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On the streaming in a microfluidic Kundt’s tube
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We derive an analytical solution for the acoustic streaming inside a rigid tube resulting
from a pseudo-standing wave field, generated by two counterpropagating travelling waves.
We solve the second-order axisymmetric problem that follows from the perturbation
expansion of the governing equations. In the process, we impose no restriction on the
diameter of the tube with respect to the thickness of the viscous boundary layer and
acoustic wavelength. The derived solution is then used to study the evolution of streaming
patterns inside the tube when geometrical and material parameters are varied. We show
how the Schlichting streaming torus at the wall bounds the Rayleigh streaming near the
axis of the tube. Decreasing the ratio (Ξ ) of the tube radius to the viscous boundary
layer thickness gradually expands the Schlichting streaming, suppressing the Rayleigh
streaming. Considering the average mass transport velocity, the Rayleigh streaming
vanishes at the critical ratio ΞM

S = 6.2. The critical ratio is independent of fluid properties
in the limit of large acoustic wavelength relative to the radius of the tube (Λ). When
Λ decreases towards unity, large-scale Eckart-like streaming develops near the axis,
superseding the Rayleigh streaming, while the Schlichting streaming remains at the wall.
In addition, we demonstrate the relevance of the compressibility of the streaming flow
and of the full inclusion of the spatial variation of the Reynolds stress that acts as the
streaming source. The study is especially relevant for microfluidic systems, wherein the
viscous boundary layer can reach significant thicknesses.

Key words: microfluidics

1. Introduction

Kundt’s tube is arguably one of the best-known experimental devices in acoustics,
nowadays used worldwide in the physics educational curriculum (Jaafar et al. 2016;
Papacosta & Linscheid 2016; Bates 2017). It was proposed by August Kundt (1866) to
measure the speed of sound in fluids. The fluid in the tube contains small particles (e.g.
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cork dust) and is periodically excited either via rubbing of the metal rod resonator at one
end of the tube (Kundt 1866), or by means of an electrically-driven tuning fork (Cook
1926) or a vibrating diaphragm (Andrade 1931). The distance between the groups of
particles that, over time, gather at the nodes of vibration is then measured. This distance
corresponds to one-half of the acoustic wavelength λ. The latter leads to the speed of
sound cf through the expression cf = λf , with a known excitation frequency f . This
visually appealing motion of particles attracted many experimentalists, especially in the
time between the introduction of Kundt’s tube in 1866 and the middle of the 20th century.
Their investigations revolved mainly around the visual inspection of figures formed by
particles inside the tube (Dvorak 1874, 1876; Cook 1926, 1930a,b, 1931; Irons 1929a,b;
Andrade 1931, 1932; Hutchisson & Morgan 1931; Schuster & Matz 1940). At the start of
the 21st century, physically similar phenomena emerged in the context of microfluidic
devices for manipulation of cells and particles with ultrasonic waves. Sobanski et al.
(2000) used standing waves in the radial direction of the capillary with a circular
cross-section for the detection of sub-micron particles. Standing waves along the axis of
the capillary were used by Wiklund, Nilsson & Hertz (2001) for size-selective trapping and
subsequent separation of micrometre-sized particles. Araz, Lee & Lal (2003) introduced a
method for manipulation of micrometre-sized particles in a capillary excited in a bending
mode. Particle-focusing within a capillary with a constant backflow was demonstrated by
Goddard et al. (2006), for use in a flow cytometer. More recently, Gralinski et al. (2014)
used ultrasonic standing waves along the axis of a glass capillary to trap and concentrate
particles, preparing them for multiaxial optical analysis and for other batch operations.

In such systems, the movement of particles is dictated by many forces, namely inertia,
the viscous drag from fluid flow, hydrodynamic interactions, contact forces and acoustic
radiation forces. One of the underlying physical phenomena is acoustic streaming, which
can be described as a steady circulatory flow in a periodically excited fluid. Streaming
can be dominant for particles smaller than a critical radius, thereby disturbing trapping in
acoustofluidic applications.

In a Kundt’s tube, this phenomenon was first reported by Dvorak (1876). He observed
that air flows from a velocity node towards the antinode along the axis of the tube, while
the flow of air near the wall is directed in the opposite direction. Andrade (1931) confirmed
the flow direction observed by Dvorak (1876) using improved experimental techniques, the
main improvements being diaphragm excitation driven by an alternating current, and the
use of a camera to capture the particle patterns. However, Andrade (1931) argued that
the physical principle causing the behaviour of small particles in Dvorak’s experiments
was not solely the acoustic streaming, but was rather closely related to the formation of
an antinodal disc (see Andrade 1932). The latter is a disc-like agglomeration of dust at
antinodes of vibration that appears at lower frequencies, most likely due to the acoustic
radiation force.

Even though Dvorak’s experimental results (Dvorak 1876), on which he based his
description of the direction of the streaming, were later questioned by Andrade (1931),
Dvorak’s conclusions motivated Rayleigh (1884) to develop the first analytical solution
for the reported phenomenon. Consequently, the streaming directed from a velocity node
towards the antinode in the centre of the channel, and oppositely directed near the wall, is
nowadays called the Rayleigh streaming. Rayleigh (1884) assumed the viscous boundary
layer thickness to be small and the acoustic wavelength to be large, both relative to the
tube diameter. This restricts the applicability of his formulation to low-viscosity fluids
and middle-range frequency excitations. Furthermore, for the sake of simplicity, Rayleigh
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Streaming in a microfluidic Kundt’s tube

assumed a two-dimensional geometry extending infinitely in the out-of-plane direction.
More than half a century later, Westervelt (1953) and Nyborg (1953) extended Rayleigh’s
approach to compressible fluid at the first order of perturbation expansion. A different case
was considered by Schlichting (1932), who solved the incompressible streaming problem
near the wall. The so-called Schlichting streaming is known to appear between the wall
and the Rayleigh streaming in the bulk of a fluid. Its direction of rotation is opposite that
of the Rayleigh streaming.

The two-dimensional theory was extended by Hamilton, Ilinskii & Zabolotskaya
(2003a) to a channel of an arbitrary width relative to the viscous boundary layer thickness,
extending infinitely in the out-of-plane direction. They showed that the oppositely directed
Schlichting streaming vortices, between the Rayleigh vortices and the wall, could become
dominant as the thickness of the viscous boundary layer was increased. More recently,
Doinikov, Thibault & Marmottant (2017) considered a fluid bounded between an elastic
solid wall and a reflector, posing no restrictions on the width of the channel. The standing
wave in their case was generated via two counterpropagating leaky waves, originating from
the solid wall.

The first to extend Rayleigh’s approach to cylindrical geometry were Schuster & Matz
(1940). They derived a very concise expression for the streaming velocity and analysed
the magnitude of the streaming. (The expression for the streaming velocity by Schuster
& Matz (1940) is later used for comparison, and is given explicitly in appendix G.) The
latter was found to scale with the square of the pressure amplitude inside the tube, which
was confirmed experimentally. The solution of Schuster & Matz (1940), although very
convenient, relies on many assumptions: the viscous boundary layer is assumed small
compared to the tube radius; the acoustic wavelength is assumed large with respect to the
tube radius; the wave is assumed undamped along the tube axis. All of this considerably
restricts the applicability of their solution. In more recent years, others have also analysed
various aspects of streaming in a tube (Qi, Johnson & Harris 1995; Menguy & Gilbert
2000; Bailliet et al. 2001; Hamilton, Ilinskii & Zabolotskaya 2003b).

Recently, Baltean-Carlès et al. (2019) analysed the contributions of individual parts of
the streaming source terms, and how they are affected by the finite length of the tube
relative to the diameter. They discovered that the standard exclusion of terms is invalid
when the length of the tube becomes comparable to its diameter.

Here, we derive a general analytical solution for the acoustic streaming that results
from a pseudo-standing wave field in a tube of an arbitrary diameter. The acoustic field
is generated by two counterpropagating decaying travelling waves, which is a common
approach for generating acoustic fields in standing surface acoustic wave (SSAW) systems
(Devendran et al. 2016). We use an approach similar to that of Doinikov et al. (2017),
but consider a cylindrical geometry and a rigid wall. We also extend the formulation by
considering the complete spatial variation of the Reynolds stress as a source term for the
streaming, and by considering also the irrotational component of the streaming velocity
(i.e. assuming that the streaming flow is compressible). First, we derive the dispersion
equation to determine the wavenumber in the fluid. Then we solve the first- and the
second-order problems that follow from the perturbation expansion. The solution is valid
inside as well as outside the viscous boundary layer, which is of unrestricted thickness. It
therefore covers also very thin capillaries, where the viscous boundary layer is comparable
to the radius. The solution is then used to analyse the evolution of streaming vortices
with respect to changes in the fluid viscosity, tube diameter and excitation frequency. In
addition, we analyse the importance of the irrotational part of the streaming velocity and
of individual parts of the spatial variation of the Reynolds stress (Lighthill 1978) that acts
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as a source term in the streaming equations. Some of those parts are often assumed to be
negligible (e.g. Rayleigh 1884; Schlichting 1932; Lighthill 1978; Doinikov et al. 2017). The
impact of different assumptions on the streaming with respect to the increasing viscous
boundary layer thickness relative to the tube diameter is investigated.

2. Problem statement and assumptions

We assume that the fluid, initially at rest, is situated in an infinite rigid tube with an inner
diameter of 2a. The geometry of our problem is parametrized in cylindrical coordinates,
as depicted in figure 1, and is symmetric with respect to the z-axis oriented along
the centre of the tube. In the fluid, there are two counterpropagating spatially-decaying
harmonic travelling waves along the axis of the tube, which form a pseudo-standing
wave when superimposed. The acoustic field resembles a standing wave near the plane of
symmetry (z = 0), approaching a travelling-wave-like behaviour far away from the plane
of symmetry. We neglect thermal effects, and the motion of a barotropic compressible
viscous fluid is therefore governed by the Navier–Stokes equations

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + η∇2v +

(
ηB + η

3

)
∇(∇ · v), (2.1)

the continuity equation
∂ρ

∂t
+ ∇ · (ρv) = 0 (2.2)

and the equation of state
p = p(ρ). (2.3)

The three variables in (2.1), (2.2) and (2.3) are the velocity v, pressure p and density ρ.
The material constants involved are the dynamic and bulk viscosity, η and ηB, respectively.
To constrain the problem, the no-slip boundary condition is imposed at the wall.

By applying a regular perturbation technique (Hamilton & Blackstock 1998, p. 281), the
problem can be solved in successive steps of increasing order in terms of the small Mach
number

ε = va

cf
� 1, (2.4)

with the amplitude of the fluid velocity denoted by va, and the speed of sound in the
fluid by cf . The perturbed variables can then be written in the form of a series, namely
� = �̂0 + ε�̂1 + ε2�̂2 + · · · , where the subscript denotes the order in the perturbation
expansion. In our formulation, we will use �0 = �̂0, �1 = ε�̂1, �2 = ε2�̂2, and solve
the associated first- and second-order problems. Following our assumptions, v0 = 0.

3. Fluid motion at the first order

The perturbation expansion of the governing equations to the first order results in the
momentum equations

ρ0
∂v1

∂t
= −∇p1 + η∇2v1 +

(
ηB + η

3

)
∇(∇ · v1) (3.1)

and the continuity equation
∂ρ1

∂t
= −ρ0∇ · v1, (3.2)
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Streaming in a microfluidic Kundt’s tube
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Figure 1. The geometry in a cylindrical coordinate system (r, θ, z) that serves as a basis for the analytical
solution. The fluid is bounded within a rigid tube of radius a and of infinite length L.

with equilibrium density ρ0. The first-order pressure and density are related through the
linear equation of state

p1 = c2
f ρ1. (3.3)

Using the Helmholtz decomposition

v1 = ∇ϕ1 + ∇ × ψ1 (3.4)

(e.g. Blackstock 2001, p. 76), the first-order velocity field can be separated into a sum
of the gradient of a scalar velocity potential ϕ1 and the curl of a divergence-free vector
velocity potential ψ1. First-order fields are assumed to have a harmonic time-dependence,
i.e. �1(x, t) = Re[�̃1(x)e−iωt] with angular frequency ω, where Re[�] denotes the real
part of �, and �̃1(x) is the complex amplitude of the corresponding first-order field
�1(x, t). Using this assumption and inserting (3.4) in (3.1), (3.2), (3.3) leads to the set
of first-order potential equations

∇2ϕ1 + k2
f ϕ1 = 0, (3.5)

∇2ψ1 + k2
vψ1 = 0, (3.6)

with the wavenumber in an unbounded viscous fluid

kf = ω

cf

[
1 − iω

ρ0c2
f

(
ηB + 4

3
η

)]−1/2

(3.7)

(Blackstock 2001, p. 305), and the viscous wavenumber

kv = i + 1
δ

, (3.8)
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where δ represents the thickness of the viscous boundary layer and is computed as

δ =
√

2η

ρ0ω
. (3.9)

We assume that there is a forward and a backward travelling wave inside the fluid, which
form a pseudo-standing wave along the z-axis when superimposed. The pseudo-standing
wave potentials therefore follow as a sum of potentials of forward and backward travelling
waves, namely

ϕ1 = ϕ+
1 + ϕ−

1 , (3.10)

ψ1 = ψ+
1 + ψ−

1 , (3.11)

with superscripts �+ and �− identifying the forward and the backward travelling waves,
respectively. Based on the axial symmetry of the problem, we assume the following form
of potentials:

ϕ+
1 = F(r) exp(i(kz − ωt)), (3.12)

ϕ−
1 = F(r) exp(i(−kz − ωt)), (3.13)

ψ+
1 = G(r) exp(i(kz − ωt))eθ , (3.14)

ψ−
1 = G(r) exp(i(−kz − ωt)) (−eθ ) , (3.15)

with the basis vector eθ of unit length, unknown functions F(r) and G(r), and an unknown
complex wavenumber k.

To find the functions F(r) and G(r), we insert the potentials of the forward travelling
wave, (3.12) and (3.14), into (3.5) and (3.6), which leads to[

d2F(r)
dr2 + 1

r
dF(r)

dr
+ q2

f F(r)
]

exp(i(kz − ωt)) = 0 (3.16)

and [
d2G(r)

dr2 + 1
r

dG(r)
dr

+
(

q2
v − 1

r2

)
G(r)

]
exp(i(kz − ωt)) = 0, (3.17)

with

q2
f = k2

f − k2, (3.18)

q2
v = k2

v − k2. (3.19)

The unknown functions F(r) and G(r) are the solutions to the Sturm–Liouville equations
that follow from the r-dependent part of (3.16) and (3.17), and can be expressed as

F(r) = A1J0(qf r) + A2Y0(qf r), (3.20)

G(r) = B1J1(qvr) + B2Y1(qvr), (3.21)

with constants A1, A2, B1, B2, and nth-order Bessel functions Jn and Yn of the first and
of the second kind, respectively. Because the velocity has to be finite at r = 0, A2 and B2
have to be zero, which yields

F(r) = A1J0(qf r), (3.22)

G(r) = B1J1(qvr). (3.23)
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Streaming in a microfluidic Kundt’s tube

3.1. Dispersion relation and the unknown constants at the first order
The first-order velocity field of a forward travelling wave can be written in a potential form
as

v+
1 = ∇ϕ+

1 + ∇ × ψ+
1 . (3.24)

We substitute (3.12) and (3.14) into (3.24), which leads to the velocity field of a forward
travelling wave,

v+
1 =

[(
dF(r)

dr
− ikG(r)

)
er +

(
ikF(r) + 1

r
G(r) + dG(r)

dr

)
ez

]
exp(i(kz − ωt)),

(3.25)

with basis vectors er and ez of the cylindrical coordinate system. In order to find the
dispersion relation and the unknown constants A1 and B1, we apply the no-slip boundary
condition to the fluid at the wall of the tube, namely

v+
1

∣∣
r=a = 0, (3.26)

where �|r=a denotes the evaluation of � at r = a. Substituting the solutions (3.22) and
(3.23) into (3.25) and using the condition (3.26) leads to a system of two equations,[−qf J1(qf a)

]
A1 + [−ikJ1(qva)

]
B1 = 0, (3.27)[

ikJ0(qf a)
]

A1 + [
qvJ0(qva)

]
B1 = 0. (3.28)

The system of (3.27) and (3.28) has a non-trivial solution only if the determinant of the
system equals zero, i.e. ∣∣∣∣−qf J1(qf a) −ikJ1(qva)

ikJ0(qf a) qvJ0(qva)

∣∣∣∣ = 0. (3.29)

This leads to the dispersion relation

K(kR, kI) = qf qvJ0(qva)J1(qf a) + k2J0(qf a)J1(qva) = 0, (3.30)

which is used to numerically find the real and the imaginary parts of the wavenumber k,
defined as kR = Re[k] and kI = Im[k], respectively. The equations leading to both parts of
the wavenumber are

Re [K(kR, kI)] = 0, (3.31)

Im [K(kR, kI)] = 0. (3.32)

The wavenumber is later calculated for water, oil, glycerol and air (see § 5 and appendix A).
We can now use one of the equations, e.g. (3.27), and express one of the unknown

constants in terms of the second, which is a fitting parameter determined by the pressure
profile of the wave. In our case, we choose A1 as a fitting parameter, and B1 then follows
as

B1 = i
qf J1(qf a)

kJ1(qva)
A1. (3.33)
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3.2. First-order velocity field
The velocity field of the backward travelling wave is obtained by substituting (3.13) and
(3.15) into (3.4):

v−
1 =

[(
dF(r)

dr
− ikG(r)

)
er +

(
−ikF(r) − 1

r
G(r) − dG(r)

dr

)
ez

]
exp(i(−kz − ωt)).

(3.34)
The total velocity field is then obtained by summing (3.25) and (3.34):

v1 =
[(

dF(r)
dr

− ikG(r)
)

2 cos (kz)er

+
(

ikF(r) + 1
r

G(r) + dG(r)
dr

)
2i sin (kz)ez

]
exp(−iωt). (3.35)

Substituting the solutions (3.22) and (3.23) for F(r) and G(r), respectively, into (3.35)
yields the total first-order velocity:

v1 = [(−qf A1J1(qf r) − ikB1J1(qvr)
)

2 cos (kz)er

+ (ikA1J0(qf r) + qvB1J0(qvr)
)

2i sin (kz)ez
]

exp(−iωt). (3.36)

3.3. Constants in terms of the pressure amplitude
For easier physical interpretation of the constants A1 and B1, we express them here in terms
of the pressure amplitude pa at z = 0. Using the equation of state (3.3) in combination with
the continuity equation (3.2) leads to the following relation:

p1 = −
iρ0c2

f

ω
∇ · v1. (3.37)

Applying the solution for the first-order velocity (3.36) to the pressure–velocity relation
(3.37) yields the pressure field

p1 =
[

2iA1k2
f ρ0c2

f

ω

]
J0(qf r) cos(kz) exp(−iωt), (3.38)

where the fraction inside the brackets is the amplitude of the pressure field p1; that is,

pa =
2iA1k2

f ρ0c2
f

ω
. (3.39)

Now, the constant A1 can be expressed directly from (3.39) as

A1 = − ipaω

2k2
f ρ0c2

f
. (3.40)

The remaining constant follows from combining (3.40) and (3.33):

B1 = paωqf

2k2
f ρ0c2

f k

J1(qf a)

J1(qva)
. (3.41)

Even though we consider only the lowest mode of propagation, the wave is not plane,
but, as evident in (3.38), contains r-dependency due to the wave attenuation in the viscous
boundary layer. A similar result was also obtained by Qi et al. (1995), but their study is
restricted to wide channels (a � δ).
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Streaming in a microfluidic Kundt’s tube

4. Steady fluid motion at the second order

The steady second-order equations are obtained by time-averaging the equations that
follow from the second-order perturbation expansion. The set of the so-called streaming
equations comprises the continuity equation

∇ · 〈v2〉 = − 1
ρ0

∇ · 〈ρ1v1〉 (4.1)

and the momentum equations

∇ 〈p2〉 − η∇2 〈v2〉 −
(
ηB + η

3

)
∇ (∇ · 〈v2〉) = −ρ0∇ · 〈v1v1〉 , (4.2)

where the body force on the right-hand side is the spatial variation of the Reynolds stress
(Lighthill 1978). The time-average is denoted by

〈�〉 = 1
T

∫ T

0
� dt, (4.3)

with the first-order oscillation period T .
The streaming velocity can be decomposed as

〈v2〉 = ∇ϕ2 + ∇ × Ψ 2, (4.4)

where ϕ2 is the scalar velocity potential and Ψ 2 is the divergence-free vector potential.
Substituting (4.4) in (4.2) and applying the curl to the resulting equation leads to

∇2∇2Ψ 2 = −ρ0

η
∇ × 〈v1 · ∇v1 + v1∇ · v1〉 . (4.5)

In the process of simplifying the terms on the right-hand side of (4.5), we will use the
first-order velocity field (3.35) and the following identities:

sin(k∗z) cos(kz) = 1
2 [sin(2kRz) − i sinh(2kIz)], (4.6)

sin(kz) cos(k∗z) = 1
2 [sin(2kRz) + i sinh(2kIz)], (4.7)

where kR and kI are respectively the real and imaginary part of the wavenumber, and �∗
denotes the complex conjugate of �. Equation (4.5) can now be reformulated into

∇2∇2Ψ 2 = −ρ0

η
Re {sin(2kRz) [RR(r) + ER(r)] + i sinh(2kIz) [RI(r) + EI(r)]} eθ , (4.8)

with the functions RR(r), RI(r) resulting from the first term in the angle brackets on the
right-hand side of (4.5), and the functions ER(r), EI(r) originating from the second term.
We use separate functions for easier analysis of the individual contributions at a later stage,
because the dropping of the second term in the angle brackets on the right-hand side of
(4.5) is a very common assumption (e.g. Rayleigh 1884; Schlichting 1932; Lighthill 1978;
Doinikov et al. 2017). The four functions are given explicitly in appendix C.
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The geometry of the problem suggests

Ψ 2 = Ψ2(r, z)eθ . (4.9)

Substituting (4.9) into (4.8) and eliminating the basis vector yields the following
expression:

Δ2
θΨ2 = −ρ0

η
Re {sin(2kRz) [RR(r) + ER(r)] + i sinh(2kIz) [RI(r) + EI(r)]} , (4.10)

where we applied the operator Δθ , defined as

Δθ = ∂2

∂r2 + ∂2

∂z2 + 1
r

∂

∂r
− 1

r2 . (4.11)

Based on the right-hand side of (4.10), we assume

Ψ2(r, z) = −ρ0

η
Re {sin(2kRz)SR(r) + i sinh(2kIz)SI(r)} , (4.12)

with the unknown functions SR(r) and SI(r). Substituting (4.12) into (4.10) gives two
ordinary fourth-order differential equations,

d4SR(r)
dr4 + 2

r
d3SR(r)

dr3 +
(

− 3
r2 − 8k2

R

)
d2SR(r)

dr2 +
(

3
r3 − 8k2

R
r

)
dSR(r)

dr

+
(

− 3
r4 + 8k2

R
r2 + 16k4

R

)
SR(r) = RR(r) + ER(r), (4.13)

d4SI(r)
dr4 + 2

r
d3SI(r)

dr3 +
(

− 3
r2 + 8k2

I

)
d2SI(r)

dr2 +
(

3
r3 + 8k2

I
r

)
dSI(r)

dr

+
(

− 3
r4 − 8k2

I
r2 + 16k4

I

)
SI(r) = RI(r) + EI(r), (4.14)

which we must solve in order to find the stream function Ψ2(r, z). In the process, it will be
convenient to define the linear differential operator

Δ1 = d2

dr2 + 1
r

d
dr

− 1
r2 (4.15)

and use it to transform (4.13) and (4.14) into

Δ1Δ1SR(r) − 8k2
RΔ1SR(r) + 16k4

RSR(r) = RR(r) + ER(r) (4.16)

and

Δ1Δ1SI(r) + 8k2
I Δ1SI(r) + 16k4

I SI(r) = RI(r) + EI(r), (4.17)

respectively.
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Streaming in a microfluidic Kundt’s tube

To solve (4.16) and (4.17), we will make use of the linear finite Hankel transform of
order one (introduced by Sneddon 1946, 1972), which is defined as

H1{f (r)} =
∫ b

0
rf (r)J1(ξir) dr = f̄ (ξi) (4.18)

for a function f (r) integrable on the interval 0 � r � b. The corresponding inverse
transform follows as

H−1
1
{
f̄ (ξi)

} = f (r) = 2
b2

∞∑
i=1

f̄ (ξi)
J1(ξir)

[J2(ξib)]2 , (4.19)

with �̄ denoting the transformed expression, and provided that ξi with i = 1, 2, 3, . . . are
the positive roots of the transcendental equation

J1(ξib) = 0. (4.20)

The transformation of Δ1 that is applied to a function f (r) gives (Sneddon 1946, 1972)

H1 {Δ1f (r)} = −ξ2
i f̄ (ξi) + bξif (b)J2(ξib). (4.21)

Applying the finite Hankel transform defined in (4.18) to the differential (4.16), limiting
the domain of transformation with the radius of the tube a, and exploiting the property
specified in (4.21) yields

ξ4
i S̄R(ξi) − aξ3

i SR(r)
∣∣
r=aJ2(ξia) + 8k2

Rξ2
i S̄R(ξi) + aξiΔ1SR(r)

∣∣
r=aJ2(ξia)

+8k2
RaξiSR(r)

∣∣
r=a + 16k4

RS̄R(ξi) = R̄R(ξi) + ĒR(ξi). (4.22)

The transformed unknown function S̄R(ξi) can be expressed from (4.22) as

S̄R(ξi) = 1
(ξ2

i + 4k2
R)2

[R̄R(ξi) + ĒR(ξi) − aξiC1J2(ξia) + aξiC2(ξ
2
i J2(ξia) − 8k2

R)],

(4.23)

with the constants C1 and C2 defined as

C1 = Δ1SR(r)
∣∣
r=a, (4.24)

C2 = SR(r)
∣∣
r=a. (4.25)

The function SR(r) can be obtained by applying the inverse transform (4.19)–(4.23), i.e.

SR(r) = 2
a2

∞∑
i=1

J1(ξir)

[J2(ξia)]2(ξ2
i + 4k2

R)2
[R̄R(ξi) + ĒR(ξi)

− aξiC1J2(ξia) + aξiC2(ξ
2
i J2(ξia) − 8k2

R)]. (4.26)

The second unknown function, SI(r), can be obtained by applying an analogous procedure
to the differential equation (4.17). The resulting expression can be written as

SI(r) = 2
a2

∞∑
i=1

J1(ξir)

[J2(ξia)]2(ξ2
i − 4k2

I )
2

[R̄I(ξi) + ĒI(ξi)

− aξiC3J2(ξia) + aξiC4(ξ
2
i J2(ξia) + 8k2

I )], (4.27)
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A. Pavlic and J. Dual

where the constants are defined as

C3 = Δ1SI(r)
∣∣
r=a, (4.28)

C4 = SI(r)
∣∣
r=a. (4.29)

Returning to the decomposition of the streaming velocity (4.4) and substituting it into
(4.1) leads to

∇2ϕ2 = − 1
ρ0

〈v1 · ∇ρ1 + ρ1∇ · v1〉 . (4.30)

Using the first-order velocity field (3.35), the first-order pressure field (3.38), the equation
of state (3.3) and the identities

cos(k∗z) cos(kz) = 1
2 [cos(2kRz) + cosh(2kIz)], (4.31)

sin(k∗z) sin(kz) = 1
2 [− cos(2kRz) + cosh(2kIz)] (4.32)

transforms (4.30) into

∇2ϕ2 = − pa

2ρ0cf
Re {cos(2kRz)MR(r) + cosh(2kIz)MI(r)} , (4.33)

with the source terms MR(r) and MI(r) given in appendix D. We assume, based on (4.33),
that the solution has the following form:

ϕ2(r, z) = − pa

2ρ0cf
Re {cos(2kRz)UR(r) + cosh(2kIz)UI(r)} . (4.34)

The unknown functions UR(r) and UI(r) can be obtained by solving two differential
equations that follow from substituting (4.34) into (4.33), namely

d2UR(r)
dr2 + 1

r
dUR(r)

dr
− 4k2

RUR(r) = MR(r) (4.35)

and

d2UI(r)
dr2 + 1

r
dUI(r)

dr
+ 4k2

I UI(r) = MI(r). (4.36)

The general solutions to the homogeneous equations related to (4.35) and (4.36), denoted
by the superscript �H , follow as

UH
R (r) = C5J0(2ikRr) + C6Y0(−2ikRr) (4.37)

and

UH
I (r) = C7J0(2kIr) + C8Y0(2kIr), (4.38)

respectively, with the unknown constants C5, C6, C7, C8. The particular solutions to (4.35)
and (4.36), denoted by the superscript �P, are obtained by the method of variation of
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Streaming in a microfluidic Kundt’s tube

parameters (e.g. Boyce, DiPrima & Meade 2017), and follow as

UP
R(r) = −π

2
J0(2ikRr)

∫ r

0
xMR(x)Y0(−2ikRx) dx

+ π

2
Y0(−2ikRr)

∫ r

0
xMR(x)J0(2ikRx) dx (4.39)

and

UP
I (r) = −π

2
J0(2kIr)

∫ r

0
xMI(x)Y0(2kIx) dx + π

2
Y0(2kIr)

∫ r

0
xMI(x)J0(2kIx) dx,

(4.40)

respectively. The general solutions to (4.35) and (4.36) are sums of solutions to the related
homogeneous equations, UH

R (r) and UH
I (r), and of particular solutions, UP

R(r) and UP
I (r).

Therefore, the general solutions are given as

UR(r) = −π

2
J0(2ikRr)

∫ r

0
xMR(x)Y0(−2ikRx) dx

+ π

2
Y0(−2ikRr)

∫ r

0
xMR(x)J0(2ikRx) dx + C5J0(2ikRr) (4.41)

and

UI(r) = −π

2
J0(2kIr)

∫ r

0
xMI(x)Y0(2kIx) dx

+ π

2
Y0(2kIr)

∫ r

0
xMI(x)J0(2kIx) dx + C7J0(2kIr), (4.42)

where we applied C6 = 0 and C8 = 0, since the solution has to remain finite at r = 0.

4.1. Streaming velocity
The streaming velocity 〈v2〉 from (4.4) can be expressed in terms of the functions SR(r),
SI(r), UR(r) and UI(r) as

〈v2〉 = Re

{
cos(2kRz)

[
2ρ0kR

η
SR(r) − pa

2ρ0c2
f

dUR(r)
dr

]

+ cosh(2kIz)

[
i
2ρ0kI

η
SI(r) − pa

2ρ0c2
f

dUI(r)
dr

]}
er

− Re

{
sin(2kRz)

[
ρ0

η

1
r

SR(r) + ρ0

η

dSR(r)
dr

− pakR

ρ0c2
f

UR(r)

]

+ sinh(2kIz)

[
i
ρ0

η

1
r

SI(r) + i
ρ0

η

dSI(r)
dr

+ pakI

ρ0c2
f

UI(r)

]}
ez, (4.43)

where the derivatives dSR(r)/dr, dSI(r)/dr, dUR(r)/dr, dUI(r)/dr follow from (4.26),
(4.27), (4.41), (4.42), respectively, and are given in appendix E.
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The expression (4.43) is a time-averaged Eulerian streaming velocity, which has often
been the final result of classical studies (e.g. Rayleigh 1884; Schlichting 1932; Schuster
& Matz 1940). However, the observable behaviour of the fluid undergoing streaming, e.g.
by particle image velocimetry (Wiklund, Green & Ohlin 2012), is better represented by
the time-averaged Lagrangian velocity (Westervelt 1953) or by the average mass transport
velocity (Nyborg 1965). The time-averaged Lagrangian velocity is defined as

〈v2〉L = 〈v2〉 + vSD, (4.44)

where vSD is the Stokes drift,

vSD =
〈(∫

v1 dt · ∇
)
v1

〉
, (4.45)

given in appendix F. The average mass transport velocity follows as

〈v2〉M = 〈v2〉 + 1
ρ0

〈ρ1v1〉 , (4.46)

and is divergence-free, which follows from (4.1). Using (3.3), (3.38) and (3.36), together
with (4.46), leads to

〈v2〉M = Re

{
cos(2kRz)

[
2ρ0kR

η
SR(r) − pa

2ρ0c2
f

(
dUR(r)

dr

+qf A1J1(qf r)J0(q∗
f r) + ikB1J1(qvr)J0(q∗

f r)

)]

+ cosh(2kIz)

[
i
2ρ0kI

η
SI(r) − pa

2ρ0c2
f

(
dUI(r)

dr

+qf A1J1(qf r)J0(q∗
f r) + ikB1J1(qvr)J0(q∗

f r)

)]}
er

− Re

{
sin(2kRz)

[
ρ0

η

1
r

SR(r) + ρ0

η

dSR(r)
dr

− pa

ρ0c2
f

(
kRUR(r)

−kA1

2
J0(qf r)J0(q∗

f r) + i
qvB1

2
J0(qvr)J0(q∗

f r)

)]

+ sinh(2kIz)

[
i
ρ0

η

1
r

SI(r) + i
ρ0

η

dSI(r)
dr

+ pa

ρ0c2
f

(
kIUI(r)

+i
kA1

2
J0(qf r)J0(q∗

f r) + qvB1

2
J0(qvr)J0(q∗

f r)

)]}
ez. (4.47)

4.2. Unknown constants at the second order
To find the constants C1, C2, C3, C4, C5 and C7 appearing in (4.26), (4.27), (4.41) and
(4.42), we apply the no-slip boundary condition at the wall. The condition is imposed by
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Streaming in a microfluidic Kundt’s tube

fixing the time-averaged Lagrangian streaming velocity (4.44) to zero at r = a. However,
the assumption of a rigid wall leads to zero first-order velocity at r = a, and consequently
to vSD = 0 at r = a. Therefore, the no-slip boundary condition can be imposed by setting
the Eulerian streaming velocity (4.43) to zero at r = a.

This leads to four equations, namely
2ρ0kR

η
SR(r) − pa

2ρ0c2
f

dUR(r)
dr

= 0 at r = a, (4.48)

i
2ρ0kI

η
SI(r) − pa

2ρ0c2
f

dUI(r)
dr

= 0 at r = a, (4.49)

from the r-component of the streaming velocity, and
ρ0

η

1
r

SR(r) + ρ0

η

dSR(r)
dr

− pakR

ρ0c2
f

UR(r) = 0 at r = a, (4.50)

i
ρ0

η

1
r

SI(r) + i
ρ0

η

dSI(r)
dr

+ pakI

ρ0c2
f

UI(r) = 0 at r = a, (4.51)

from the z-component.
Since (4.26) and (4.27) contain a factor of J1(ξir) that evaluates to zero for every ξi at

r = a, SR(r) and SI(r) are also zero at r = a by definition. The constants C2 and C4 then
follow trivially from their definitions (4.25) and (4.29), respectively:

C2 = 0, (4.52)

C4 = 0. (4.53)

From (4.49) and (4.51), we obtain

C5 = π

2

∫ a

0
xMR(x)Y0(−2ikRx) dx + π

2
Y1(−2ikRa)

J1(2ikRa)

∫ a

0
xMR(x)J0(2ikRx) dx, (4.54)

C7 = π

2

∫ a

0
xMI(x)Y0(2kIx) dx − π

2
Y1(2kIa)

J1(2kIa)

∫ a

0
xMI(x)J0(2kIx) dx. (4.55)

Exploiting, again, that SR(r) and SI(r) are zero at r = a, together with boundary conditions
(4.50) and (4.51), yields the last two constants in the following form:

C1 = a
∞∑

i=1

ξ2
i

(
ξ2

i + 4k2
R

)−2

{ ∞∑
i=1

ξi
[
R̄R(ξi) + ĒR(ξi)

]
a2J2(ξia)

(
ξ2

i + 4k2
R
)2

+π

4
paηkR

ρ2
0c2

f

[
Y0(−2ikRa) + J0(2ikRa)

J1(2ikRa)
Y1(−2ikRa)

] ∫ a

0
xMR(x)J0(2ikRx) dx

}
,

(4.56)

C3 = a
∞∑

i=1

ξ2
i

(
ξ2

i − 4k2
I

)−2

{ ∞∑
i=1

ξi
[
R̄I(ξi) + ĒI(ξi)

]
a2J2(ξia)

(
ξ2

i − 4k2
I
)2

+i
π

4
paηkI

ρ2
0c2

f

[
Y0(2kIa) − J0(2kIa)

J1(2kIa)
Y1(2kIa)

] ∫ a

0
xMI(x)J0(2kIx) dx

}
. (4.57)
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δ (μm) at λ (mm) at
Fluid ρ0 (kg m−3) cf (m s−1) η (Pa s) ηB (Pa s) f = 100 kHz f = 100 kHz

Water 996.6 1502 8.538 × 10−4 2.4 × 10−3 1.65 15.0
Oil 922.6 1445 4.153 × 10−2 8.3 × 10−2 12.0 14.5
Glycerol 1261.34 1920 1.410 × 100 2.0 × 100 59.7 19.2
Air 1.161 347.4 1.854 × 10−5 1.1 × 10−5 7.13 3.47

Table 1. Material properties of the fluids used in the numerical analysis (Miner & Dalton 1953; Hirai &
Eyring 1958; Karlsen & Bruus 2015).

5. Streaming analysis

Here, we analyse the acoustic streaming for multiple combinations of material, geometrical
and wave properties in a tube excited with two opposing decaying travelling waves that
form a pseudo-standing wave. The analysis is performed in Mathematica 12.0 (Wolfram
Research, Inc., 2019). The expressions (4.43), (4.44) and (4.47) for the velocity fields
are used together with (4.26), (4.27), (4.41), (4.42), (F1), and the constants (4.52),
(4.53), (4.54), (4.55), (4.56), (4.57). The integrals appearing in the transformed source
terms R̄R(ξi), R̄I(ξi), ĒR(ξi), ĒI(ξi), and in the expressions UR(r), UI(r), are evaluated
numerically. The Mathematica Notebook file with the implementations of all necessary
expressions for evaluation of arbitrary streaming fields is available as supplementary
material at https://doi.org/10.1017/jfm.2020.1046. The infinite sums associated with the
solution are truncated at imax (usually at 200), at which the streaming velocity field is
sufficiently converged. The limit is determined through convergence studies, information
on which is given in appendix B.

In our analysis, we use water, oil, glycerol and air. The material properties of all four
fluids are given in table 1.

5.1. Definitions
To improve understanding of the fluid behaviour at the first order, we show, in figure 2, the
real and the imaginary part of the wavenumber. In addition, the first-order pressure profile
is given in figure 3, which indicates the symmetry of the pseudo-standing pressure wave
with respect to the z = 0 plane. The amplitude decay relates to the imaginary part (kI) of
the wavenumber, while the change of the wavelength with tube radius relates to the real
part (kR) of the wavenumber. For the liquids, we will use a pressure amplitude of 100 kPa,
which corresponds to the usual pressure amplitudes in acoustofluidic systems (Barnkob
et al. 2010). In the case of air, the usual pressure amplitude is much lower, up to 1 kPa
(Schuster & Matz 1940; Imani & Robert 2015), which is the value that will be used for the
results presented in appendix A.

The first velocity node is positioned at z = 0, which is also a plane of symmetry of our
pseudo-standing pressure wave (as indicated in figure 3). Since the fluid is viscous and
bounded, the actual wavelength is defined as λR = 2π/kR. The velocity node therefore
repeats with a period of λR/2. The velocity antinode is in this case positioned at z = λR/4,
and repeats with the same period as the node. Even though the fluids in our analysis are
viscous (i.e. the imaginary part of the wavenumber k is nonzero), we will use the acoustic
wavelength of an unbounded ideal fluid λ, defined as λ = cf /f , for a more generalized
analysis.
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Streaming in a microfluidic Kundt’s tube
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Figure 2. The real and imaginary parts of the wavenumber according to (3.31) and (3.32), respectively, for
water, oil and glycerol: (a) kR at f = 100 kHz; (b) kI at f = 100 kHz; (c) kR at f = 1 MHz; (d) kI at f = 1 MHz.
The dimensionless ratio Ξ = a/δ represents the varying tube radius relative to the viscous boundary layer
thickness. The real and imaginary parts of the wavenumber in an unbounded fluid domain kf are plotted for
reference.

The second-order solution is also symmetric about the z = 0 plane, which follows from
the analysis of the z-dependency of the streaming velocity fields (4.43) and (4.47). The
streaming patterns will therefore be analysed on the interval 0 ≤ z ≤ λ. When a large-scale
behaviour is analysed, the interval of analysis will be increased to 0 ≤ z ≤ 4λ.

In continuation, we will distinguish between two types of streaming vortices, namely
Rayleigh streaming and Schlichting streaming. The Rayleigh streaming vortex denotes
the flow from the velocity node towards the antinode near the axis of the tube, and the
oppositely directed flow near the wall. The Schlichting streaming vortex represents the
flow in the direction opposite to that of the Rayleigh streaming, and appears between the
Rayleigh streaming and the wall. The two types of streaming are also shown in figure 4.
The streaming vortices are analysed on a single rz-plane, as the problem is axisymmetric.
However, when three-dimensional geometry is considered these vortices extend through
the whole range of θ , namely 0 � θ < 2π, and are of toroidal shape. The two types of
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Figure 3. The first-order pressure in oil along the z-axis, at r = a/2, for f = 100 kHz and pa = 100 kPa.
The dimensionless ratio Ξ = a/δ represents the varying tube radius relative to the viscous boundary layer
thickness of δ = 12 μm. For each radius of the tube, we plot the pressure in the range of −5λR < z < 5λR,
with λR = 2π/kR.

θ r

z
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→

Rayleigh
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streaming

Velocity
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Velocity

node

Velocity

node

Figure 4. The terminology used for different types of streaming vortices. Rayleigh streaming denotes the fluid
flow from the velocity node to the antinode near the axis of the tube, and the flow in the opposite direction near
the wall. Schlichting streaming denotes the flow in the direction opposite to that of the Rayleigh streaming.

streaming vortices are boundary-driven, and are normally confined between a velocity
nodal plane and antinodal plane of an acoustic field. However, we will also encounter
streaming driven by the decaying travelling wave grazing the wall (Nyborg 1965, p. 274).
This type of large-scale (with respect to λ) streaming will be called Eckart-like streaming,
after Eckart (1948), who theoretically investigated the streaming driven by the attenuation
of a travelling wave in the bulk of a fluid, extending over several acoustic wavelengths in
the direction of the wave propagation. This happens, for example, when the waveguide of
an acoustic beam is wider than the acoustic wavelength (Boluriaan & Morris 2003).

We will often refer to the ratio of a tube radius to the thickness of the viscous boundary
layer, i.e. the quantity

Ξ = a
δ
. (5.1)

The critical ratio ΞS, as indicated in figure 5, denotes the transition between the
Rayleigh-plus-Schlichting streaming regime to the Schlichting-only streaming regime. It is
defined as the value of Ξ at which the axial component of the streaming velocity changes
direction, at z = λR/8. We will also use another dimensionless parameter, the ratio of the
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Figure 5. Visual explanation of the critical values of Ξ = a/δ and Λ = λ/a used in the analysis. In the case
of Ξ < ΞS the Rayleigh streaming disappears completely, and only the Schlichting streaming remains. This
happens when the axial component of the streaming at the axis, at z = λR/8, changes direction. When Λ < ΛE,
large-scale Eckart-like streaming begins to develop near the axis of the tube. The ratio ΛE is defined as the
value of Λ at which the axial streaming velocity at the axis, evaluated at z = 3λR/8, changes direction, while
Ξ > ΞS.

acoustic wavelength to the tube radius, i.e. the quantity

Λ = λ
a
. (5.2)

The critical ratio ΛE signifies the transition between the Rayleigh-plus-Schlichting
streaming regime to the Eckart-plus-Schlichting regime, and is defined as the value
of Λ at which the axial component of the streaming velocity changes direction, at
z = 3λR/8, while Ξ is sufficiently above ΞS so that the transition associated with ΞS
does not interfere. The specified critical values of Ξ and Λ, depicted in figure 5, are
problem-specific parameters, and their dependency on the material properties and on the
excitation frequency will be investigated in the following sections. The superscript �M

indicates that the ratio is determined via the average mass transport velocity (4.47), while
critical ratios without the superscript are determined via the Eulerian streaming velocity
(4.43).

5.2. The evolution of streaming patterns
Figure 6 shows the evolution of the average mass transport velocity patterns inside an
oil-filled tube with respect to the decreasing tube radius at a constant frequency of
f = 100 kHz, which corresponds to a viscous boundary layer thickness of δ = 12 μm
and an acoustic wavelength of λ = 14.45 mm. We observe a qualitative change in the
behaviour. First, at a = 270 μm (Ξ = 22.5), in figure 6(a), we see a combination of
smaller Schlichting vortices at the wall and dominant Rayleigh streaming vortices that
agree with well-known experiments (see Andrade 1931); i.e. the fluid flows from the
velocity node towards the antinode near the axis of the tube and in the opposite direction
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Average mass transport velocity field 〈v2〉M in oil at f = 100 kHz
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Figure 6. The average mass transport velocity patterns in oil, for a tube radius of (a) a = 270 μm (Ξ = 22.5),
(b) a = 120 μm (Ξ = 10), (c) a = 90 μm (Ξ = 7.5), (d) a = 70 μm (Ξ = 5.83), (e) a = 50 μm (Ξ = 4.17)

and ( f ) a = 40 μm (Ξ = 3.33), for f = 100 kHz. The corresponding acoustic wavelength is λ = 14.45 mm,
while the actual wavelength is 14.14 mm � λR � 12.67 mm. The viscous boundary layer has a thickness of
δ = 12 μm. The first velocity node is at z = 0, while the first velocity antinode appears at z = λR/4. Arrows
indicate the direction of the flow.

near the wall. When the radius is decreased to a = 120 μm (Ξ = 10) and a = 90 μm
(Ξ = 7.5), we observe the expansion of the Schlichting vortices near the wall, in addition
to the shrinking of the Rayleigh vortices (figure 6b,c). Further decreasing the radius
to a = 70 μm (Ξ = 5.83), a = 50 μm (Ξ = 4.17) and a = 40 μm (Ξ = 3.33) reveals
the disappearance of the Rayleigh streaming, while the Schlichting streaming spreads
throughout the whole radius of the tube (figure 6d–f ). Figure 7 gives the Eulerian
streaming velocity patterns corresponding to the same cases as presented in figure 6.
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Figure 7. The Eulerian streaming velocity patterns in oil, for a tube radius of (a) a = 270 μm (Ξ = 22.5),
(b) a = 120 μm (Ξ = 10), (c) a = 90 μm (Ξ = 7.5), (d) a = 70 μm (Ξ = 5.83), (e) a = 50 μm (Ξ = 4.17)

and ( f ) a = 40 μm (Ξ = 3.33), for f = 100 kHz. The corresponding acoustic wavelength is λ = 14.45 mm,
while the actual wavelength is 14.14 mm � λR � 12.67 mm. The viscous boundary layer has a thickness of
δ = 12 μm. The first velocity node is at z = 0, while the first velocity antinode appears at z = λR/4. Arrows
indicate the direction of the flow.

We observe that the periodicity of the streaming pattern with respect to the z-axis,
and within the first few vortices, is very distinct when only a single type of streaming is
present (e.g. in figure 6a,e, f ), compared to the situations where Rayleigh and Schlichting
streaming vortices coexist (e.g. in figure 6b–d). The first-order acoustic fields are periodic
in z, but their amplitudes are exponential functions of z. Then, at the second order, the
time-averaging of the products of first-order fields leads to the decoupling of the sinusoidal
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Figure 8. The analysis of the axial velocity profiles in oil, at z = λR/8, for a tube radius of (a) a = 270 μm
(Ξ = 22.5), (b) a = 120 μm (Ξ = 10), (c) a = 90 μm (Ξ = 7.5), (d) a = 70 μm (Ξ = 5.83), (e) a = 50 μm
(Ξ = 4.17) and ( f ) a = 40 μm (Ξ = 3.33), for f = 100 kHz and pa = 100 kPa. Also shown for comparison
are the z-components of the Eulerian streaming velocity, vz

2, the Lagrangian streaming velocity, vLz
2 , the average

mass transport velocity, vMz
2 , and a reference velocity (evaluated at z = λ/8) from Schuster & Matz (1940), vSz

2 ,
given as (G1) in appendix G.

and exponential z-dependencies from products into sums. This results in the observed
non-periodic behaviour along the z-axis at the second order.

The streaming patterns in figure 6 are plotted for one ideal wavelength (λ) along the
z-axis. However, we can observe that the streaming patterns and the actual wavelength
(λR) shrink along the z-axis with the decrease of Ξ . This follows from the increase of kR
with the decrease of Ξ , which is shown in figure 2.

In figures 8 and 9, we look at the axial and radial velocity profiles, respectively,
corresponding to the cases analysed in figures 6 and 7. The superscripts �z and �r denote
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Figure 9. Analysis of the radial velocity profiles in oil, at r = a/2, for a tube radius of (a) a = 270 μm (Ξ =
22.5), (b) a = 120 μm (Ξ = 10), (c) a = 90 μm (Ξ = 7.5), (d) a = 70 μm (Ξ = 5.83), (e) a = 50 μm
(Ξ = 4.17) and ( f ) a = 40 μm (Ξ = 3.33), for f = 100 kHz and pa = 100 kPa. Also shown for comparison
are the r-components of the Eulerian streaming velocity, vr

2, the Lagrangian streaming velocity, vLr
2 , the average

mass transport velocity, vMr
2 , and a reference velocity from Schuster & Matz (1940), vSr

2 , given as (G1) in
appendix G.

the z- and r-components of the velocity, respectively (e.g. vz
2 = 〈v2〉 · ez). We analyse

profiles of four different velocities: vz
2 and vr

2 relate to the Eulerian streaming velocity
〈v2〉; vLz

2 and vLr
2 relate to the Lagrangian streaming velocity 〈v2〉L; vMz

2 and vMr
2 relate to

the average mass transport velocity 〈v2〉M; and we also plot vSz
2 and vSr

2 , which correspond
to the model by Schuster & Matz (1940), given as (G1) in appendix G. The axial velocity
profiles, in figure 8, are plotted through the radius of the tube, at z = λR/8, i.e. at the
middle of the first streaming vortex along the z-axis, starting from z = 0. We observe
that the magnitudes of vz

2, vLz
2 and vMz

2 are largest when one type of streaming vortex is
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Figure 10. The z-component of the average mass transport velocity, vMz
2 , at r = 0 and z = λR/8, depending on

the normalized tube radius Ξ = a/δ, for f = 100 kHz and pa = 100 kPa. The critical ratio ΞM
S is defined as

the value of Ξ at which vMz
2 changes direction. The velocity magnitudes (S. & M.) calculated with the model

of Schuster & Matz (1940) are given for reference (see (G2) in appendix G).
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Figure 11. The z-component of the Eulerian streaming velocity, vz
2, at r = 0 and z = λR/8, depending on the

normalized tube radius Ξ = a/δ, for f = 100 kHz and pa = 100 kPa. The critical ratio ΞS is defined as the
value of Ξ at which vz

2 changes direction. The velocity magnitudes (S. & M.) calculated with the model of
Schuster & Matz (1940) are given for reference (see (G2) in appendix G).

dominant, i.e. at Ξ = 22.5 (a = 270 μm) and at Ξ = 3.33 (a = 40 μm). The profiles are,
outside the viscous boundary layer, well aligned with vSz

2 at Ξ = 22.5, but the difference
becomes more and more significant as the ratio Ξ decreases, which is reasonable since
Schuster & Matz (1940) assumed Ξ � 1. After reaching a certain critical ratio Ξ (referred
to later as ΞS), the change of the direction of the z-component of the streaming velocity at
r = 0 indicates the qualitative change in the behaviour which is not captured by the model
of Schuster & Matz (1940). Namely, the Schlichting streaming vortex spreads throughout
the whole radius of the tube, as seen in figure 8(e, f ).

The analysis of the critical ratios ΞM
S and ΞS at f = 100 kHz, in figures 10 and 11,

shows that the ratios are invariant with respect to the fluid properties, as they are the same
for water, oil and glycerol. Figures 10 and 11 show the evolution of the z-components of
the Eulerian streaming velocity and average mass transport velocity, respectively, at r = 0.
Both evaluations are done at z = λR/8, (i.e. the middle of the first streaming vortex along
the z-axis). The ratios ΞM

S and ΞS are defined as the values of Ξ at which the Eulerian
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Figure 12. The z-components of the average mass transport velocity and the Eulerian streaming velocity, vMz
2

and vz
2, respectively, in glycerol. The velocities depend on the normalized acoustic wavelength Λ = λ/a, which

is varied by varying the frequency (10.441 MHz ≥ f ≥ 22.738 kHz) and the radius of the tube (131.4 μm ≤ a ≤
2814.6 μm), keeping Ξ constant at 22.5. The velocities are evaluated at r = 0 and z = 3λR/8, for pa = 100 kPa.
The critical ratios ΛM

E and ΛE are defined as the values of Λ at which vMz
2 and vz

2, respectively, change direction.

streaming velocity and the average mass transport velocity, respectively, in the centre of
the tube change sign, as this indicates the disappearance of the Rayleigh streaming. The
critical ratios resulting from the discussed analysis are ΞM

S = 6.2 and ΞS = 5.6.
In addition, figure 11 shows the values for the streaming velocity magnitude using the

model of Schuster & Matz (1940). The equation for the velocity magnitude is given as (G2)
in appendix G. We observe that the simplified model (Schuster & Matz 1940) matches well
with our solution when the radius of the tube is large relative to the thickness of the viscous
boundary layer, i.e. for Ξ � 1. However, for Ξ � 20 the simplified model (Schuster &
Matz 1940) is not valid anymore.

5.3. Effect of the acoustic wavelength on the streaming
The analysis of the streaming patterns at higher frequencies and for the same range of Ξ

reveals no significant differences in the streaming patterns, assuming Λ = λ/a � 1 and
consequently λ/δ � 1. However, for glycerol, the tube radius corresponding to Ξ = 22.5
(the largest value of Ξ analysed in figure 6) can approach the wavelength at frequencies
that are attainable in microfluidic devices. Keeping Ξ constant at 22.5 and reducing Λ

through manipulation of the frequency and radius leads to the change of the z-component
of the streaming velocity at z = 3λR/8, as depicted in figure 12. This eventually leads
to the change of the direction of the analysed velocity, which signals the appearance of
large-scale Eckart-like streaming, at Λ = ΛE. The critical ratios based on the average
mass transport velocity and the Eulerian streaming velocity are ΛM

E = 3.1 and ΛE = 3.5,
respectively. In addition, we observe that the streaming velocity is constant with respect to
Λ, for Λ � 20. Additional studies reveal that ΛM

E and ΛE are not invariant with respect to
Ξ , and increase as Ξ decreases.

The transition from the Rayleigh-plus-Schlichting streaming regime at Λ > ΛM
E to the

Eckart-plus-Schlichting regime at Λ < ΛM
E is also studied through the evolution of the

average mass transport velocity patterns in figure 13. The ratio Ξ is kept constant at
22.5, while the ratio Λ is varied through adjustment of the frequency and the radius of
the tube. The resulting patterns are qualitatively different from the patterns in oil shown
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Average mass transport velocity field 〈v2〉M in glycerol at Ξ = 22.5

(e)

(b)(a)

(c) (d )

( f )

Figure 13. The average mass transport velocity patterns in glycerol, for (a) Λ = 10, (b) Λ = 4, (c) Λ = 3,
(d) Λ = 2.5, (e) Λ = 2 and ( f ) Λ = 1. The patterns depend on the normalized acoustic wavelength Λ =
λ/a, which is varied by varying the frequency (204.644 kHz ≤ f ≤ 20.464 MHz) and the radius of the tube
(938.2 μm ≥ a ≥ 93.8 μm), keeping Ξ constant at 22.5. The first velocity node is at z = 0, while the first
velocity antinode appears at z = λR/4. Arrows indicate the direction of the flow.

in figure 6. The difference is minute for the moderately small Λ of 10 in figure 13(a), and
becomes very prominent as Λ is decreased all the way to Λ = 1 in figure 13( f ), where the
Eckart-like streaming dominates near the axis, in addition to small Schlichting vortices
near the wall. The large-scale nature of the Eckart-like streaming is further demonstrated
in figure 14, where the interval of the analysis is increased from 0 ≤ z ≤ λ to 0 ≤ z ≤ 4λ.

The streaming patterns at Λ < ΛM
E , e.g. figure 13( f ), reveal that the streaming flow at

the axis of the tube is directed towards the incoming decaying travelling wave and in the
opposite direction near the wall. This behaviour is in agreement with the flow in the case
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Figure 14. The average mass transport velocity patterns in glycerol, for (a) Λ = 10, (b) Λ = 4, (c) Λ = 2.5
and (d) Λ = 1. The patterns depend on the normalized acoustic wavelength Λ = λ/a, which is varied
by varying the frequency (204.644 kHz ≤ f ≤ 20.464 MHz) and the radius of the tube (938.2 μm ≥ a ≥
93.8 μm), keeping Ξ constant at 22.5. The first velocity node is at z = 0, while the first velocity antinode
appears at z = λR/4. The patterns are plotted on the interval 0 ≤ z ≤ 4λ to reveal the large-scale nature of the
streaming flow. Arrows indicate the direction of the flow.

of a travelling wave which grazes the wall (Nyborg 1965, p. 274). Since the acoustic wave
propagates through the whole cross-section of the tube, the described behaviour differs
from the regular Eckart streaming (Eckart 1948), where the acoustic source is smaller than
the tube cross-section.

5.4. Contribution of the compressibility of the streaming flow
Streaming flow is sometimes assumed incompressible in similar situations (e.g. Schuster &
Matz 1940; Doinikov et al. 2017), which means that the second-order continuity equation
(4.1), namely ∇ · 〈v2〉 = −1/ρ0∇ · 〈ρ1v1〉, is simplified to ∇ · 〈v2〉 = 0. Nevertheless,
the validity of this assumption is not clear, and the effect of compressibility at the second
order, as remarked by Menguy & Gilbert (2000), still poses one of the main unresolved
issues in the field of acoustic streaming.

911 A28-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1046


A. Pavlic and J. Dual

0 a/2 a/2a

λ/2

λ

0

λ/2

λ

r

z

0

λ/2

λ

0

λ/2

λ

z

0

λ/2

λ

0

λ/2

λ

z

a

a/2 a/2a a

a/2 a/2a a

r

Eulerian streaming velocity field 〈v2〉 in oil at f = 100 kHz assuming ∇ · 〈v2〉 = 0
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Figure 15. The Eulerian streaming velocity patterns in oil, using the Eulerian divergence-free formulation,
i.e. ∇ · 〈v2〉 = 0, for a tube radius of (a) a = 270 μm (Ξ = 22.5), (b) a = 120 μm (Ξ = 10), (c) a = 90 μm
(Ξ = 7.5), (d) a = 70 μm (Ξ = 5.83), (e) a = 50 μm (Ξ = 4.17) and ( f ) a = 40 μm (Ξ = 3.33), for f =
100 kHz. The corresponding acoustic wavelength is λ = 14.45 mm, while the actual wavelength is 14.14 mm �
λR � 12.67 mm. The viscous boundary layer has a thickness of δ = 12 μm. The first velocity node is at z = 0,
while the first velocity antinode appears at z = λR/4. Arrows indicate the direction of the flow.

Here, we use the solution for 〈v2〉 that results if the aforementioned continuity equation
(4.1) is replaced by ∇ · 〈v2〉 = 0 (this renders the irrotational part of the streaming
velocity, namely ∇ϕ2, zero, and changes the remaining constants C1 and C3).

Since the concept of the average mass transport velocity does not arise naturally
in this case, i.e. it is not divergence-free by definition, we plot only the Eulerian
streaming velocity patterns, in figure 15. Comparison with figures 6 and 7 shows that
the incompressible Eulerian streaming velocity patterns in figure 15 better resemble
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Figure 16. The z-component of the Eulerian streaming velocity, vz
2, using the divergence-free formulation, i.e.

∇ · 〈v2〉 = 0, at r = 0 and z = λR/8, depending on the normalized tube radius Ξ = a/δ, for f = 100 kHz and
pa = 100 kPa. The critical ratio ΞS is defined as the value of Ξ at which vz

2 changes direction. The velocity
magnitudes (S. & M.) calculated with the model of Schuster & Matz (1940) are given for reference (see (G2)
in appendix G).

the average mass transport velocity patterns from figure 6 than the corresponding
Eulerian streaming velocity patterns from figure 7. Additionally, in the transition phase,
when Rayleigh streaming is gradually disappearing (figure 15b–d), the incompressible
patterns preserve the periodicity with respect to the z-axis better than the patterns of the
compressible solution.

With the modified solution for the incompressible streaming flow, we analyse the critical
ratio ΞS. The results, in figure 16, indicate that the compressibility slightly decreases ΞS,
as the incompressible solution yields ΞS = 5.8, compared to the value ΞS = 5.6 of the
compressible solution (figure 11).

5.5. Contribution of individual streaming source terms
We repeat the average mass transport velocity pattern analysis from figure 6, but this time
we set ER(r) = EI(r) = 0, i.e. we omit the usually neglected source term in the streaming
equations (4.2) (see e.g. Rayleigh 1884; Schlichting 1932; Lighthill 1978; Doinikov et al.
2017). The simplified solution gives the results shown in figure 17. We observe that
the average mass transport velocity patterns differ from those given in figure 6 for the
(compressible) average mass transport velocity patterns. Furthermore, the patterns closely
resemble the incompressible Eulerian streaming velocity patterns from figure 15.

In figure 18, we analogously repeat the analysis of ΞM
S from figure 11. We observe that

the transition from the Rayleigh-plus-Schlichting streaming to the Schlichting streaming
occurs at lower value of Ξ when the source terms ER(r) and EI(r) are neglected.
Specifically, the critical normalized radius ΞM

S is reduced from 6.2 to 5.8. Interestingly,
this value corresponds to the Eulerian-streaming-velocity-based ΞS of the incompressible
streaming flow solution (figure 15).

6. Conclusions

We derived an analytical solution for the motion of a viscous fluid at the first and at the
second order in a tube of infinite length containing a pseudo-standing wave composed of
two counterpropagating decaying travelling waves along the axis of the tube. The solution
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Average mass transport velocity field 〈v2〉M in oil
at f = 100 kHz assuming ER(r) = EI (r) = 0
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Figure 17. The average mass transport velocity patterns in oil, assuming ER(r) = EI(r) = 0, for a tube radius
of (a) a = 270 μm (Ξ = 22.5), (b) a = 120 μm (Ξ = 10), (c) a = 90 μm (Ξ = 7.5), (d) a = 70 μm
(Ξ = 5.83), (e) a = 50 μm (Ξ = 4.17) and ( f ) a = 40 μm (Ξ = 3.33), for f = 100 kHz. The corresponding
acoustic wavelength is λ = 14.45 mm, while the actual wavelength is 14.14 mm � λR � 12.67 mm. The
viscous boundary layer has a thickness of δ = 12 μm. The first velocity node is at z = 0, while the first velocity
antinode appears at z = λR/4. Arrows indicate the direction of the flow.

is valid for arbitrary thicknesses of the viscous boundary layer δ relative to the radius of
the tube a, and is not restricted by the acoustic wavelength λ. In addition, the applicability
of our solution was demonstrated through analysis of several cases, with the help of
numerical integration in Mathematica 12.0 (Wolfram Research, Inc., 2019), revealing the
streaming patterns and their evolution with respect to the varying problem parameters.
The Mathematica Notebook file with the implementations of all necessary expressions
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Figure 18. The z-component of the average mass transport velocity, vMz
2 , assuming ER(r) = EI(r) = 0, at

r = 0 and z = λR/8, depending on the normalized tube radius Ξ = a/δ, for f = 100 kHz and pa = 100 kPa.
The critical ratio ΞM

S is defined as the value of Ξ at which vMz
2 changes direction. The velocity magnitudes

(S. & M.) calculated with the model of Schuster & Matz (1940) are given for reference (see (G2) in appendix G).

for evaluation of arbitrary streaming fields is available in the supplementary material. In
our analysis, we observed two types of streaming vortices, namely Rayleigh streaming
(fluid flow from the velocity node to the antinode near the axis of the tube) and the
oppositely directed Schlichting streaming. The Rayleigh streaming is suppressed by the
Schlichting streaming when the ratio of the tube radius to the thickness of the viscous
boundary layer (i.e. Ξ = a/δ) is below the critical value of ΞM

S = 6.2, considering the
average mass transport velocity, for Λ = λ/a � 1. If the Eulerian streaming velocity is
considered, the transition occurs at ΞS = 5.6. The critical radii ΞM

S and ΞS at which the
transitions between different streaming regimes occur are invariant with respect to the
material parameters, as long as we are in the limit of Λ � 1. Similar behaviour was also
predicted for a two-dimensional channel by Hamilton et al. (2003a), who evaluated ΞM

S at
5.7, but with the radius replaced by the half-width of their channel.

The vortices appear to be very distinct when a single vortex type, either Rayleigh
or Schlichting, is dominant, e.g. figure 6(a, f ). In the intermediate region, where Ξ

is decreasing towards ΞS, we observe non-periodic behaviour along the z-axis (e.g.
figure 6c,d), which can be attributed to the decaying nature of the pseudo-standing wave.
The amplitude of the acoustic streaming was found to be dependent on the normalized
radius Ξ . The amplitude is lowest when Ξ corresponds to the regime where neither
Rayleigh nor Schlichting streaming dominates (i.e. 20 � Ξ > ΞS). However, for Ξ � 20,
the streaming velocity magnitude at the centre of the tube matches relatively well to the
solution of Schuster & Matz (1940).

When Ξ > ΞS, decreasing Λ can result in a transition from Rayleigh streaming vortices
to a large-scale Eckart-like streaming (figure 13). The critical ratio Λ at which this
transition occurs was evaluated for the case of glycerol at a constant Ξ of 22.5, and stands
at ΛM

E = 3.5 for the average mass transport velocity, and at ΞE = 3.1 for the Eulerian
streaming velocity (figure 12).

The investigation of the contribution of the compressibility of the streaming flow
indicated that the resulting Eulerian streaming velocity patterns (figure 15) better
resemble the average mass transport velocity patterns of the compressible solution
(figure 6) than the patterns of the compressible Eulerian streaming velocity (figure 7).
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Figure 19. The real and imaginary parts of the wavenumber in air according to (3.31) and (3.32), respectively:
(a) kR at f = 100 MHz; (b) kI at f = 100 kHz; (c) kR at f = 1 MHz; (d) kI at f = 1 MHz. The dimensionless
ratio Ξ = a/δ represents the varying tube radius relative to the viscous boundary layer thickness. The real and
imaginary parts of the wavenumber in an unbounded fluid domain kf are plotted for reference.

Compressibility appears to decrease the critical ratio ΞS, since the incompressible solution
yields ΞS = 5.8, whereas the compressible solution yields ΞS = 5.6.

The analysis of the effects of the individual streaming source terms revealed that all
terms originating from the spatial variation of the Reynolds stress have to be considered
to correctly predict the streaming patterns. Neglecting the commonly-neglected the source
term, namely 〈v1∇ · v1〉 = 0 (for example, Rayleigh (1884), Schlichting (1932), Lighthill
(1978) and Doinikov et al. (2017) neglect this term), leads to the decrease of the critical
ratio ΞM

S (from 6.2 to 5.8), but still offers a good approximation. Interestingly, the
average-mass-transport-velocity-based ΞM

S = 5.8 of the solution with partially neglected
source terms matches the Eulerian-streaming-velocity-based ΞS of the incompressible
solution, and the corresponding streaming patterns match as well.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1046.
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Appendix A

This appendix contains the results for air (material properties are given in table 1). The
wavenumber in air for f = 100 kHz and f = 1 MHz is given in figure 19. The first-order
pressure for air at different tube radii is given in figure 20. In figure 21, it is shown that the
discovered critical ratios ΞS = 5.6 and ΞM

S = 6.2, in the limit of λ� a, also hold for air.
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Figure 20. The first-order pressure in air along the z-axis, at r = a/2, for f = 100 kHz and pa = 1 kPa. The
dimensionless ratio Ξ = a/δ represents the varying tube radius relative to the viscous boundary layer thickness
of δ = 7.13 μm. For each radius of the tube, we plot the pressure in the range of −5λR < z < 5λR, with
λR = 2π/kR.
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Figure 21. The z-components of the Eulerian streaming velocity, vz
2, and of the average mass transport velocity,

vMz
2 , in air, at r = 0 and z = λR/8, depending on the normalized tube radius Ξ = a/δ, for f = 100 kHz and

pa = 1 kPa. The critical ratios ΞS and ΞM
S are defined as the values of Ξ at which vz

2 and vMz
2 , respectively,

change direction. The velocity magnitude (S. & M.) calculated with the model of Schuster & Matz (1940) is
given for reference (see (G2) in appendix G).

Appendix B

Here we analyse the convergence of different parts of the solution with respect to the
summation limit imax, at which the infinite summations in (4.26), (4.27), (4.56), (4.57),
(E1) and (E2) are truncated. In figure 22, the convergence of the z-component of the
Eulerian streaming velocity, vz

2, is evaluated at different positions (figure 22e–h), in
addition to the convergence of the constants C1 and C3 (figure 22a–d). The exemplary
convergence study in figure 22 corresponds to the case from figure 6( f ), with oil at
100 kHz, pa = 100 kPa, a = 40 μm and Ξ = 3.33. The solution appears to be converged
for imax � 100. However, it appears from figure 22(e) that vz

2 converges slower when the
point of evaluation is closer to r = a. This has been confirmed by further analysis of
convergence at higher Ξ , where the sufficient imax was evaluated to be much higher. For
the purposes of our study, using imax of up to 200 was sufficient.
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Figure 22. Analysis of the convergence of different parts of the solution with respect to the summation index
imax, at which the infinite summations in (4.26), (4.27), (4.56), (4.57), (E1) and (E2) are truncated. Panels (a–d)
show the convergence of the constants C1 and C3, and panels (e–h) the convergence of the z-component of the
Eulerian streaming velocity, vz

2, evaluated at different positions along a/1000 ≤ r ≤ a − δ/20. The values of
each quantity are normalized with the value at the maximal imax in the convergence study. (a) Re {C1}. (b) Re
{C3}. (c) Im {C1}. (d) Im {C3}. (e–h) vz

2 at the r-values indicated.

Appendix C

Here we give the expressions for the functions RR(r), ER(r), RI(r) and EI(r):

RR(r) = −A1

r|k|2|J1(qva)|2
(

rkqf A∗
1

[
J0(qf r)J1(qva)k2 + qf qvJ0(qvr)J1(qf a)

]∗
[
|k|2J1(qva)J1(qf r) − J1(qf a)

(
2kkR + q2

v

)
J1(qvr)

]
−rk

[
k2J1(qva)J0(qf r) + qf qvJ1(qf a)J0(qvr)

]
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qf A1

(
J1(qva)J1(qf r)k2 + q2

vJ1(qf a)J1(qvr)
)]∗

+qf k∗
{

k2
vJ1(qf a) (J1(qvr) − rqvJ0(qvr))(

qf A1
[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗(
k2J1(qva)J1(qf r) + q2

vJ1(qf a)J1(qvr)
)

(
qf A1

[
rqvJ0(qvr)J1(qf a) − J1(qvr)J1(qf a) + J1(qva)

(
J1(qf r) − rqf J0(qf r)

)])∗
+k

(−rqvJ1(qf a)J0(qvr) + J1(qf a)J1(qvr) + J1(qva)
[
rqf J0(qf r) − J1(qf r)

])(
kqf A1

[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗})
, (C1)

RI(r) = −A1

r|k|2|J1(qva)|2
(

rkqf A∗
1

[
J0(qf r)J1(qva)k2 + qf qvJ0(qvr)J1(qf a)

]∗
[
|k|2J1(qva)J1(qf r) + J1(qf a)

(
2ikkI + q2

v

)
J1(qvr)

]
+rk

[
k2J1(qva)J0(qf r) + qf qvJ1(qf a)J0(qvr)

]
[
qf A1

(
J1(qva)J1(qf r)k2 + q2

vJ1(qf a)J1(qvr)
)]∗

+qf k∗
{

k2
vJ1(qf a) (J1(qvr) − rqvJ0(qvr))(

qf A1
[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗(
k2J1(qva)J1(qf r) + q2

vJ1(qf a)J1(qvr)
)

(
qf A1

[
rqvJ0(qvr)J1(qf a) − J1(qvr)J1(qf a) + J1(qva)

(
J1(qf r) − rqf J0(qf r)

)])∗
+k

(
rqvJ1(qf a)J0(qvr) − J1(qf a)J1(qvr) + J1(qva)

[−rqf J0(qf r) + J1(qf r)
])(

kqf A1
[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗})
, (C2)

ER(r) = A1

r2|k|2|J1(qva)|2
(

k∗
{(

k2J1(qva)J0(qf r)
[
1 − r2k2

f

]
+ rk2qf J1(qva)J1(qf r)

+rqf q2
vJ1(qf a)J1(qvr) + qf qvJ1(qf a)J0(qvr)

)
(
A1qf

[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗ − r2kkf J1(qva)J0(qf r)(
A1kqf

[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗
+
(

k2J1(qva)J0(qf r) + qvqf J1(qf a)J0(qvr)
)

(
A1qf

[
rqvJ0(qvr)J1(qf a) − J1(qvr)J1(qf a) + J1(qva)

(
J1(qf r) − rqf J0(qf r)

)])∗}
+rk

[
rk2

f J1(qva)J0(qf r) − qf J1(qva)J1(qf r) + qf J1(qf a)J1(qvr)
]

[
A1qf

(
k2J1(qva)J1(qf r) + q2

vJ1(qf a)J1(qvr)
)]∗
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+rkqf

[
J1(qva)

(
rk2

f J1(qf r) − qf J2(qf r)
)

+ qvJ1(qf a)J2(qvr)
]

[
A1k2J0(qf r)J1(qva) + A1qf qvJ0(qvr)J1(qf r)

]∗)
, (C3)

EI(r) = A1

r2|k|2|J1(qva)|2
(

k∗
{(

k2J1(qva)J0(qf r)
[
1 − r2k2

f

]
+ rk2qf J1(qva)J1(qf r)

+rqf q2
vJ1(qf a)J1(qvr) + qf qvJ1(qf a)J0(qvr)

)
(
A1qf

[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗ + r2kkf J1(qva)J0(qf r)(
A1kqf

[
J1(qva)J1(qf r) − J1(qf a)J1(qvr)

])∗
+
(

k2J1(qva)J0(qf r) + qvqf J1(qf a)J0(qvr)
)

(
A1qf

[
rqvJ0(qvr)J1(qf a) − J1(qvr)J1(qf a) + J1(qva)

(
J1(qf r) − rqf J0(qf r)

)])∗}
−rk

[
rk2

f J1(qva)J0(qf r) − qf J1(qva)J1(qf r) + qf J1(qf a)J1(qvr)
]

[
A1qf

(
k2J1(qva)J1(qf r) + q2

vJ1(qf a)J1(qvr)
)]∗

−rkqf

[
J1(qva)

(
rk2

f J1(qf r) − qf J2(qf r)
)

+ qvJ1(qf a)J2(qvr)
]

[
A1k2J0(qf r)J1(qva) + A1qf qvJ0(qvr)J1(qf r)

]∗)
. (C4)

Appendix D

The source terms connected to the scalar velocity potential ϕ2 are given below:

MR(r) = −A1k2
f J0(q∗

f r)J0(qf r) + A1q∗
f qf J1(q∗

f r)J1(qf r)

+ iB1kq∗
f J1(q∗

f r)J1(qvr) − A1k∗kJ0(q∗
f r)J0(qf r)

+ iB1k∗qvJ0(q∗
f r)J0(qvr), (D1)

MI(r) = −A1k2
f J0(q∗

f r)J0(qf r) + A1q∗
f qf J1(q∗

f r)J1(qf r)

+ iB1kq∗
f J1(q∗

f r)J1(qvr) + A1k∗kJ0(q∗
f r)J0(qf r)

− iB1k∗qvJ0(q∗
f r)J0(qvr). (D2)

Appendix E

The differentiation of (4.26) with respect to r leads to

dSR(r)
dr

= 2
a2

∞∑
i=1

1
r J1(ξir) − ξiJ2(ξir)

[J2(ξia)]2
(
ξ2

i + 4k2
R
)2 [R̄R(ξi) + ĒR(ξi)

−aξiC1J2(ξia) + aξiC2

(
ξ2

i J2(ξia) − 8k2
R

)]
, (E1)
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and similarly for (4.27),

dSI(r)
dr

= 2
a2

∞∑
i=1

1
r

J1(ξir) − ξiJ2(ξir)

[J2(ξia)]2
(
ξ2

i − 4k2
I
)2 [R̄I(ξi) + ĒI(ξi)

−aξiC3J2(ξia) + aξiC4

(
ξ2

i J2(ξia) + 8k2
I

)]
. (E2)

The differentiation of (4.41) with respect to r leads to

dUR(r)
dr

= πikRJ1(2ikRr)
∫ r

0
xMR(x)Y0(−2ikRx) dx

+ πikRY1(−2ikRr)
∫ r

0
xMR(x)J0(2ikRx) dx − 2ikRC5J1(2ikRr), (E3)

and similarly for (4.42),

dUI(r)
dr

= πkIJ1(2kIr)
∫ r

0
xMI(x)Y0(2kIx) dx

− πkIY1(2kIr)
∫ r

0
xMI(x)J0(2kIx) dx − 2kIC7J1(2kIr). (E4)

Appendix F

The Stokes drift is given by

vSD = 2
ω

Re
{[(−iqf A1J0(qf r) + kB1J1(qvr)

) (−q2
f A1J0(qf r) + 1

r
qf A1J1(qf r)

+1
r

ikB1J1(qvr) − ikqvB1J0(qvr)
)∗ (

cos2(kRz) + sinh2(kIz)
)

+i
(−kA1J0(qf r) + iqvB1J0(qvr)

) (
kqf A1J1(qf r) + ik2B1J1(qvr)

)∗

(
sin2(kRz) + sinh2(kIz)

) ]
er

+1
2

[(−iqf A1J1(qf r) + kB1J1(qvr)
) (

kqf A1J1(qf r) − iq2
vB1J1(qvr)

)∗

(sin(2kRz) − i sinh(2kIz))

+i
(−kA1J0(qf r) + iqvB1J0(qvr)

) (−k2A1J0(qf r) + ikqvB1J0(qvr)
)∗

(sin(2kRz) + i sinh(2kIz))
]

ez

}
. (F1)
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Appendix G

Schuster & Matz (1940) calculated the streaming velocity outside the viscous boundary
layer, for a non-decaying wave along z-axis, as

〈v2〉S = −3
8

p2
aω

c4
f ρ

2
0

r cos
(

2ω

cf

(
z − λ

4

)){
1 − r2

a2

}
er

− 3
8

p2
a

c3
f ρ

2
0

sin
(

2ω

cf

(
z − λ

4

)){
1 − 2r2

a2

}
ez, (G1)

where we have shifted the solution along z-axis by λ/4 to match the position of the velocity
node to z = 0, as assumed in our formulation.

Schuster & Matz (1940) also assume that λR = λ, and the simplified expression for the
velocity magnitude at z = λ/8 and r = 0 is given as

vSz
2 = 3p2

a

8c3
f ρ

2
0
. (G2)
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