperature.
The ion distribution has not had time to evolve and so the ion–ion structure factor
remains at the original value Sii,0.

(iii) On a longer time scale ∼ ω−1
pi , the ion distribution relaxes to its new equilibrium

structure factor Sii,2 in response to the new electron screening.
(iv) On a much longer time scale ∼ νie

−1, collisions transfer energy from the electrons
to the ions and bring the two species’ temperatures into equilibrium.

We study the dynamics during step (iii), before collisions have had enough time to
transfer any heat between species. Energy can, however, be transferred between species by
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FIGURE 1. Steps of the correlation heating process. Two ions, closely shielded by electron
clouds, pass near each other by chance. At that moment, some fast process heats the electrons
without directly transferring energy to the ions; the electron screening clouds therefore expand.
Under their new reduced shielding, the ions are suddenly subjected to a force pushing them apart,
causing them to gain kinetic energy.

an ‘effective work’ defined as
Ws = Fs · dSii. (4.7)

Physically, this corresponds to the work4 required to shift ion correlations while working
against (or with) the effective potential generated by the electrons. We show in this section
that the relaxation dynamics can be captured by treating the ions as a Yukawa OCP
and requiring that their energy be conserved; this known result, however, is specific to
the Coulomb interactions and first-order expansion to which we specialized in § 3. The
approach outlined here is more general and could be applied to compute correlation
heating for other effective interaction models.

The steps of this process are shown schematically in figure 1. Ions are shown in red, and
the characteristic size of electron screening clouds is represented by concentric circles. In
a weakly coupled plasma, each screening cloud should include many ions, but a simplified
picture is given here for illustration. In step (ii), the electron clouds expand so that each
ion suddenly feels the electric field due to nearby ions more significantly than before.
While well-shielded ions were previously allowed to be relatively close to each other,
the less-shielded electric field now pushes ions apart, imparting kinetic energy to the ion
distribution on average. This process has been predicted theoretically, and observed in
UCP experiments (Morawetz et al. 2001; Kuzmin & O’Neil 2002; Killian et al. 2007).
The phenomenon has been given several names, including ‘disorder-induced heating’ and
‘correlation heating’. However, little work has been done on first-principles analytical
models to predict the magnitude of this heating effect. The effect is largest in a more
strongly coupled regime, which is generally intractable for the kind of analytical work
presented here, but we can gain insight into the process by studying the leading-order
effects in ε.

The calculation of the change in ion temperature is worked out in detail Appendix C.3.
In brief, the calculation relies on conservation of total energy during step (ii) and step (iii).
Additionally, because this constraint is not sufficient to specify the final ion temperature,
the calculation treats the ion relaxation in step (iii) as adiabatic for the electron subsystem.
It is straightforward to determine the change in structure factor �Sii = Sii,2 − Sii,0
during the process. As a function of �Sii, we find that the change in ion temperature

4As defined, Ws is an entropic quantity, but can be converted to an energetic quantity by multiplying by Ts.
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�Ti = Ti2 − Ti0 is

�Ti = −2
3

Ti0V
∫

d3k
(2π)3

(Cii − τFe)�Sii. (4.8)

The right side of this expression is just the change in an effective ion potential energy
Eeff

i = TiC′
ii · Sii corresponding to the effective potential that we found previously. The

increase in ion kinetic energy is equal to the decrease in effective potential energy.
Since the effective Green’s function C′

ii corresponds to a Yukawa potential, this result
indicates that the ion subsystem can be treated as a Yukawa one component plasma
(YOCP), with screening length given by the electron inverse Debye length κ , and whose
energy is conserved during equilibration. This is in line with results obtained elsewhere
demonstrating that the ions can be treated as a YOCP (Gericke & Murillo 2003). Parallel
work shows that, under the same assumptions, the ion collision operator is the same as
that determined from a collection of screened ions (Foster et al. 2023). Therefore, in
addition to the equilibrium state found here, the dynamical evolution of the ion distribution
is described by a YOCP model.

To write this temperature change explicitly, we will denote the electron screening
lengths before and after the initial heating step as κ2

0 = 4πe2ne/Te0 and κ2
1 = 4πe2ne/Te1.

To the relevant order, changes to the ion screening length are irrelevant, so
χ 2 = 4π2Z2e2ni/Ti0 can be used at all stages. Finally, the total screening lengths will be
k2

D0 = κ2
0 + χ 2 and k2

D1 = κ2
1 + χ 2. Using (3.2) and (3.9) the temperature change becomes

�Ti = 2
3

Ti0

Ni

V
2
χ 2

∫
d3k
(2π)3

1
k2

k2

k2 + κ2
1

(
χ 2

k2 + k2
D1

− χ 2

k2 + k2
D0

)
. (4.9)

After integrating, we obtain the following formula for the change in ion temperature:

�Ti = 2
3

Ti0

Ni

Vχ 4

8π

(
1

kD1 + κ1
− 1

kD0 + κ1

)
. (4.10)

This formula holds for arbitrarily large changes in κ0 → κ1, within the constraint of
weak coupling. We can also find its differential form by imposing that the initial heating
is small and then expanding to first order in dTe. The expression for dTi/dTe obtained
in this way matches exactly that in (4.6), found previously through the conservation
of ion entropy. However, when evaluated for a finite �Te, (4.10) is clearly unequal
to the differential expression in (4.6) integrated over the same temperature interval.
This is unsurprising because these equations describe different physical processes. The
differential case is reversible by construction; the ion entropy is forced to be constant,
and although the electron entropy increases due to the external heating, this may be done
reversibly. By contrast, the relaxation process in the sudden heating case is irreversible;
the ion subsystem departs from its thermal equilibrium state in step (i), and the final ion
entropy is greater than that at the beginning.

5. Discussion
5.1. Energy partition

Many interesting features of the physics of two-temperature plasma can be seen by
analysing the potential energy formula (3.15) in the appropriate limits. In all plots in this
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(a) (b)

FIGURE 2. Electrostatic potential energy per particle in weakly coupled two-temperature
plasma, with equipotential contours shown in grey. All energies are listed in units of E0 = e2/ae.
Dashed black lines are curves of constant total energy. (a) Ion charge Z = 1. (b) Ion charge
Z = 5.

section, energies are normalized to the characteristic energy scale

E0 = e2

ae
, (5.1)

representing the characteristic potential energy of interaction between electrons, where
ae = (4πne/3)−1/3 is the Wigner–Seitz radius, a characteristic interparticle distance.

In figure 2(a) we demonstrate the partition of energy into kinetic and potential degrees
of freedom in a Z = 1 plasma at constant temperature. The horizontal and vertical axes
represent the electron temperature and ion temperature, respectively. The heatmap shows
the electrostatic potential energy, which is negative in all cases. The axis scale is different
in the Z = 1 and Z = 5 cases because E0 is independent of Z, and higher ion charge leads
to more potential energy and stronger coupling.

Even if a system is constrained by constant energy, it may still move around the energy
plot by exchanging energy between species. The dashed black curves show trajectories
of constant U = UK + Uφ , where UK is the total kinetic energy in the plasma. The total
energy can be written as

U = 3
2

NeTe + 3
2

NiTi − Ti
Vk3

D

8π

[
1 + τ − 1

(1 + Zτ)3/2

]
, (5.2)

and we can determine symbolically what happens when one temperature is made much
larger than the other while holding the volume and particle numbers fixed.

First taking the hot-electron limit, τ → ∞ at fixed Ti, the potential energy reduces to

Uφ → −Ti
Vχ 3

8π
, (5.3)

which, as we argued in § 3.3, is just the potential energy of an ion OCP at equilibrium.
The effects of electron screening vanish and the electrons become a uniform neutralizing
background.

https://doi.org/10.1017/S0022377823000776 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000776


Temperature separation in moderately coupled plasma 25

Next taking the hot-ion limit, τ → 0 at fixed Te, the potential energy reduces to

Uφ → −Te
Vκ3

8π

[
1 + 3

2
Z
]
, (5.4)

which is almost the potential energy of an electron OCP at equilibrium. However, the ion
contribution supplies an additional 3Z/2 term because the ions do not simply act as a
uniform neutralizing background. Although ion positions are uncorrelated with each other
in the large Ti limit, any realization of the ion distribution still consists of Ni discrete
charges. Because the electrons equilibrate much faster than the ion distribution rearranges
itself, the electrons have time to cluster around the ions, allowing the system to reach
a lower energy state than would be found in a one-component electron plasma. This
asymmetry is visible in figure 2(a).

We can additionally study the effect of varying the ion charge, where for simplicity we
continue to assume that all ions in the plasma have the same charge. In figure 2(b), we plot
the partition of energy in the same way in a Z = 5 plasma. Following this trend into the
Z → ∞ limit, our potential energy expression reduces to

Uφ → −Ti
Vχ 3

8π
, (5.5)

which is just the energy of a Coulomb-interacting ion gas. In this limit, the ion–ion
interaction is strong enough that the energy in the system is dominated by direct
interactions between ions, so electron screening provides only a negligible correction, and
the effect of varying the electron temperature becomes unimportant. In the opposite limit,
where Z → 0, we find

Uφ → −Te
Vκ3

8π
. (5.6)

Here, the ions have become a uniform neutralizing background, and so their influence on
the potential energy vanishes. This limit is, of course, not physically realizable because it
would entail fractional ion charge. However, we can still evaluate it mathematically and
expect the theory to be well behaved in this limit. The Z → 0 limit simply means that there
are many particles of the heavy species and fewer particles of the light species, which (by
quasineutrality) have greater charge.

5.2. Compressional temperature separation
The plots in figure 2 apply to a plasma held at constant volume. As we found in § 4.2, the
temperatures of both species change by a different amount than would be expected of an
ideal gas during compression and expansion. Figure 3 displays the differential temperature
change vector (dTe, dTi) associated with a differential step of adiabatic compression for
plasmas with ion charge states Z = 1 and Z = 5.

The standard ideal-gas result (i.e. infinitely weakly coupled) is shown in black, with the
corrections in moderately coupled plasma in magenta. The black and magenta vectors are
normalized separately. For many conditions, e.g. high Te in the Z = 1 case, the plasma
correction is small, but reduces the magnitude of the temperature change. In this case,
the species’ temperatures change by (approximately) the same ratio as in an ideal gas, but
the plasma coupling causes both species to heat less during compression than ideal gases
would. For other conditions, namely low electron temperature and comparatively high
ion temperature, the two species’ temperatures are affected differently by compression.
In the Z = 1 case, starting at Ti > Te causes the ion temperature to increase more than
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(a) (b)

FIGURE 3. Temperature change during compression shown in Te,Ti space. Black arrows
show the direction of the temperature change (dTe, dTi) of an ideal gas associated with some
small compressional volume change (dV < 0). The magenta arrows show the first-order (in ε)
correction to the temperature change in a moderately coupled plasma with ion charge Z = 1
(a) and Z = 5 (b). Both temperature axes are normalized to the characteristic energy scale E0.
Arrow lengths are normalized to arbitrary units; the ideal-gas and plasma correction arrows are
normalized separately.

the electron temperature, driving an even greater temperature separation than would be
generated by the ideal-gas dynamics. This is of interest in fusion applications, where
operating in a hot-ion mode is often desirable. The hot-ion mode can be particularly
beneficial in magnetic fusion devices (Clarke 1980; Fisch & Herrmann 1994), which
operate in a weakly coupled regime. In that regime, since the fusion alpha particles slow
down on electrons, the method to achieve hot-ion mode relies upon a wave-induced alpha
channelling effect (Fisch & Rax 1992). In contrast, we show here that hot-ion mode might
in fact be accomplished through a compression effect.

Conversely, in the Z = 5 case, the most dramatic temperature separation can be seen
in the Te > Ti region, in which the electron temperature is driven even higher. This
final effect can be easily explained as follows. We can see from (4.3) and (4.4) that the
temperature change for each species includes a prefactor that is inversely proportional
to the number of particles of that species. This is primarily a result of the fact that the
amount of energy transferred to each species a depends only weakly on Na, while the
heat capacity is proportional to Na. Therefore, for greater Z, there is a smaller number of
ions, and the first-order moderate-coupling correction to (dTi/dV) is more significant.
Because compressing plasmas are a promising option for intense X-ray sources (Chin
et al. 2022), the hot-electron mode achieved under these conditions may be of practical
interest.

Interestingly, even when the ion and electron temperatures start equal, compression of
a moderately coupled plasma can induce a spontaneous separation of the temperatures.
Figure 4 shows the evolution of electron (blue) and ion (red) temperatures for a variety
of starting densities ne and starting temperatures T = Te = Ti. Results are shown for ion
charge states Z = 1 and Z = 5. In the Z = 1 case, adiabatic compression generally drives
the ion temperatures higher than the electron temperature. The effect is small, but is most
pronounced at high density and low temperature as expected. In the Z = 5 case, adiabatic
compression from equal temperatures drives the electron temperature higher than the ion
temperature for all conditions shown.

These results may be seen as unexpected because, for equal pressures and densities, the
electron pressure is higher than the ion pressure in moderately coupled plasma and the
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(a) (b)

FIGURE 4. Changes in electron and ion temperature as a function of density and temperature,
starting in an equal-temperature state τ = 1. For given density change dn, blue arrows show dTe
and red arrows show dTi. The temperature axis is normalized to the characteristic energy scale
E0. (a) Ion charge Z = 1. (b) Ion charge Z = 5.

electrons could therefore be expected to heat more. To identify the mechanisms at work,
it is useful to examine the entropy derivatives πa, σab. In the case of ionization Z = 1 and
equal species temperatures, these are evaluated explicitly in Appendix C.2.

The term in the entropy change expressions with largest magnitude is the one associated
with σee, causing the first-order changes in correlation entropy to be more negative for
electrons than for ions when dV > 0 (and τ = 1,Z = 1). Thus, if the process is to be
adiabatic for both species, the first-order correction to electron temperature has to be
greater (more positive) than the first-order correction to ion temperature during expansion.
Correspondingly, during compression, where dV < 0, the electron temperature increases
less than the ion temperature.

5.3. Correlation heating
In cases where heat is deposited into the electrons only, we derived formulas (4.6) and
(4.10) for when the electron heating was slow (meaning reversible ion relaxation) and
sudden (meaning irreversible ion relaxation), respectively. The results of both heating
processes are shown in figure 5, with temperatures again normalized to the energy scale
E0. For both heating processes in panel (a), we consider a starting ion temperature as
low as possible within the bounds considered in Appendix A.2, Ti0 = 2E0. The final ion
temperature after heating (and subsequent relaxation, in the case of sudden heating) is
plotted as a function of the final electron temperature for a Z = 1 plasma.

For small amounts of heating and cooling, the reversible and irreversible formulas
yield similar results. As the electron heating increases, the final ion temperature in the
irreversible process becomes larger than in the reversible process. This is sensible; the
irreversible ion relaxation should generate entropy in the ion subsystem, much of which
must go into the ion kinetic degrees of freedom, forcing Ti to increase more than in the
reversible case.

When the electrons are instead cooled as in panel (b) of figure 5, the two expressions
eventually diverge from each other. This can be seen directly from the equations for the
two processes. In (4.6), dTi/dTe is positive–definite so the ion temperature must decrease
monotonically as the electron temperature decreases. Meanwhile, in (4.10) �Ti clearly
asymptotes to 0 as κ → ∞, corresponding to a low electron temperature. Physically,
the result can be justified as follows. If the electron temperature is decreased slowly,
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(a) (b)

FIGURE 5. Final Ti as a function of Te after heating or cooling. The black circles show the initial
conditions for each process. The purple curves (dashed lines) show reversible heating, where
the electron heating is adiabatic for the ions. The orange curves (solid lines) show irreversible
heating, where the electron heating is rapid compared with ion time scales. In panel (a), electrons
and ions start cold and are heated; in (b), ions start cold but electrons start hot and are cooled.

then the screening cloud around each ion slowly shrinks toward the ion, decreasing the
effective potential that each ion feels from other ions. This opens more volume for the
ion distribution to explore. The process is then effectively adiabatic expansion, which we
expect to cool a gas; if the change in the available volume is done at constant entropy,
the kinetic energy of the ions must decrease in order to balance the increasing volume
contribution to the total entropy.

By contrast, if the electrons are suddenly cooled, the screening clouds will immediately
collapse toward the ions. This situation would be difficult to achieve physically, but we
briefly discuss its implications because the model captures interesting physical behaviour
in this regime. In the extreme case, we can take an initial condition where the plasma starts
in a very hot state, such as the Te → ∞ limit discussed above, in which electron screening
is negligible. If we suddenly and drastically cool the electrons to the point that they shield
the ions from a distance shorter than the inter-ion spacing, the final state is effectively a
neutral gas (albeit a classical analogue, as we have neglected quantum effects). Every ion
can then continue unperturbed on the trajectory that it was following at the moment of
the cooling and will experience only occasional interactions with other ions in this gas
limit. The kinetic energy of the ion distribution is therefore unchanged, and so the ion
temperature should not change. The potential contribution to the ion entropy in the initial
state was negative, and this contribution vanishes in the nearly ideal-gas final state. Thus
the total ion entropy increases due to the sudden electron heating, which is what we expect
of an irreversible process.

6. Conclusions

In this work, we have derived analytical equations of state for the electrons and
ions in a moderately coupled two-temperature plasma. The physical quantities that we
predict, such as structure factors and internal energy, are consistent with those derived
in other works. We have used our coupled quasi-equations of state (3.4) and (3.5)
to predict the evolution of both species’ temperatures in response to external forcing.
During compression and expansion, we have found that for both species the magnitude
of the temperature change in moderately coupled plasma (4.3) and (4.4) is smaller than
that in ideal gas. In the moderate-coupling regime, we have described a novel effect
that contributes to inter-species temperature separation under adiabatic compression and
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expansion. We have also derived a correlation heating effect, whereby increasing the
temperature of one species causes the temperature of the other species to increase, even
without collisional energy exchange between species, per (4.6) and (4.10).

All of the analysis in this work was done for non-magnetized plasma. It has been
suggested based on simulations that applying a strong magnetic field reduces the
magnitude of disorder-induced heating, at least in UCP (Tiwari & Baalrud 2018).
In addition, we have treated only a single fixed charge state. On time scales where
inelastic ionization and recombination processes become relevant, the ion charge states
will introduce an important new variable. Ionization equilibrium in two-temperature
plasma has been a subject of ongoing debate, and the dynamics of ionization and
recombination at multiple temperatures has been suggested to introduce a variety of novel
phenomena (Andre 1995; Beule et al. 1997; Chen & Han 1999; Gleizes et al. 1999;
Crowley 2014).

With these simplifications aside, the derivation of the EOS of both species is done with
a high level of generality before specializing to the case of interest. Our general expression
(2.36) for the electron Massieu potential relies on weak electron coupling and a time scale
separation between species, and (2.35) for the ion Planck potential additionally relies
on weak ion coupling. However, both expressions allow general interaction potentials.
Although we use the bare Coulomb potential in this work, this could easily be replaced
with other effective interactions. For example, in a dusty plasma, the ions and electrons in
this work could be replaced with the dust and the background plasma ions respectively. In
that case, it would be valuable to account for the contribution of the electrons without
treating them explicitly. That could be done by replacing the Coulomb potential by a
Yukawa potential to capture electron screening (Shukla et al. 2017; Mukherjee et al.
2020). Moderately coupled plasma often appears near the warm dense matter (WDM)
regime, in which degeneracy becomes important (Koenig et al. 2005; Bonitz et al. 2020).
Although the treatment in this work is inherently classical, the generality of the results
means that it may be extensible some distance into the WDM regime using the variety of
semi-classical effective potentials that exist for approximating the leading-order effects of
electron degeneracy. The Coulomb potentials in this work can easily be replaced with, for
example, the Deutsch potential in parameter regimes where degeneracy is, like coupling
strength, small but non-negligible (Triola 2022).

One implication for ICF is the ability to heat ions more than electrons under
compression of a fuel in certain moderately coupled regimes. While the effect is by
necessity small in the moderate-coupling regime that allowed the perturbative calculations
of this work, a small increase in ion temperature near the point of ignition can have a highly
nonlinear effect on the overall fusion yield. In an expanding plasma, such that found during
the propagating burn phase in an ICF implosion, there are regimes in which electrons cool
faster than ions, which could be exploited to reduce radiation, increase confinement time
and even enhance fusion rates by Salpeter screening (Salpeter & van Horn 1969; Ichimaru
1993). In fast ignition scenarios, a high-power ignitor is used to heat electrons rapidly,
which then transfer their energy to ions as a ‘spark’ for fusion (Kodama et al. 2001; Tabak
et al. 2006). Correlation heating could serve as an additional channel for rapidly heating
ions in this scenario. The design of a fusion scheme to profit from any of these effects
would require more detailed study, but the analytical results in this work could inform the
choice of regimes.
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Appendix A. Regimes of applicability
A.1. Time scales

In all cases, the collisions that exchange energy within each species must be much
faster than the rate of inter-species energy exchange in order to treat the electrons and
ions as equilibrium systems at different temperatures, so νie � νee, νii. Our calculation
additionally requires that the time scale of rearrangement of the electron subsystem is
much faster than the time scale of rearrangement of the ion subsystem so that every
microstate of the ion subsystem sees an average over many electron configurations. We
require therefore that ωpi, νii � ωpe, νee.

A.2. Coupling strength
In this work, we follow one common convention in defining the coupling between species
ab to be

Γab =
∣∣∣∣qaqb

aaTa

∣∣∣∣ , (A1)

where qs, ns,Ts are respectively the charge, density and temperature of species s and
aa = (4πna/3)−1/3 is the characteristic interparticle spacing. Our expression for the
electron Planck potential (2.36) relies on weak electron coupling, meaning heuristically
that Γee � 1. The expression for the ion Planck potential (2.35) additionally relies on weak
ion–ion coupling, roughly Γii � 1.

The results of our calculations, however, do not appear as integer powers of Γ but rather
as a power series in ε = 1/4πΛ. The ‘plasma parameter’ is defined as the number of
particles in a Debye sphere5 Λ = nλ3

D. Although it would be natural to expand simply in
1/Λ, it is of interest to capture the largest effects that are consistent with the parameter
ordering in this theory. It is clear from, for example, (3.17) that the leading-order effects
are suppressed by a numerical factor. For the potential energy, this factor is around 0.04,
which is important when determining the expected error. Our choice of ε = 1/4πΛ is in
keeping with O’Neil & Rostoker (1965), in which three-body correlations are calculated,
providing expressions for the plasma potential energy to next order6 for single-temperature
plasma. Remarkably, Abe (1959a), who uses the same expansion parameter and agrees
with O’Neil & Rostoker (1965), shows that the higher-order corrections cause a reasonably
small deviation from the Debye–Hückel law (the first-order result as recovered in our
work) for values as high as ε = 1/2. Although these works treat only single-temperature

5The common definition, quoted here, might as well be said to give the number of particles in a ‘Debye cube’, but
the geometrical factor 4π/3 ≈ 4 is often irrelevant. Here, we keep track of the factors to provide clearer bounds on our
parameters.

6It is interesting to note that these corrections include terms of order ε2 ln ε as well as ε2, but their presence does
not affect the discussion here.
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plasmas, it is clear that analogous orderings should hold when the species’ temperatures
are different but comparable.

In the two-temperature case, we can define a plasma parameter for each species,
where as a reminder κ2 = 4πe2ne/Te, χ 2 = 4πZ2e2ni/Ti are the inverse squared screening
lengths, as

Λe = neκ
−3 = 3

4π
(3Γee)

−3/2 ,

Λi = niχ
−3 = 3

4π
(3Γii)

−3/2 .

⎫⎪⎪⎬⎪⎪⎭ (A2)

We now have two small parameters, εe = 1/4πΛe and εi = 1/4πΛi, but for Te ∼ Ti and
Z ∼ 1, we have ε ∼ εe ∼ εi and so the distinction between these parameters should not
affect our orderings.

As a concrete bound7 for the purposes of most figures in the text, we require that
1/4πΛe < 1/2 and 1/4πΛi < 1/2. It is then reasonable to ask what the maximum
correlation heating is within this regime, consistent with the assumptions of our work.
From (4.10), starting with some temperature ratio τ0 = Te0/Ti0 and heating the electrons
to arbitrarily high temperature, we find that

�Ti

Ti
= ε

3

⎛⎝1 − 1√
Z−1τ−1

0 + 1

⎞⎠ . (A3)

For a Z = 1 plasma, requiring that the electrons also start moderately coupled, this
means that, for 1/4πΛi = 1/2, the maximum correlation heating is �Ti/Ti ≈ 4.9 %.
Allowing Z to vary but continuing to impose the moderate-coupling condition, it can
be shown that the maximum correlation heating is achieved for very large Z and is
�Ti/Ti ≈ 16.7 %. While high-Z atomic states would be hard to achieve in a relatively
cold and dense plasma, this bound could be relevant in dusty plasmas.

Appendix B. Computing partition functions

In this appendix, we calculate the partition function of the electron subsystem. Because
of the general functional form in which we are working, the result is readily applied to
give the ion partition function as well.

B.1. Components of the potential energy
It is first helpful to break the physically relevant potential energy (each particle interacting
with every particle except itself) into a term that includes self-interactions and a
constant self-energy term. We write the potential energy due to same-species electrostatic
interactions as Eφs = Efull

φs − Eself
φs . Here, we call Eφs the ‘physical electrostatic energy’, i.e.

the one that will be relevant for all thermodynamic calculations. We call Efull
φs the ‘full

electrostatic energy’ because it includes self-interactions, and we denote the difference
between these by the Eself

φs , the self-energy. The full electrostatic energy is given by

Efull
φs =

Ns∑
j

qsφs(rs,j), (B1)

7While this bound on the expansion parameter is more generous than is typical of asymptotic theories, its validity is
corroborated by the relatively small error demonstrated in figure 12 of Abe (1959b).

https://doi.org/10.1017/S0022377823000776 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000776


32 H. Fetsch, T.E. Foster and N.J. Fisch

and we subtract the self-energy, given by

Eself
φs =

Ns∑
j

qsϕ(0), (B2)

to ensure that the physical energy Es is finite even if this self-energy (which may diverge
with, for example, the Coulomb potential) is infinite. For the electrons the full electrostatic
energy for the electrons can be written using the above definitions as

Efull
φe = 1

Te

∑
j

−eφ(rj). (B3)

Fourier transforming the potential gives

Efull
φe = − e

Te

∑
j

∫
d3k
(2π)3

φ̃(k) exp{ik · rj}, (B4)

and then using the definition of the electron distribution in Fourier space, and imposing
the reality condition ρ̃e(−k) = ρ̃∗

e (k), we have

Efull
φe = − e

Te

√
Ne

∫
d3k
(2π)3

φ̃(k)ρ̃∗
e (k). (B5)

Finally, using the potential in terms of Green’s functions as given in (2.25), the energy
is

Efull
φe = TeCeeρ̃e · ρ̃e + TeCeiρ̃i · ρ̃e, (B6)

where the product here is the shorthand notation for integration over k defined in (2.13).
It bears repeating that these expressions include self-energy due to particles interacting

with their own potentials. The self-energy term is independent of the electron
configuration and so can be factored out of the integrals in the partition function. The
electron partition function is the product of the kinetic term, the subtracted self-energy
term, and the full electrostatic term including self-interactions

Ze = 1
Ne!

( me

2π�

)3Ne ZKeZ self
φe Z full

φe , (B7)

where the additional factor comes from the phase-space integration measure. As usual, the
kinetic term is

ZKe =
∫

d3Nev exp
{
−βe

1
2

mev
2

}
, (B8)

while the subtracted self-energy term is

Z self
φe = exp

{
βeEself

φe

}
, (B9)

and lastly, the full electrostatic part of the electron partition function is

Z full
φe (βi,V, Sii) =

∫
V

d3Ne r exp {−Ceeρ̃e · ρ̃e − Ceiρ̃e · ρ̃i} . (B10)

For convenience we will often write only the electrostatic parts of the thermodynamic
potentials, defined as Φφe = ln(Z self

φe Z full
φe ), Ψφe = ln(Z self

φe ζ
full
φe ), Ψφi = ln(Z self

φi ζ
full
φi ).
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B.2. Configuration integral
With these expressions for the potential energy, we are prepared to calculate the partition
function of the electron subsystem. It is useful to convert the integral over discrete particle
positions d3Ne r into a smooth integral over a field Dρ̃e. Using a procedure based on that in
Ariel & Diamant (2020), we start by inserting a delta function, so that

Z full
φe =

∫
d3Ne r

∫
Dρ̃e

∏
k′
δ

(
ρ̃e(k′)− 1√

Ne

∑
j

exp{−ik′ · rj}
)

× exp
{

V
∫

d3k
(2π)3

[−Cee|ρ̃e(k)|2 − Ceiρ̃e(−k)ρ̃i(k)
]}
. (B11)

We then rewrite the delta function in terms of an integral over a dummy field ψ̃ . For
intermediate steps in this calculation, it will be useful to define the number of allowed
Fourier modes in the system as

Ω = V
∫

Ṽ

d3k
(2π)3

, (B12)

where the subscript Ṽ on the integral indicates that the domain of integration is the entire
dual space.8 The resulting partition function is

Z full
φe =

∫
d3Ne r

∫
Dρ̃e

∫ Dψ̃
(2π)Ω

× exp

{
iV

∫
d3k
(2π)3

ψ̃(k)

(
ρ̃e(k)− 1√

Ne

∑
j

exp{−ik · rj}
)}

× exp
{

V
∫

d3k
(2π)3

[−Cee|ρ̃e(k)|2 − Ceiρ̃e(−k)ρ̃i(k)
]}
. (B13)

Now, we group the parts of the integral that depend on the individual particle positions
into a ψ̃-dependent factor, which we simplify as∫

d3Ne r exp

(
−iV

∫
d3k
(2π)3

ψ̃
1√
Ne

∑
j

exp{−ikrj}
)

=
[

V +
∫

d3r
(

−1 + exp
(

−iV
∫

d3k
(2π)3

ψ̃
1√
Ne

exp {−ik · r}
})]Ne

→ VNeI[ψ̃],

(B14)

where I[ψ̃] is defined as

I[ψ̃] = exp
{

ne

∫
d3r

(
exp

(
−iV

∫
d3k
(2π)3

ψ̃
1√
Ne

exp{−ik · r}
)

− 1
)}

. (B15)

The last step holds exactly only in the thermodynamic limit Ne → ∞, but makes no
direct assumptions about the density or coupling strength. However, we note that using

8The lower limits of this integral would be set by the system size, and the upper limits could be set by some arbitrary
cutoff, but we will find the bounds to be irrelevant as Ω does not appear in the final expressions.
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this limit form of the exponential is only valid when the condition

ne

∫
d3r

(
exp

(
−iV

∫
d3k
(2π)3

ψ̃
1√
Ne

exp{−ik · r}
)

− 1
)

� 1, (B16)

is satisfied. It can be shown that this is consistent with ψ̃ · ψ̃ � 1. In other words, this
approximation involves expanding in weak particle correlations. To evaluate the partition
function, we will want to approximate I[ψ̃] so that we can integrate it. To second order in
ψ̃ we have

I[ψ̃] ≈ exp
{
−i
√

Neψ̃(0)− 1
2

V
∫

d3k
(2π)3

|ψ̃(k)|2
}
. (B17)

The ψ̃(0) term can be dropped because it is dual to ρ̃e(0) = ne/
√

Ne, which is a fixed
parameter of the system and not a variable in the configuration integral. For the potential
component of the electron canonical partition function we are now left with

Z full
φe = VNe

(2π)Ω

∫
Dρ̃e

∫
Dψ̃I[ψ̃]

× exp
{

V
∫

d3k
(2π)3

[
iψ̃(k)ρ̃e(k)− Cee(k)|ρ̃e(k)|2 − Cei(k)ρ̃i(k)ρ̃e(−k)

]}
.

(B18)

We will first integrate over ψ̃ , which, using the approximation in (B17), only requires
evaluating a Gaussian integral. The result has the form

Z full
φe = VNe

(2π)Ω

∫
Dρ̃e(k) exp

{
V
∫

d3k
(2π)3

[−Cee(k)|ρ̃e(k)|2 − Cei(k)ρ̃i(k)ρ̃e(−k)
]}

×
(√

2π
)Ω

exp
{
−V

2

∫
d3k
(2π)3

|ρ̃e(k)|2
}
. (B19)

Now integrating over the electron spatial distribution ρ̃e by the same process as for ψ̃ ,
we have

Z full
φe = VNe

(2π)Ω/2

(∏
k′

√
π

Cee(k′)+ 1
2

)
exp

{∫
d3k
(2π)3

1
4 Cei(k)2

Cee(k)+ 1
2

|ρ̃i(k)|2
}
. (B20)

We note that Z full
φe is now a functional of Sii and not of the individual ρ̃i, justifying the

choice to use Sii as the thermodynamic variable. Finally, some simplification yields

Z full
φe = VNe exp

{
V
∫

d3k
(2π)3

[
−1

2
ln (2Cee(k)+ 1)+

1
2 Cei(k)2

2Cee(k)+ 1
Sii(k)

]}
. (B21)

The self-energy correction (B9) gives a contribution of

Z self
φe = exp

{
V
∫

d3k
(2π)3

Cee(k)
}
. (B22)
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Then in total, the electron partition function in the canonical ensemble is

Ze = 1
Ne!

[(
meTe

2π�2

)3/2

V

]Ne

exp

{
V
∫

d3k
(2π)3

[
Cee − 1

2
ln (2Cee + 1)+

1
2 C2

ei

2Cee + 1
Sii

]}
,

(B23)

where we have dropped the k arguments for compactness of notation when there is no
ambiguity, but the functions Cab and Sii continue to depend on k.

In expanding to second order in ψ̃ , we have implicitly made the weak coupling
assumption 1/4πΛe � 1. This approximation would be more transparent (but more
algebraically convoluted) if we had integrated with respect to ρ̃e first. We would then have
had an exponential of the form −(1/Cee + 1)|ψ̃ |2 − iO(ψ̃3). The higher-order term can be
dropped if the coefficient on the quadratic term is much greater than unity. Otherwise, we
would have to retain higher-order terms in the exponential, making the integral much more
complicated. Since Cee ∝ Γee, the quadratic term is largest at weak coupling. Equivalently,
as the dual field to ρ̃e, ψ̃ represents the deviation from the uncorrelated ideal-gas-like
system. Expanding in small |ψ̃ |2 therefore means looking at the limit of weak interparticle
(in this case electron–electron) correlations, which is equivalent to weak coupling in
classical plasma.

So far, we have assumed weak coupling only for the electrons and made no assumptions
about the ion dynamics, except that the relevant dynamical time scales for ions are slower
than those for electrons. Therefore, (B23) could be used to find thermodynamic properties
of the electron gas interacting in some fixed ion distribution, which may be prescribed
based on some other theory or on observations, and needs not be in thermal equilibrium.
In the remainder of the derivation, we will apply a similar treatment to the ions at
equilibrium, in which we will assume that Γii � 1. This treatment is presented, and the
results summarized for both electrons and ions, in § 2.

Appendix C. Compression and heating
C.1. Temperature changes under compression

We here describe the calculation of the temperature change for both species during
compression using the entropy expressions derived in this work. As a reminder, we define
the partial derivatives of the entropies to be

πa
.=
(
∂Sa

∂V

)
,

σab
.=
(
∂Sa

∂Tb

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (C1)

For each species a (with the other species denoted b), the constraint of constant entropy
means that

0 = πa dV + σaa dTa + σab dTb, (C2)

where dV, dTe, dTi are differential changes in volume, electron temperature and ion
temperature, respectively. We break down each quantity by orders in ε and solve for the
temperature change order by order. We note that the inter-species interaction does not
appear at lowest order, so σ (0)ab = 0 when a �= b. This simplifies the calculation and to
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zeroth order, the temperature change of each species is

(
dTa

dV

)(0)
= −π(0)

a

σ
(0)
aa
, (C3)

while to next order, the temperature change of each species is

(
dTa

dV

)(1)
= −

π(1)
a + σ (1)aa

(
dTa

dV

)(0)
+ σ

(1)
ab

(
dTb

dV

)(0)
σ
(0)
aa

. (C4)

Using (3.25) and (3.26) we obtain the following expressions for πa, σab:

πe = Ne

V
+ 1

48π
κ3

[
1 + 3Z

κ

κ + kD

]
,

πi = Ni

V
− 1

24π
(k3

D − κ3)+ 1
16π

χ 2kD,

σee = 3Ne

2Te
+ 3

2Te

V
24π

κ3

[
1 + 3Z

κ

kD + κ
+ Z

κ

kDχ 2
(kD − κ)2

]
,

σei = − 3
2Ti

V
24π

Z
κ4

kDχ 2
(kD − κ)2 ,

σii = 3Ni

2Ti
+ 3

2Ti

V
24π

χ 4

kD
,

σie = − 3
2Te

V
24π

κ2

kD
(kD − κ)2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C5)

Notably, we have from these expressions that σ (1)ei = σ
(1)
ie . In other words, the ion

entropy decreases when the electron temperature is raised (and the ion temperature is
held constant), and the electron entropy decreases by an equal amount when the ion
temperature is raised (and the electron temperature is held constant). The remaining
quantities (π(1)

e ,π
(1)
i , σ

(1)
ee , σ

(1)
ii ) are all positive-definite, meaning that the electron and

ion entropies increase when the system volume, or the temperature of the respective
subsystem, increases.

C.2. Evaluation of entropy derivatives
In the case of Z = 1, τ = 1, the expressions in (C5) for the first-order components of each
term simplify to

π(1)
e → κ3

48π

[
3
√

2 − 2
]
,

π
(1)
i → κ3

48π

[
2 −

√
2
]
,

⎫⎪⎪⎬⎪⎪⎭ (C6a)
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σ (1)ee

(
dTe

dV

)(0)
→ κ3

48π

[
−9

√
2 + 8

]
,

σ
(1)
ei

(
dTi

dV

)(0)
→ κ3

48π

[
3
√

2 − 4
]
,

σ
(1)
ii

(
dTi

dV

)(0)
→ κ3

48π

[
−

√
2
]
,

σ
(1)
ie

(
dTe

dV

)(0)
→ κ3

48π

[
3
√

2 − 4
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C6b)

The physical importance of these quantities is discussed in § 5.3. In brief, it is evident in
this form that most of the partial derivatives are positive. The exceptions are the first-order
same-species temperature derivatives σ (1)ee , σ

(1)
ii .

C.3. Sudden heating calculation
In this section, we work through the details of the correlation heating process outlined in
§ 4.4. To calculate the heating, we start by finding the new electron temperature Te1 at the
end of step (ii) to first order in ε. We expand each temperature in powers of ε such that

T = T (0) + T (1) (C7)

where T (1) ∼ εT (0). It is also worth noting that the Coulomb interaction effects enter only
at sub-leading order because Uφ ∼ εUK .

We define the system to start in a state with temperatures Te0,Ti0. We then deposit energy
Qe into the electron subsystem and use energy conservation order by order to determine
the new temperature Te1 = Te0 +�Te. We leave Sii fixed because the ion distribution has
no time to evolve on the time scale of the initial heating.

To leading order, the temperature change is that of an ideal gas

3
2 NeT

(0)
e1 = 3

2 NeT
(0)
e0 + Qe. (C8)

To next order, the heating does not appear explicitly, but the change in kinetic energy
�U(1)

K ∼ �T (1)e has to balance the change in potential energy, which gives

3
2 NeT

(1)
e1 = −Uφ(T

(0)
e1 ; Sii,0)+ Uφ(T

(0)
e0 ; Sii,0). (C9)

Now, from step (ii) to step (iii), the ion distribution evolves irreversibly while electron
entropy is conserved. The electron temperature evolves from Te1 to Te2, while the
ion temperature evolves from Ti0 to Ti2. Because all temperature changes during this
step are sub-leading order in ε, the final ion structure factor Sii,2 can be written as
Sii(Te1,Ti0), which is the equilibrium structure factor at the immediate post-heating
electron temperature and the original ion temperature.

Conservation of electron entropy requires that

0 = Φe(Te2; Sii,2)−Φe(Te1; Sii,0)+Δ(βeUe). (C10)

In the electron Massieu potential, there are two non-constant terms that survive to the
order of interest. One is the kinetic entropy term, which we expand as

Ne ln(VT3/2
e ) ≈ Ne ln(VT (0)e

3/2
)+ 3

2
Ne

T (1)e

T (0)e
. (C11)
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The other term comes from the part of the Massieu potential proportional to Sii, and so
the change can be associated with the same ‘generalized work’ defined in (4.7). In total,
the change in the electron temperature during the ion relaxation is

3
2

Ne(T
(1)
e2 − T (1)e1 ) = −T (0)e Δ(βeUe)− T (0)e0 V

∫
d3k
(2π)3

Fe(Te1,Ti0)�Sii. (C12)

Here we have treated Fe as constant because, again, corrections due to T (1)e enter only at
higher order.

Conservation of energy during the relaxation requires that

0 = Ue(Te2; Sii,2)− Ue(Te1; Sii,0)+ Ui(Te2,Ti2; Sii,2)− Ui(Te1,Ti0; Sii,0). (C13)

Here, we denote by Ui(Te,Ti; Sii) the energy of the non-equilibrium ion subsystem,
where the ions have a Maxwellian velocity distribution characterized by Ti, but spatial
correlations given by Sii; the potential energy is then given by integrating over this structure
factor.

To leading order, the total energy conservation condition can be written as

0 = 3
2

Ne(T
(1)
e2 − T (1)e1 )+ T (0)e Δ(βeUe)+ 3

2
NiT

(1)
i2 + V

∫
d3k
(2π)3

TiCii�Sii, (C14)

where we have used the fact that there is no change in the ion temperature to zeroth order.
All together, the change in ion temperature �Ti = Ti2 − Ti0 is

�Ti = −2
3

Ti0V
∫

d3k
(2π)3

(Cii − τFe)�Sii. (C15)

Appendix D. Entropic potentials

In this appendix, we briefly review ensemble theory in statistical mechanics. We work
in the formalism of entropic potentials outlined in Planes & Vives (2002), but present
the derivations differently. For completeness, we begin on a very elementary level. All of
the thermodynamic calculations presented in this work could be done with the standard
thermodynamic potentials (Helmholtz free energy, Gibbs free energy, etc.). Although less
widely adopted, the entropic equivalents are useful in our case because they make fewer
references to temperature. In the two-temperature systems that interest us, the entropic
potentials of two subsystems can then, for example, simply be added together.

We work with a set of macroscopic variables labelled U,V, {Yi}. For the sake of
convention, U is the internal energy and V is the volume. The remaining {Yi} =
{Y1,Y2, . . .} could be any extensive properties of the system. These variables are also
referred to as generalized displacements; a common example of an additional extensive
variable is the particle number N, but here we work in generality. We call all of these
variables macroscopic because, in general, they are large-scale properties, which hide the
microscopic details. Since each microstate is a full description of every relevant degree of
freedom (e.g. for an ideal gas, the 6-dimensional phase-space position of every particle),
there are many large sets of microstates that correspond to a single macrostate and cannot
be distinguished through macroscopic observations (measurements that reveal U,V, {Yi}).

We work first in the microcanonical ensemble, in which our extensive variables
U,V, {Yi} are held constant. The microcanonical ‘partition function’ is just the multiplicity
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Ω , given by

Ω =
∫

U,V,{Yi}
dX. (D1)

Here, dX represents the integration over all degrees of freedom in the microscopic phase
space, and the subscript on the integral indicates that the domain of integration is restricted
to microstates with the imposed values of energy and volume, and of the general extensive
variables {Yi}. Implicit in this integration is the ergodic hypothesis, the postulate that all
accessible microstates are equally likely, i.e. that all phase-space volumes dX (within the
domain of integration) should have equal measure. In a discrete context, the multiplicity is
the ‘number of accessible microstates’. Setting Boltzmann’s constant kB = 1, Boltzmann’s
formula gives the entropy as S = lnΩ .

Broadly speaking, the role of each subsequent step is to relax constraints on the system,
solving for its average properties when we do not know the exact values of U,V, {Yi} but
instead know something about how the system interacts with the environment.

It is often most physically relevant to work in the canonical ensemble, in which the
system can exchange heat with the environment but the temperature is held constant. We
work with inverse temperature β = 1/T .

The environment could be some external heat bath, but we can alternatively break our
full system into smaller subsystems and focus on one subsystem characterized by extensive
variables {Us,Vs, {Yi}s}. The subsystem is placed in thermal contact with the rest of the
system, which is much larger and so functions as a heat bath; therefore, Us is no longer
held externally fixed. We write the energy of the subsystem Es = Es(Xs) and the energy
of the bath Eb = Eb(Xs) as functions of the subsystem microstate Xs. This is to distinguish
microstate-specific energies Es,Eb from the thermodynamic, averaged energies Us,Ub,
which we will proceed to calculate.

Regardless of what the bath is, we assign it an inverse temperature βb, which specifies
how the entropy Sb of the bath is related to the energy Eb of the bath. We define inverse
temperature by the relation

βb =
(
∂Sb

∂Eb

)
V,{Yi}b

, (D2)

and take βb to be constant because the bath is so much larger than the subsystem that
the exchange of energy has negligible effect on the intensive properties of the bath. We
write the full system inverse temperature β .= βb, which we will find to apply to both
subsystems.

We denote by Ωb(Xs) the multiplicity of the bath when the subsystem is in microstate
Xs. Then the total multiplicity of the combined subsystem and bath is given by an integral
over subsystem microstates dXs of the form

Ω =
∫

Vs,{Yi}s

dXsΩb(Xs), (D3)

where the bound on the integral indicates that the domain of integration has been expanded
to include microstates of arbitrary subsystem energy, while still constraining volume and
the remaining intensive variables {Yi}. Using Boltzmann’s entropy formula again, this
integral can also be written as

Ω =
∫

Vs,{Yi}s

dXseSb(Xs). (D4)
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From (D2), we have (for constant Vs, {Yi}s and thus constant Vb, {Yi}b) that dSb = β dUb.
We impose conservation of total energy by requiring

Etot = Eb + Es = const. (D5)

Energy conservation implies that dSb = −β dEs and Euler’s theorem gives Sb = −βEs
(Planes & Vives 2002). Finally, rather than dealing with the multiplicity of the combined
system, we would like to work with potentials that only make reference to the internal
properties of the subsystem. We relabel the left-hand side of (D3) as Z , the partition
function of the canonical ensemble, which gives

Z =
∫

Vs,{Yi}s

dXs exp(−βEs(Xs)). (D6)

We see that subsystem microstates Xs are now not all equally likely; they are
weighted by different probabilities because they correspond to different numbers Ωb of
bath microstates. As in the main text, we identify ps(Xs) = Z−1 exp{−βEs(Xs)} as the
probability density of microstate Xs. The average value of any quantity q can then be
defined as

〈q〉 =
∫

Vs,{Yi}s

dXsq(Xs)ps(Xs). (D7)

The thermodynamic energy Us is the average over the energies of microstates, i.e.
Us = 〈Es〉.

The entropic potential corresponding to the canonical partition function is the Massieu
potential Φ, fulfilling the same role as the entropy in the microcanonical ensemble and
defined by

Φ = lnZ. (D8)

The Massieu potential is related to the Helmholtz free energy A as Φ = −TA, and
this relation holds between the other entropic potentials below and the free energies
corresponding to their ensembles (e.g. Planck potential and Gibbs free energy).

In the canonical ensemble, the entropy of the subsystem Ss is no longer necessarily
maximized at equilibrium. However, since the combined system has fixed energy and so is
effectively in the microcanonical ensemble, we know that when the subsystem and bath are
in equilibrium, the total entropy S = Ss + Sb will be maximized (with respect to changes
in Us). Equivalently, Φ is maximized at equilibrium. Knowing that entropy is maximized
and that dEs = −dEb, we have(

∂Ss

∂Es

)
Vs,{Yi}s

=
(
∂Sb

∂Eb

)
Vs,{Yi}s

, (D9)

which shows that the temperatures are equal, i.e. using the definition βs = (∂Ss/∂Es)Vs,{Yi}s ,
we have βs = βb

.= β.
We could also have transformed from the microcanonical to canonical ensemble on

thermodynamic grounds, without reference to the microphysics. The natural variables of
the canonical ensemble are β,V, {Yi}, and so the Massieu potentialΦ(β,V, {Yi}) is related
to the entropy S(U,V, {Yi}) by a Legendre transform

Φ = S − βU. (D10)

In standard thermodynamics with energetic potentials, the Legendre transform is
guaranteed to yield a single-valued function because U(S,V, {Yi}) is convex for stable
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systems. By contrast, S(U,V, {Yi}) is concave; the Legendre transform remains single
valued, with the associated entropic potentials now being concave in their extensive
variables and convex in their intensive variables (Balian 1991). In this case, we have
exchanged an extensive variable (U) for its conjugate intensive variable (β). We can also
choose to exchange the volume V for the conjugate entropic pressure � , defined by

� =
(
∂Φ

∂V

)
β,{Yi}

. (D11)

The resulting isothermal-isobaric Gibbs ensemble describes a system at fixed
temperature and pressure. The partition function in this ensemble is

ZG =
∫

{Yi}
dX exp{−βE(X)−�V(X)}. (D12)

The corresponding entropic potential, the isothermal-isobaric Planck potential
Ξ(β,�, {Yi}), is defined in statistical mechanics and thermodynamics, respectively, as

Ξ = lnZG,

Ξ = S − βU −�V.

}
(D13)

We can do the same procedure for any other pair of conjugate variables, transforming
to a new ensemble in which the intensive variable is held constant. For any of the
extensive variables (generalized displacements) Yj, we define the conjugate intensive
variable (entropic force) Fj in the canonical ensemble by

Fj =
(
∂Φ

∂Yj

)
β,V,{Yi �=j}

. (D14)

Now we can choose to work in an ensemble where Fj is held fixed, which we refer to
as a generalized Gibbs ensemble. We choose here to fix β,V , but the generalization is
straightforward. Following an identical procedure to the one above, the generalized Gibbs
partition function ζ is

ζ =
∫

V,{Yi �=j}
dX exp{−βE(X)− FjYj(X)}. (D15)

Finally, the corresponding entropic potential is the generalized Planck potential
Ψ (β,V,Fj, {Yi�=j}), which is expressed as

Ψ = ln ζ,

Ψ = S − βU − FjYj.

}
(D16)

This transformation can be visualized as follows. Suppose that, as in figure 6(a), we have
a system characterized by an extensive variable Y . We place the system at temperature T
and ignore (treat as fixed) any other extensive variables that the system might have. We
start the system at some fixed position Y = Y0. The system ‘wants’ to maximize Φ, which
is to say that if Y were allowed to vary, the system would evolve toward an equilibrium state
that maximizes Φ(Y). This tendency is captured by the entropic force F , which gives the
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Y

Φ(Y )

Y0

F

(a)

Y

Φ(Y )

Yf

F Fext

(b)

FIGURE 6. The Massieu potential Φ depends on a thermodynamic variable Y , and for fixed
Y0 the entropic force exerted by the system is given by ∂Φ(Y0)/∂Y . If an external force Fext is
applied, then the system will shift to some Y = Yf where the system’s entropic force F balances
the external force.

gradient of Φ along which the system would move if it were allowed; the entropic force is
defined as

F .=
(
∂Φ

∂Y

)
, (D17)

meaning that F is the ‘conjugate variable’ to Y .9
Entropic forces are related to forces by F = TF , which we can easily see as follows:

F = −
(
∂A
∂Y

)
= −

(
∂(−TΦ)
∂Y

)
= TF . (D18)

If we hold Y = Y0 fixed, then the surroundings must exert whatever force is necessary
to hold the system at Y0. For example, a rigid box is often employed in thermodynamic
treatments and applies whatever force is necessary to prevent the gas from expanding under
its own pressure. If instead the external force is some fixed Fext and Y is allowed to vary,
then the system will evolve through different values of Y in order to increase Φ, until it
reaches a value Yf where the force F(Yf ) balances Fext as in figure 6(b).

There is a small notational subtlety that we include here to highlight the analogy to
the calculation in the body of this paper. In many systems, the exchange of an extensive
variable with the environment is governed by �Ysubsystem +�Yenvironment = 0, e.g. a gas in
a box where the total volume of the gas and environment is conserved. Here, we choose
to use the same variable Y to parametrize the system and the environment, so we have
�Ysubsystem = �Yenvironment. This is not a physically obscure scenario; for instance, one could
be interested in the position of a piston being pushed by two different gases, both acting in
the same direction. Then the mechanical equilibrium condition is naturally F + Fext = 0.

The external force can be associated with some external potential Φext. In many cases,
we are interested in external systems that act like a bath, meaning that their extensive
properties (FExt) remain constant as they exchange some extensive quantity with the
subsystem. This can happen when the external system is so much larger than the subsystem

9In the formalism adopted here, the product of conjugate pairs is unitless (with kB = 1), as opposed to many
thermodynamic formalisms in which the product has units of energy.
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(a) (b) (c)

FIGURE 7. Coupled strings evolving on separate time scales. (a) The ‘ion string’ alone, with the
restoring forces shown. (b) The ‘electron string’ follows the position of the ‘ion string’ but with
additional fluctuations superimposed. (c) On ion time scales, the system passes through many
electron configurations and the effective force on the ion string comes from the average over
these configurations.

that changes in Y are negligible, e.g. the heat bath considered above for the canonical
ensemble, or the Earth’s atmosphere exerting pressure on some experimental system of
interest, where volume changes due to the experiment are negligibly small compared with
the volume of the atmosphere. A constant force can also be achieved by choosing variables
such that (∂2Φext/∂Y2) = 0.

Rather than large external baths, we are ultimately interested in systems where the
environment depends nontrivially on the subsystem’s state. One such system is the
‘adiabatic piston’, consisting of two chambers of gas (perhaps initially at different
temperatures or pressures) separated by a piston that is allowed to move but not to exchange
heat; the thermodynamics of this system has been the subject of controversy (Crosignani,
Di Porto & Segev 1996; Gruber 1999; Kestemont, Van den Broeck & Mansour 2000;
Cencini et al. 2007; Gislason 2010). In this work, we use the separation of time scales
between our subsystems to determine the conditions of mechanical equilibrium. This is
best illustrated through a toy model, which we discuss in the following appendix.

Appendix E. Toy model
E.1. Strings model

In this appendix, we analyse a model system whose thermodynamic description bears
many similarities to the two-temperature plasma.

We consider a pair of strings of length L under tension with fixed endpoints. We
label them the ‘ion string’ and the ‘electron string’ for the sake of analogy. We consider
linear oscillations of both strings. We decompose each string’s oscillations into modes of
wavenumber k and denote by n(k) the amplitude of the k mode, where n(k) is the Fourier
transform of the string’s vertical displacement y(x). We locate the origin such that, for
consistency with the boundary conditions, each n(k) may be negative but must be real.
The reality condition for y(x) requires that n(k) = n(−k). Then the potential energy in
each string s is

Es = L
2π

∫
dk

1
2
λsk2n2

s (k), (E1)

where λs is a constant. Figure 7(a) shows the ion string alone, with a single vibrational
mode excited.

If the electron and ion string are uncoupled, we can analyse them independently. For
each string, we expect oscillations to be more pronounced at the low-k modes, and to fall
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off as something like 1/k2 at higher k. We can see this, for example, from the equipartition
theorem.

We introduce a coupling term between the strings, which we model as a spring
connecting the electron and ion strings at every horizontal position, with energy
proportional to

∫
dx(ne(x)− ni(x))2. In terms of a coupling constant γ , this interaction

energy Ex is

Ex = L
2π

∫
dk

1
2
γ
[
n2

i (k)− 2ni(k)ne(k)+ n2
e(k)

]
. (E2)

In figure 7(b), we show the electron string coupled to an ion string where a single mode
is excited; we can expect that the electron string will primarily match the modes of the
ion string in order to minimize the coupling energy, but thermal fluctuations will sustain
additional electron modes.

We impose that the mass of the electron string is much lower (or the tension much
greater) than that of the ion string, so that the electron string oscillates on a much faster
time scale. On the time scales on which the ion string evolves, the electron subsystem
passes through many microstates in its ensemble, and so the electron string can be taken
to apply an effective force to the ion string given by a thermal average over electron
configurations.

E.2. Simplified spring model
Because the modes are independent, we can apply an even simpler model. At each
wavenumber k, the system can be represented as shown in figure 8(a). The electron and
ion modes oscillate separately as if on springs with spring constants that we call κe = λek2

and κi = λik2 respectively; an additional spring of constant γ couples the oscillations. We
impose that me � mi so that the springs cannot exchange energy with each other and the
system is allowed to reach a true two-temperature steady state.

We can now proceed to a statistical description of this system by the same process as for
the electron–ion plasma. We place the electron spring in contact with a reservoir of inverse
temperature βe and the ion spring in contact with a reservoir of βi. On the time scale of
the electron dynamics, the ion spring can be considered fixed in place and so the electron
system can be considered as a mass attached by springs to two fixed points (0 and ni).
Then, treating the ion spring location as an external parameter as depicted in figure 8(b),
the potential part of the electron partition function is

Zφe =
∫ ∞

−∞
dne exp

{
−βe

1
2
κen2

e − βe
1
2
γ (ni − ne)

2

}
. (E3)

The partition function can readily be evaluated, yielding

Zφe =
√

2π

βeκe + βeγ
exp

{
−βe

1
2
κeγ

κe + γ
n2

i

}
. (E4)

We can find the corresponding Massieu potential Φ(βe, n2
i ). Here, we have chosen to

use n2
i as the generalized displacement. Although the linear displacement ni is a somewhat

more physically intuitive choice, it is useful to choose an extensive quantity so that the
standard thermodynamic relations can readily be generalized. We have so far used the
canonical ensemble, in which n2

i is held fixed. The entropic force Fe captures the tendency
of the system to move to higher Φ, which it is prevented from doing by some external
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(b)

(a)

(c) (d )

FIGURE 8. Stages of the statistical approach to the two-temperature spring problem. On electron
time scales, the electron subsystem comes to equilibrium for some fixed ion position. Averaging
over electron configurations yields an effective force, which must balance the force due to the
ions. On ion time scales, the ion subsystem comes to equilibrium, with the electrons applying an
effective force.

force holding n2
i constant. Applying the same procedure as we did for the plasma case, we

can find Fe for the electron spring to be

Fe = −βe
1
2
κeγ

κe + γ
, (E5)

and the corresponding force is Fe = TeFe.
Because the electrons are in equilibrium, the force Fe generated by the electron

subsystem (which we just found from the electron partition function) should exactly
balance the externally imposed force, as in figure 8(c). In this case, the external force is
the force Fi due to the ions, and so our force balance condition is Fe = −Fi.10 The entropic
force from the ion subsystem is then

Fi = βi
1
2
κeγ

κe + γ
. (E6)

Now, we are ready to evaluate the ion partition function. We do not know the value of
n2

i a priori, so we cannot start in the canonical ensemble. However, we know the value
of Fi that the ion subsystem needs to exert based on the calculation above. This suggests
we should do our calculations in a generalized Gibbs ensemble to find a thermodynamic
potential (Planck potential) Ψ (βi,Fi) in terms of the variables we know.

10Note that, as in Appendix D, the sign convention here differs from the one we would use for e.g. a gas pushing
against a piston. We define both forces to act in the same direction.
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The ion partition function ζφi in this ensemble is represented in figure 8(d). Its potential
part is

ζφi =
∫ ∞

−∞
dni exp

{
−
(
βi

1
2
κi + Fi

)
n2

i

}
. (E7)

Including the kinetic component, and grouping the irrelevant constants into a separate
term Ψi0, the ion Planck potential is

Ψi = Ψi0 − 1
2 lnβi − 1

2 ln(βiκi + 2Fi), (E8)

while in the same generalized Gibbs ensemble, the electron Planck potential is

Ψe = Ψe0 − 1
2

lnβe − 1
2

ln(βeκe + βeγ )+
(

−βe
1
2
κeγ

κe + γ
− Fe

)
n2

i , (E9)

where we have again grouped irrelevant constants into Ψe0.
Having now computed the partition functions for electrons and ions at any wavenumber,

we could now use the fact that the wavenumbers are all independent to write the partition
functions for the electron and ion string models above as

Z strings =
∏

k

Z springs(k). (E10)

In the form of its answer, the string model is then a close analogue to the electron–ion
plasma. The difference in the two expressions, other than a different k scaling because of
the Coulomb potential, comes primarily from the temperature-independent configurational
terms in the plasma partition function, which arise from converting the integral over
discrete particle positions into an integral over continuous fields. However, we can still
find the key physical insight about the two-temperature statistical procedure in the reduced
models; in the remainder of this appendix, we discuss the simple two-spring model.

We can derive various thermal averages from (E9) and (E8). The average potential
energy of the electron subsystem is

Uφe = 1
2

Te + 1
2
κeγ

κe + γ
〈n2

i 〉. (E11)

The first term is the energy of a spring in equipartition, as expected. The second term
represents the energy required to stretch the combined electron spring (κe) and coupling
spring (γ ) from their rest length of zero to the new length ni required to match the ion
displacement. The coefficient κeγ /(κe + γ ) is just the spring constant of the two springs
in series.

The average squared displacement 〈n2
i 〉 is given by differentiating the ion Planck

potential with respect to Fi and then substituting the known expression for the entropic
force from (E6). The result is

〈n2
i 〉 = Ti

κi + κeγ /(κe + γ )
, (E12)

which is the displacement of a system at temperature Ti consisting of two springs in series:
the ion spring and the combined electron/coupling spring above.
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The potential energy of the ion subsystem is

Uφi = 1
2

Ti
κi

κi + κeγ /(κe + γ )
, (E13)

which is the usual 1
2 Ti from equipartition, but attenuated by a factor that is less than

unity. Of the energy contained in the full system, with the ion spring added in parallel
to the series-combined electron/coupling spring, this factor corresponds to the fraction of
the energy in the ion spring alone. Adding together the electron energy and ion energy, the
terms simplify nicely; if we now include the kinetic energy component, we have that the
total energy is

U = Te + Ti, (E14)

which is, again, the result that we expect by equipartition.
It is straightforward, if tedious, to solve the dynamics of the two-spring system exactly

by standard techniques. In such a calculation, we must take me/mi → 0 and keep only
leading-order terms in this mass ratio in order to prevent energy exchange between the
two subsystems. If we apply stochastic forcing (as well as infinitesimal damping) to the
electron and ion masses, then impose that the statistics of each forcing function are those
that we would obtain from heat baths of temperatures Te and Ti, the result is thermal
averages exactly matching the quantities above.
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