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It is well known that inertia-free shearing flows of a viscoelastic fluid with curved
streamlines, such as the torsional flow between a rotating cone and plate or the flow in
a Taylor–Couette geometry, can become unstable to a three-dimensional time-dependent
instability at conditions exceeding a critical Weissenberg (Wi) number. However, the
combined effects of fluid elasticity, shear thinning and finite inertia (as quantified by the
Reynolds number Re) on the onset of elasto-inertial instabilities are not fully understood.
Using a set of cone–plate geometries, we experimentally explore the entire Wi–Re phase
space for a series of nonlinear viscoelastic fluids (with the dependence on shear rate
γ̇ quantified using a shear-thinning parameter βP(γ̇ )). We tune βP(γ̇ ) by varying the
dissolved polymer concentration in solution. This progressively reduces shear thinning but
leads to finite inertial effects before the onset of elastic instability, and thus naturally results
in elasto-inertial coupling. Time-resolved rheometric measurements and flow visualization
experiments allow us to investigate the effects of flow geometry, and document the
combined effects of varying Wi,Re and βP(γ̇ ) on the emergence of secondary motions
at the onset of instability. The resulting critical state diagram quantitatively depicts the
competition between the stabilizing effects of shear thinning and the destabilizing effects
of inertia. We extend the curved streamline instability criterion of Pakdel & McKinley
(Phys. Rev. Lett., vol. 77, no. 12, 1996, p. 2459) for the onset of purely elastic instability in
curvilinear geometries by using scaling arguments to incorporate shear thinning and finite
inertial effects. The augmented condition facilitates predictions of the onset of instability
over a broader range of flow conditions, and thus bridges the gap between purely elastic
and elasto-inertial curved streamline instabilities.
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1. Introduction

Rotational flows with curvilinear streamlines are routinely encountered in many
applications, such as transport and handling of fluids, dispensing, spin coating, flows
in centrifuges, extruders, flows around objects, lubrication and journal bearing flows,
polymer processing, as well as rheometry. The torsional flow between co-axial parallel
disks or between a cone and a plate are canonical examples in which a unidirectional
shear flow with curved streamlines is generated; hence, they are commonly employed in
rheometry and as canonical systems in which to study viscoelastic flow stability. Even in
the limit of small cone angles, steady secondary motions and flow instabilities can develop
(Larson 1992; Shaqfeh 1996) owing to nonlinearities stemming from interactions among
streamline curvature, fluid inertia and non-Newtonian fluid properties.

Specifically, in a cone-and-plate geometry with cone radius R, a cone angle θ and
rotating at speed Ω , a Newtonian fluid with a constant viscosity ηs and density ρ

experiences the onset of inertially driven toroidal secondary motions beyond a critical
rotation rate (Olagunju 1997), and at higher rates, inertial turbulence, when the centrifugal
force becomes dominantly larger than the viscous force (Sdougos, Bussolari & Dewey
1984). However, highly elastic ‘Boger fluids’ with a constant viscosity η0 exhibit a
time-dependent transition to an unstable state characterized by an enhanced and fluctuating
shear stress (initially interpreted as anti-thixotropic behaviour: Jackson, Walters &
Williams 1984), when sheared beyond a critical value of the dimensionless rotational
speed, or Deborah number De = τsΩ , where τs is the shear relaxation time (McKinley
et al. 1991), which is constant for a Boger fluid. The unstable flow manifests as radially
propagating logarithmic spiral vortices (Öztekin, Brown & McKinley 1994). Furthermore,
linear stability analysis of the cone-and-plate flow using different constitutive models
reveals the critical role of the dimensionless geometry parameter 1/θ (Olagunju 1997)
on the onset of elastic instabilities, and this sensitivity has also been confirmed by
experiments (Öztekin et al. 1994; McKinley et al. 1995). Thus, the instability is a function
of both the dimensionless rotational speed, i.e. De = τsΩ , and a dimensionless form of
the shear rate γ̇ = Ω/θ , i.e. the Weissenberg number Wi = τsγ̇ . A comparison of critical
conditions in the Wi–De state diagram with linear stability results indeed validates this
codependency (Öztekin et al. 1994; McKinley et al. 1995). Thorough reviews of these
earlier studies of viscometric flow instabilities can be found from Larson (1992) and
Shaqfeh (1996).

Pakdel & McKinley (1996) argued that this type of instability generically arises due to
the non-uniform stretching of the polymer molecules in a curvilinear shearing flow, which
amplifies the elastic ‘hoop stress’ in the fluid. This enters the radial momentum balance
and amplifies radial velocity perturbations, making the torsional flow of viscoelastic
fluids unstable under sufficiently strong driving conditions. They proposed an instability
criterion in terms of the product of Wi and De exceeding a critical magnitude denoted Mc,
and showed that this could be written in the generic form DeWi = (τsΩ)(τsγ̇ ) > M2

c .
More generally, we can write De = τsU/R, with R being the (geometry-dependent)
characteristic radius of the streamline curvature and U being the characteristic streamwise
fluid velocity. The ratio R/U gives the characteristic convective time of a flow experiment.
Thus, to take into account, more generally, the curvature of a two-dimensional flow and
the action of tensile stress difference along the streamlines, this criterion for the onset of
instability can be rewritten as (McKinley, Pakdel & Öztekin 1996)

DeWi = τsU
R

N1

σ
≥ M2

c , (1.1)
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Inertio-elastic instabilities in torsional flows

where U is a characteristic streamwise fluid velocity, R is the geometry-dependent
characteristic radius of curvature of the streamline, N1 is the first normal stress difference
in the fluid and σ = η0γ̇ is the shear stress. Furthermore, linear stability analysis of
the steady base flow of an Oldroyd-B fluid in a cone-and-plate geometry (Olagunju &
Cook 1993; Olagunju 1995, 1997), as well as in a Taylor–Couette geometry (Schaefer,
Morozov & Wagner 2018), shows that the viscosity ratio parameter βP = ηP/η0 (where
ηP is the polymer contribution to the fluid viscosity and η∞ is the Newtonian plateau
viscosity at high shear rates, such that η0 = ηP + η∞) significantly affects the nature of
the elastic instability. The effect of βP can be readily incorporated in the condition for
purely elastic instability ((1.1)) by substituting the Oldroyd-B result N1 = 2ηPτsγ̇

2 and
σ = (ηP + η∞)γ̇ , which gives

τsU
R

2ηPτsγ̇

η0
= τsU

R 2βPτsγ̇ ≥ M2
c =⇒ DeWi ≥ M2

c

2βP
. (1.2)

In dilute polymer solutions, as βP → 0, the critical shear rate γ̇c = Ωc/θ required for the
onset of instability diverges, in accordance with experiments. More recently, Schiamberg
et al. (2006) have studied the effect of changing the viscosity ratio βP on the onset of
secondary motion and the evolution towards a fully developed nonlinear state commonly
referred to as ‘elastic turbulence’ in a parallel plate geometry using a polyacrylamide Boger
fluid.

Theoretically, it should be possible to modify the criterion in (1.1) for the onset
of purely elastic instability in shear-thinning viscoelastic fluids by allowing τs and
ηP to both be shear-rate dependent and writing them as functions of the applied
shear rate γ̇ . However, the reduction in the viscosity due to shear thinning means a
concomitant increase in inertial effects, which can systematically modify the purely elastic
instabilities observed in Boger fluids at very low Reynolds numbers, Re � 1. This inherent
nonlinear coupling between inertia and elasticity in shear-thinning viscoelastic fluids
makes the corresponding torsional flows more challenging to understand, especially the
critical conditions for the onset of elasto-inertial instabilities. Hence, there have been
relatively few studies elucidating the effect of shear thinning on viscoelastic flow stability.
Dutcher & Muller (2013), Schaefer et al. (2018) and Lacassagne, Cagney & Balabani
(2021) have investigated shear-thinning-mediated elasto-inertial transitional pathways in
Taylor–Couette geometries. Similar observations have also been made in the case of the
flow of a shear-thinning viscoelastic fluid through a tube (Chandra et al. 2019). Each of
these studies reveals the inherent coupling of fluid elasticity (which tends to destabilize the
base shearing flow) and inertia (which tends to restabilize the unsteady flow of viscoelastic
fluids). The resulting stability diagrams are best represented by three-dimensional plots in
terms of dimensionless parameters characterizing the geometry, fluid elasticity and the
inertia of the flow (Dutcher & Muller 2009).

Very recently, Datta et al. (2022) reviewed our current understanding of the broader
topic of viscoelastic flow instabilities and elastic turbulence. They suggest representing
the critical conditions for the onset of viscoelastic flow instabilities in the Wi–Re plane. In
this plane, a set of exploratory experiments with a given rate-independent viscoelastic fluid
in a fixed geometry trace a line with a slope given by the elasticity number El = Wi/Re
(see figure 4 of Datta et al. 2022) eventually intersecting with a corresponding stability
boundary demarcating the critical conditions for the onset of instability. Tracing the critical
conditions using different viscoelastic fluids and flow geometries enables exploration of
the entire phase space, and the various flow states observed will showcase the transitions
in the instability mechanisms as inertial, elastic and geometric effects are varied. In the
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cP (wt.%) ρ (kg m−3) Γ (mN m−1) ηs (Pa s) [η] (dL g−1) c∗ (wt.%)

0.30–3.00 873.1 29.7 0.018 3.69 0.23

Table 1. PIB polymer solution properties.

Solid lines = Cross model fit
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Figure 1. (a) Flow curve and (b) rate-dependent stress ratio SR = N1(γ̇ )/σ (γ̇ ) of viscoelastic fluids used
in this study. The viscometric properties of the PIB solutions (filled symbols) show a strong shear-thinning
behaviour, which can be modelled with the Cross model (solid lines in panel a) before the onset of instability
with best-fit parameters presented in the inset of panel (a). The sudden jump in the viscosity and stress ratio
values above a certain critical shear rate (hollow symbols) occurs due to the onset of time-dependent flow
instabilities arising from a combination of elasticity and inertia.

present work, we investigate the development of time-dependent instabilities in a family of
shear-thinning viscoelastic polyisobutylene (PIB) solutions of different PIB concentrations
(cP) using a set of cone-and-plate geometries of different cone angles (θ ) and radii (R) to
elucidate the combined effects of fluid elasticity, shear thinning, inertia and geometry on
the onset of torsional viscoelastic flow instabilities.

2. Materials and methods

We use polymeric solutions of PIB (MW ≈ 106 g mol−1) dissolved in a paraffinic oil
(GADDTAC, Lubrizol Inc.). We perform all our measurements at a constant temperature
T = 20 ◦C. The Newtonian base oil has a solvent viscosity ηs = 18.07 mPa s at 20 ◦C.
Dilute solution viscometry determines the polymer intrinsic viscosity to be [η] =
3.69 dL g−1 and this gives the critical overlap concentration of the polymer solute
as c∗ 
 0.77/[η] = 0.23 wt.% (Graessley 1980). The solutions were all measured to
have a constant density ρ = 873.1 kg m−3 and surface tension Γ = 29.7 mN m−1. We
vary the dissolved concentration of polymer in the solution to change the viscoelastic
properties. We work with three semi-dilute (cP > c∗) solutions: 3 wt.%, 2 wt.% and
1 wt.%, respectively, and one close to c∗ with cp = 0.3 wt.%. In table 1, we summarize
the key material properties for the family of polymeric fluids used in the study. These
polymeric solutions are all shear thinning to various extents, with their viscoelasticity
decreasing at lower concentrations, as shown in figure 1 and table 2.
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cP (wt.%) η0 (Pa s) η∞ (Pa s) λ (s) n

3.0 40.7 0.68 6.19 0.72
2.0 5.28 0.25 1.20 0.62
1.0 0.50 0.11 0.12 0.71
0.3 0.10 0.05 0.06 0.81

Table 2. Best fit parameters for the inelastic Cross model for the stable, steady-state rate-dependent shear
viscosity data (figure 1a) of various PIB solutions used in this study.

The inelastic Cross model, η(γ̇ ) = η∞ + (η0 − η∞)/[1 + (λγ̇ )n], does an excellent job
at describing the viscosity as a function of shear rate for all solutions (for best-fit parameter
values, see figure 1a and table 2). Here, η0 and η∞ are viscosities in the limit of zero and
infinite shear rate, respectively, λ−1 is a measure of the characteristic shear rate for the
onset of shear thinning, and n is the shear-thinning index. The extent of shear thinning
in these viscoelastic solutions can be quantified in several ways. One direct metric is the
ratio η(γ̇ )/η0. A more useful ratio that also provides consistency with earlier analysis, as
we show later, is the dimensionless function βP(γ̇ ) ≡ ηP(γ̇ )/η(γ̇ ) = [η(γ̇ )− η∞]/η(γ̇ ),
which quantifies the relative polymer contribution to the total (rate-dependent) solution
viscosity at a given shear rate.

Shear-thinning rheology also means that the first normal stress coefficient Ψ1 = N1/γ̇
2

and the relaxation time of the solutions are no longer material constants, but become
rate-dependent functions denoted by Ψ1(γ̇ ) and τs(γ̇ ). From the functional form of the
upper-convected derivative, the first normal stress difference can be related to the shear
stress and the relaxation time of the fluid through the expression N1(γ̇ ) 
 2τsγ̇ σ (Bird,
Armstrong & Hassager 1987), which, after a slight rearrangement, gives N1(γ̇ )/σ (γ̇ ) 

2τsγ̇ . This ratio of the first normal stress difference (N1) to the shear stress in the sheared
fluid (σ ) is termed the stress ratio SR and is a direct quantitative measure of nonlinear
viscoelastic effects in these polymeric solutions (see figure 1b). The importance of
nonlinear elastic effects at the onset of flow instability in each fluid is evident as the stress
ratio SR = N1/σ � 10. One can also eliminate γ̇ by substituting γ̇ = σ/η in the expression
above, which gives N1 ≈ 2(τs/η)σ

2. So, one can anticipate on theoretical grounds that
N1 will vary quadratically with σ . The quadratic dependence of the first normal stress
difference N1 on the shear stress is well known for polymer solutions (Lodge, Al-Hadithi
& Walters 1987; Binding, Jones & Walters 1990) and has recently been documented in
viscoelastic emulsions as well (Kibbelaar et al. 2023). This key observation that N1 ∼ σ 2

will be crucial later in enabling us to incorporate shear-thinning rheology effects in a
unified critical instability criterion (cf. § 3.4).

Furthermore, in semi-dilute polymer solutions, τs and η are both typically power law
functions of the polymer concentration cP (Heo & Larson 2005). As a result, the modulus
Gc(cP) ≈ η(cP)/τs(cP) only increases weakly with increasing the polymer concentration
cP. Hence, N1 ≈ 2(τs/η)σ

2 ≈ σ 2/Gc(cP) may be expected to only decrease weakly with
the polymer concentration cP in the fluids used. We plot the first normal stress difference
N1 as a function of the shear stress σ in figure 2 to test this prediction. We find that not only
N1 ∼ σ 2, but this relationship also holds irrespective of the polymer concentration except
when the flow becomes unsteady (hollow symbols). Thus, we can estimate the steady-state
values of N1(γ̇ ) from measurements of steady-state shear stress alone as

N1(γ̇ ) = Aσ(γ̇ )2, (2.1)
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Figure 2. First normal stress difference N1 plotted as a function of the shear stress σ in a 40 mm 2◦ geometry
for all the PIB solutions used in this study. The data lie almost on a single curve irrespective of the polymer
concentration in solution with a power-law best fit given by N1 ∼ σ 1.96, which is very close to the ideal
quadratic dependence of N1 with σ expected theoretically.

where A is a constant coefficient obtained from the rheological measurements shown in
figure 2. For the fluids used in this study, we find A = 0.29 Pa−1.

To incorporate rate-dependent rheological effects in the criterion for the onset of elastic
instabilities (cf. (1.1)), we use the more general definition of the Weissenberg number
Wi = N1/2σ (White 1964), which can be simplified using (2.1) as

Wi ≡ N1(γ̇ )

2σ(γ̇ )
= A

2
σ(γ̇ ). (2.2)

Shear-thinning rheology also results in a rate-dependent characteristic shear relaxation
time τs(γ̇ ), which enters (1.1). This relaxation time can be directly evaluated
from experimental measurements of the first normal stress difference and the
polymer contribution to the shear stress σP = ηP(γ̇ )γ̇ . We can thus define τs(γ̇ ) =
N1(γ̇ )/(2ηP(γ̇ )γ̇

2). After a slight rearrangement along with substituting σ = η(γ̇ )γ̇ and
βP(γ̇ ) = ηP(γ̇ )/η(γ̇ ), we can thus write

τs(γ̇ ) ≡ N1(γ̇ )

2ηP(γ̇ )γ̇ 2 = 1
βP(γ̇ )γ̇

N1(γ̇ )

2σ(γ̇ )
. (2.3)

This general expression for the rate-dependent characteristic relaxation time of a
viscoelastic fluid can be combined with (2.1) if it is validated experimentally for a
given material system. For completeness, we note that this definition correctly reduces
to the expression used in the literature (derived from the Oldroyd-B formulation) for
the case of a non-shear-thinning Boger fluid; N1 = 2τsσPγ̇ = 2τsηPγ̇

2, where ηP =
η0 − ηs, limγ̇→0 Ψ1 = Ψ1,0 = 2τsηP and limγ̇→0 τs(γ̇ ) = τs. The rate-dependent shear
relaxation time τs(γ̇ ) defined in (2.3) can also be used (if desired) to define a
rate-dependent Deborah number De = τs(γ̇ )Ω , which incorporates shear thinning in
the relaxation time. In addition, the normal stress difference ratio ψ = −Ψ2,0/Ψ1,0 for
the PIB solutions used in this study fall in the range 0.205–0.243 as measured from
rod-climbing rheometry (More et al. 2023). Here, limγ̇→0 Ψ2 = Ψ2,0 with Ψ2 being the
second normal stress coefficient. We have included additional rheological characterization
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of the various PIB solutions used in this study, including small amplitude oscillatory
shear measurements, in the supplementary material available at https://doi.org/10.1017/
jfm.2024.254.

3. Results and discussion

As shown in figure 1(a), a sudden jump in the measured apparent steady-state shear
viscosity is observed for all solutions beyond a sufficiently high shear rate when sheared in
a cone-and-plate geometry. These measurements are not erroneous but are manifestations
of the onset of time-dependent secondary motion beyond a critical (composition and
geometry dependent) shear rate γ̇c. As a result, the stresses in the samples also
suddenly increase due to large velocity disturbances. This is the origin of the so-called
‘anti-thixotropic’ transition (Jackson et al. 1984), observed and analysed previously for
constant viscosity PIB Boger fluids (McKinley et al. 1991; Öztekin et al. 1994; Schiamberg
et al. 2006). In the present study, we analyse the same instability for viscoelastic fluids
with pronounced shear thinning, which inherently drives a transition of the instability
mechanism from purely elastic to elasto-inertial as we gradually decrease the polymer
concentration. Finally, we use the following conventions for the governing rate-dependent
dimensionless parameters: (1) a subscript 0 denotes dimensionless parameters determined
using material function values in the zero-shear-rate limit, i.e. without incorporating
rate-dependent viscosity effects, e.g. Re0 = ρΩR2/η0,Wi0 = τsγ̇ ; (2) the absence of
any subscript denotes dimensionless parameters determined with the incorporation of
rate-dependent viscosity effects, e.g. Re = ρΩR2/η(γ̇ ),Wi = τs(γ̇ )γ̇ ; and (3) a subscript
c denotes the critical condition γ̇ → γ̇c, e.g. Rec = ρΩcR2/η(γ̇c),Wic = τs(γ̇c)γ̇c.

3.1. Time-dependent instability, power spectra and unsteady flow visualization
The experimentally measured time-evolving shear stress σ(t, γ̇ ) and first normal stress
difference N1(t, γ̇ ) for a constant shear rate experiment in a 40 mm 2◦ cone-and-plate
geometry are shown in figure 3 for two different PIB fluids. The transient responses of
σ(t) and N1(t) are typical of viscoelastic fluids; at short times, a rapid stress increase
with an overshoot (and initial quadratic growth in N1) is observed. At longer times,
constant steady-state values are observed only when the imposed shear rate is less than
a critical value γ̇c. Beyond this point, both σ(t, γ̇ ) and N1(t, γ̇ ) increase rapidly to a new
fluctuating state similar to the earlier observations for Boger fluids (McKinley et al. 1991).
Calculations of the apparent viscosity and first normal stress difference from averaging
these enhanced time-dependent measurements result in the sudden jump observed in
figure 1. However, the time dependence of the unstable flow of the shear-thinning
viscoelastic fluid has notable differences compared with a Boger fluid.

As we reduce the PIB concentration, the viscosity of the solutions decreases and inertial
effects become increasingly important. The competition between the effects of shear
thinning and the effects of inertia results in the onset of instability at a lower Wic than
the elastic shear-thinning case of the 3 wt.% PIB solution. In addition, we observe a
gradual decay in the mean amplitude of the stress fluctuations for the less concentrated
PIB fluids due to slow irreversible sample ejection from the geometry edge as well
as possible viscous heating effects (Calado, White & Muller 2005). As a result, the
eventual steady-state value reached after the fluctuations in the σ(t) and N1(t) response
die out can be lower than the quasi-steady-state value achieved after the initial transient
is completed (at times t ∼ O(10)s). Thus, reducing the PIB concentration gradually shifts
the instability mechanism from purely elastic to elasto-inertial, and shear thinning plays a
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Figure 3. Time-dependent evolution in (a) shear stress and (b) the first normal stress difference of the 3 wt.%
(Re � 1) and the 1 wt.% (Re � 10) samples in a peak hold experiment at shear rates below (dotted lines)
and above (solid lines) the critical shear rate for the onset of instability. The corresponding values of Wi =
N1/2σ = Aσ/2 are also given. Power spectra for (c) shear stress and (d) the first normal stress difference N1
for the unstable flows shown in panels (a) and (b) are shown as a function of dimensionless frequency τsf , and
all four different polymer concentrations probed in this study.

crucial role in determining the critical conditions for the onset of instability. This transition
in the instability mechanism becomes clear from the power spectra of the shear stress σ
(denoted Eσσ ) and the first normal stress difference N1 (denoted EN1N1) obtained by taking
Fourier transforms of σ(t) and N1(t) after the onset of time-dependent fluctuations. The
corresponding power spectra for the fluid response (at γ̇ > γ̇c) are presented in figures 3(c)
and 3(d), respectively. The slope of the power spectra progressively changes from −3 to
−2 for Eσσ but remains unchanged for EN1N1 as we gradually reduce the PIB concentration
below 3 wt.%. Furthermore, when plotted as a function of an appropriate dimensionless
frequency τs(γ̇ )f , the measured spectra fall onto two distinct curves: one for the more
concentrated solutions (3 and 2 wt.%) and a separate curve for the less concentrated
solutions (1 and 0.3 wt %). This change in Eσσ appears to be a distinctive feature of a
transition in the underlying instability mechanism (Steinberg 2022).

Figure 4 shows instantaneous visualizations of the unsteady flow after the onset of
instability in a 40 mm 2◦ cone geometry, and the corresponding space–time diagrams
(kymographs) depict the evolution of the unsteady flow with time. The instability
originates at the edge of the conical fixture and spirals towards the centre (as can be
seen from the fine dark streak spiralling inwards). As the perturbations propagate towards
the centre of the cone, they dissipate, which can be clearly seen in the kymographs; the
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Inertio-elastic instabilities in torsional flows
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Figure 4. Snapshot of the unsteady torsional flow between a cone and plate with a diameter of 40 mm and
2◦ cone angle visualized from below. (a-i) 3 wt. % PIB solution rotating at Ω = 3.5 rad s−1(Re = 1.15,Wi =
31.02). (b-i) 1 wt.% PIB solution at Ω = 15 rad s(Re = 39.8,Wi = 16.41). The instability starts at the outer
rim and propagates radially inwards. (a-ii) Kymograph showing the temporal evolution of the flow along the
rectangular strip marked by the dashed lines in panel (a-i). (b-ii) Kymograph showing the time evolution of the
flow in the rectangular region marked by the dashed lines in panel (b-i). The amplitude and the radial extent of
the perturbations in the lower concentrated polymer solutions decrease with increasing fluid inertia.

undulating fluctuations are most intense near the edge but become dimmer towards the
centre of the cone. The progressive ejection of material from the gap due to time-dependent
fluctuations is evident at long times.

3.2. Hysteresis and determination of critical conditions for onset of instability
Hysteresis has been observed for Boger fluids in the past following a sudden jump
down in shear rate from a value larger than the critical value (after the induction of a
time-dependent flow state) to a shear rate lower than the critical value that had initially
been determined in a step ramp-up protocol resulting in the onset of time-dependent
flow (McKinley et al. 1991). These observations are consistent with a subcritical Hopf
bifurcation; however, directly accessing the hysteretic state and assessing its extent is
easier if the control variable is switched to be the imposed stress. In the present work,
we perform both controlled stress sweeps as well as stepped ramps up in imposed shear
rate measurements.

The critical values we report for the onset of instability, i.e. γ̇c, are determined by loading
a fresh fluid sample and then performing a series of step increases in the shear rate. At
each new shear rate, the evolution in the shear stress and the normal stress difference is
followed for a long time (≈30 min) to observe the possible onset of a time-dependent
unstable flow at a constant applied shear rate (see figure 3a). The lowest shear rate at
which such a transition was observed is then determined to be the critical shear rate. These
critical values are indicated by the arrows in figure 5. We call this a ‘stepped shear rate
ramp-up’ protocol. However, the transition might be hysteretic in the sense that if one has
to ‘step down’ from an unstable flow rate, the flow might only become stable at a shear
rate lower than the critical value obtained in a ‘stepped ramp-up’ experiment. To explore
the presence and extent of flow hysteresis, we perform a continuous slow ramp-up and
subsequent ramp-down in the shear stress (i.e. a saw-tooth stress profile) using the same
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Figure 5. Stress versus shear-rate data for the various PIB solutions used in this study for a continuous stress
ramp-up experiment in a 40 mm 2◦ cone-and-plate geometry. In the continuous stress ramp-up experiment,
fluids were subjected to a linearly increasing stress given by σ(t) = σ0(1 + t/5τs) (solid lines) up to a maximum
stress (indicated by hollow black square symbols for each fluid) in the unstable time-dependent flow region.
The stress was then reduced linearly from its maximum value (dotted lines) at the same rate as the ramp-up,
and the instability was monitored by observing the resulting shear rate γ̇ (t). Hysteresis in the critical shear
rate can be inferred from whether the curve returns to its base state (shown by dashed lines, which is the Cross
model fitted to the steady-flow curve data) or not. We observe that all the fluids undergo a hysteretic transition
to an unsteady time-fluctuating state. The critical shear rate values measured from the stepped-up stress growth
protocol are also shown as vertical arrows. The inset shows a hysteretic bifurcation curve in stepped shear rate
ramp-up and ramp-down experiments for the 2 wt.% fluid.

geometry on a stress-controlled rheometer. In this protocol, we continuously increase the
shear stress imposed on the sample (linearly in time) until the flow becomes unstable, and
then slowly and continuously reduce the applied stress. By ‘slow’, we mean that the rate of
increasing the applied stress is much slower than the stress relaxation time for the fluids;
here, we use a ramp rate of 1/5τs. In the absence of flow instability, such a protocol should
trace out the steady flow curve predicted by the fit of the Cross model for each fluid (shown
by the dashed lines in figure 5). Hysteresis in the apparent flow curve of shear stress versus
shear rate can thus be directly confirmed by departures from this flow curve, as shown in
figure 5.

It is evident from figure 5 that the presence of strong viscoelastic shear-thinning reduces
the magnitude of the flow hysteresis observed in the purely elastic case (for the 2 wt.%,
3 wt.% fluids); however, careful measurements using the stepped shear rate ramp-up and
ramp-down protocols, and subtraction of the steady state flow stress σs, reveal that a small
amount of hysteresis is still present (e.g. see the inset of figure 5 for the 2 wt.% fluid). In the
case of the inertio-elastic instability observed for the 0.3 and 1 wt.% fluids, it is clear that
the extent of flow hysteresis is very pronounced (with Δγ̇c = γ̇

up
c − γ̇ down

c ≈ 100 s−1).

3.3. Mapping the instability transition in the Wi–Re plane
The changes in the magnitude of the stress fluctuations and the power law slope of
the power spectra suggest a transition in the underlying mechanism behind the onset
of instability as we change the polymer concentration. Experiments with a range of
cone-and-plate geometries ranging from {R, θ} = {2 cm, 1◦} to {1.25 cm, 5◦} also show
that the critical conditions vary systematically with changes in the geometric parameter
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Figure 6. (a) Critical state diagram for the onset of complex instability for three different geometries and
four fluid compositions projected onto the Wi–Re plane. The samples tested span approximately four orders of
magnitudes in elasticity number, and the instability mechanism shifts from purely elastic to elasto-inertial as we
reduce the polymer concentration. Shear thinning shifts the onset of instability to a higher Rec at a fixed Wi, as
demonstrated by the two different curves representing the elasticity numbers defined by El = Wi/Re. The solid
curve El = Wi/Re incorporates the shear-thinning effect. The dashed lines are the zero shear-rate elasticity
number El0 = Wi0/Re0 without considering shear thinning. (b) Shear-thinning parameter βP(γ̇ ) as a function
of the shear rate and the critical shear rates for the onset of time-dependent flows for the different PIB solutions
in different geometries. Symbols are experimentally determined critical values of γ̇ and the associated flow
parameters Wic and Rec.

1/θ . These changes can be understood more quantitatively by projecting the critical
conditions for the onset of instability onto the Wi–Re plane (Datta et al. 2022) as
illustrated in figure 6(a). The transition from purely elastic to elasto-inertial can be clearly
demonstrated by considering the evolution in the elasticity number El = Wi/Re with
shear-thinning effects (solid lines). The elasticity number quantifies the relative magnitude
of viscoelastic and inertial effects in the Wi–Re state diagram. The trajectory followed
by highly elastic fluids with a constant viscosity η0 (i.e. Boger fluids) is represented
in figure 6(a) by dashed lines with constant slopes (El0 = Wi0/Re0). By including the
effect of shear thinning through the rate-dependent viscosity of the PIB solutions, we
can conclude that shear thinning shifts the critical Reynolds number Rec for the onset of
instability to a substantially higher value (at a given Weissenberg number). The value of
the elasticity number at the onset of instability Elc reduces by four orders of magnitude
(from ≈800 to 0.02) as we reduce the concentration of the PIB solution by one order of
magnitude (from 3 wt.% to 0.3 wt.%), signifying the rapid rise in inertial effects compared
with viscoelastic effects.

At low Re, shear thinning increases the stability of the torsional shear flow of
viscoelastic fluids against the onset of purely elastic instabilities. For example, the
Boger fluid used by Schiamberg et al. (2006) exhibited purely elastic instability beyond
Wic ≈ O(1) compared with the values of Wic ∼ O(10) required for an elastic but strongly
shear-thinning PIB solution. However, reducing the concentration of the PIB solutions also
decreases the extent of shear thinning, i.e. the magnitude of changes in βP are reduced, and
the onset of instability shifts to Wic ∼ O(1). Thus, reducing the extent of shear-thinning
(or maintaining βP closer to unity) drives the earlier onset of elastic instability when
represented in terms of De or Wi.

The gradual increase in inertial effects is another crucial factor contributing to shifts
in the onset conditions of the instability with a reduction in the PIB concentration. It is
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observed that the presence of elasticity makes the flow unstable at much lower Reynolds
numbers (Rec � 100) compared with the critical value of ρΩcR2/η required for the onset
of purely inertial turbulence in cone–plate flows of Newtonian fluids. Finally, the shaded
region, which is included solely as a guide for the eye, hints at common trends and the
possible collapse of all the critical conditions onto a single master curve. In the following
section, we seek a unified critical condition spanning purely elastic to elasto-inertial
regimes for a range of polymer concentrations and flow geometries.

3.4. Bridging elasticity and inertia: a unified instability criterion for the onset of
instability in torsional flows of shear-thinning viscoelastic fluids

The governing role of shear thinning in stabilizing the flow of the PIB solutions can be
seen from the magnitudes of the decrease in βP(γ̇ ) shown in figure 6(b) with shear rate
and/or decreasing PIB concentration. In addition, (2.3) shows that the shear relaxation
time is also a shear-thinning function of the shear rate and this plays an important role
in determining the onset of instability. These nonlinear effects of shear thinning can
be incorporated heuristically in the critical conditions for the onset of a purely elastic
instability by incorporating the rate-dependence of the relaxation time τs(γ̇ ) from (2.3)
into (1.2):

τsU
R

N1

σ
≡ τs(γ̇ )U

R
N1

σ
= U

R
2

βP(γ̇ )γ̇

(
N1

2σ

)2

≥ M2
c . (3.1)

In a cone and plate geometry with cone angle θ and radius R = R rotating with a rate
Ω , we get the characteristic velocity U = ΩR and shear rate γ̇ = Ω/θ . Using these
characteristic values and the general definition of the Weissenberg number Wi = N1/2σ ,
a further simplification of (3.1) can be obtained for a cone-and-plate geometry:

2θ
βP(γ̇ )

(
N1

2σ

)2

= 2θ
βP(γ̇ )

Wi2 ≥ M2
c . (3.2)

Thus, (3.2) gives a critical condition for the onset of purely elastic instability incorporating
the effects of shear thinning, viscoelasticity and changes in flow geometry. We note that the
critical condition of (1.2) for the onset of purely elastic instabilities in constant viscosity
Boger fluids (McKinley et al. 1996) can be recovered from (3.2) by substituting the
well-known Oldroyd-B results for N1 = 2ηPτsγ̇

2 and σ = η0γ̇ . Curves of neutral stability
consistent with (3.2) can also be drawn in the Wi − βP(γ̇ )/θ plane, where the effects of
shear thinning can be incorporated by shifting the geometric parameter 1/θ by an amount
depending on the shear-thinning parameter βP(γ̇ ) (Öztekin et al. 1994). These curves of
neutral stability (dotted lines) incorporating shear-thinning and geometry effects in the
purely elastic critical instability criterion along with the experimentally measured critical
conditions are presented in figure 7(a) using the values of βP(γ̇c) shown in figure 6(b).
We can immediately conclude that the critical conditions shown in figure 6(a) would only
be shifted vertically by this scaling. This modified critical stability condition still does not
incorporate the effects of fluid inertia.

A unified critical condition must ultimately be deduced by performing a rigorous linear
stability analysis of the elasto-inertial flow problem. In the absence of any such existing
analysis, our empirical measurements can be harnessed to guide the formulation of a
unified critical condition. Purely elastic instability arises due to nonlinearities in the
fluid constitutive equations, while purely inertial Newtonian turbulence arises from the
nonlinearities in the advective term of the equation of motion. The distinct origins
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Figure 7. (a) Predictions of the augmented purely elastic instability criterion incorporating the effects of shear
thinning in fluid rheology (3.2) using the values of βP(γ̇c) shown in figure 6(b) for four different fluids used
in four different geometries. Boger fluid results are also presented for comparison. It can be concluded that
the data lie on different stability curves (dotted lines to guide the eye), which are shifted due to the presence
of inertia. Hence, a single elasto-inertial stability curve should incorporate inertial effects. (b) Updated state
diagram obtained by scaling the axes to incorporate the effects of fluid elasticity, inertia, shear thinning and
geometry using (3.6). This state diagram describes the onset of elasticity over a wide range of Re and Wi
spanning four decades in the elasticity number El and four different shear-thinning viscoelastic fluids. Dashed
lines show 68 % confidence interval corresponding to one standard deviation interval.

of the two sources of nonlinearity suggest that from the viewpoint of infinitesimal
perturbations, the two destabilizing terms may be coupled together so that instability
ensues when some combination of elastic effects and inertial effects becomes larger than
a threshold or a critical value.

The effects of nonlinear elasticity and shear thinning on the steady base torsional
shearing flows are already included in (3.1); this purely elastic criterion just needs to be
augmented by the appropriate nonlinear term to incorporate the effects of fluid inertia in
determining the onset of instability. In addition, this unified criterion should: (1) recover
the critical instability condition for the onset of purely elastic instability in the absence
of inertia; (2) recover the critical instability condition for the onset of purely inertial
instability in the absence of elasticity; and (3) predict a smooth transition between the
two asymptotic regimes, as observed in figure 6(a).

Detailed linear stability analyses (Joo & Shaqfeh 1994; Öztekin et al. 1994) consider
infinitesimal perturbations to the base flow velocity and stress variables (v0, σ 0) as well
as the corresponding velocity and stress gradients (∇v0,∇σ 0) present in the specific
flow field of interest. In the inertialess limit, the perturbed velocity and stress fields can
be written in the dimensionless form v = v0 + Wiv′ + O(Wi2) and σ = σ 0 + Wiσ ′ +
O(Wi2) (where the stress tensor has been non-dimensionalized with the characteristic
viscous stress ∼ η0U/R). Substituting these forms into the governing equations and
collecting terms at the first order results in a complex eigenvalue problem involving terms
of the form Wi(∇v0 · σ ′),Wi(v0 · ∇σ ′), etc. (see Joo & Shaqfeh 1994, Shaqfeh 1996 for
details). From a scaling viewpoint, the resulting stability criterion is always in the form of
(1.1), or equivalently,

√
τs

U
R

N1

σ
≥ Mc. (3.3)
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Similarly, for the onset of Newtonian curved streamline instabilities, the perturbations
can be written in the form v = v0 + Rev′ + O(Re2) and the eigenvalue problem arises
from coupling between the advective terms of the form Rev0 · ∇v′,Rev′ · ∇v0, etc. From
a scaling viewpoint, the resulting relevant dimensionless group that arises is the Görtler
number G = Re(δ/R)3/2 (Saric 1994), which couples streamline curvature parametrized
by a characteristic radius of curvature R, inertial effects parametrized by a Reynolds
number and a small parameter ε = δ/R parametrized by the ratio of boundary layer
thickness δ to the radius of curvature R. In a Taylor–Couette flow, however, the relevant
dimensionless group that arises is the Taylor number Ta = Re2ε3, which also couples
inertial effects parametrized by Reynolds number and a small parameter ε = h/R, where h
is the gap between two concentric cylinders. The dimensionless grouping on the left-hand
side of (3.3) can be viewed as a viscoelastic Görtler number (Pakdel & McKinley 1996).
These arguments all suggest that inertial effects can be parametrized by combining the
Reynolds number and a flow geometry-dependent small parameter. So, to quantify inertial
nonlinearities, we use the dimensionless ratio of the dynamic pressure ρU2 compared with
the shear stress σ , i.e.

ρU2

σ
≥ C2 or equivalently

√
ρU2

σ
≥ C, (3.4)

where C is some critical value of this ratio. We note that this ratio is of the same functional
form as the dimensionless stress ratio N1/σ , which determines the purely elastic instability.
Furthermore, as Renardy (2000) has noted in strongly nonlinear elastic flows streamline
tension (which scales with N1), gives rise to a modified form of the inviscid Euler or
Bernoulli equation. This scaling in (3.4) automatically gives rise to a combination of
Reynolds number and a small parameter to quantify the inertial effects, similar to Görtler
and Taylor numbers, as will be evident in the discussion below.

A full inertioelastic linear stability analysis must, ultimately, consider perturbations
arising from both elastic effects and inertial effects as well as cross-coupling terms that
scale as ReWiv′. The resulting eigenvalue problem will be extremely complex, but from a
dimensional viewpoint, it must embody the two limits, purely elastic and purely inertial,
discussed above, as well as relevant cross-terms. The simplest possible functional form
that captures these limits as well as cross-coupling between the elastic stresses and inertial
perturbations is a linear combination of the two dimensionless groupings in (3.3) and (3.4).
This linear combination can be written in the generic form

√
τsU
R

N1

σ
+ α

√
ρU2

σ
≥ M̃c or equivalently

⎡
⎣√

τsU
R

N1

σ
+ α

√
ρU2

σ

⎤
⎦

2

≥ M̃2
c , (3.5)

where α is a dimensionless weighting parameter and M̃c is the critical disturbance
magnitude (as modified by the inertial effects). Expanding the square in the second
equality gives the locus of the critical conditions. Further simplification of (3.5) in a
cone-and-plate geometry can be obtained by using (3.2) and substituting the characteristic
velocity U = ΩR and γ̇ = Ω/θ so that at the critical condition γ̇ → γ̇c, we require

√
2θ

βP(γ̇ )
Wi2 + α

√
Reθ ≥ M̃c or equivalently θ

⎡
⎣

√
2Wi2

βP(γ̇ )
+ α

√
Re

⎤
⎦

2

≥ M2
c , (3.6)
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where a rate-dependent Reynolds number Re = ρΩR2/η(γ̇ ) and also the (small) geometry
parameter θ appears naturally in the inertial term. This new generalized criterion in (3.6)
asymptotically recovers the purely elastic instability condition ((3.2)) when inertia is
negligible, i.e. Re → 0, and also predicts the onset of secondary motion due to inertial
effects in Newtonian fluids in a cone-and-plate geometry when the product Reθ exceeds
a critical value consistent with earlier perturbation analyses and experiments (Fewell &
Hellums 1977; Sdougos et al. 1984).

In lieu of formal linear stability analysis, this unified critical condition can be
validated empirically with experimental measurements. We use the result from (2.1),
which indicates that N1 varies quadratically with σ to calculate the critical Weissenberg
number Wic = Aσ(γ̇c)/2 with A = 0.29 obtained from the regression of the experimental
measurements presented in figure 2. If the condition suggested by (3.6) is true, then
plotting data for the onset of instability in the Wi2θ/βP(γ̇ ) versus Reθ phase space
should lie on a single curve. We find that this is indeed true for a suitable value of the
dimensionless weighting parameter α = 2.29 obtained using a two-parameter best fit of
the experimental data to the first expression in (3.6) and the result is shown by the solid
line figure 7(b). The collapse of the data over three orders of magnitude in the elasticity
number for four different viscoelastic fluids with varying shear-thinning strengths and for
three different conical geometries strongly corroborates the functional form of the unified
critical condition for the elasto-inertial instability given in (3.6). The least square curve
fitting of (3.6) to experimental measurements of the critical conditions gives M̃c ≈ 5.46.

A further check of the unified critical condition (3.6) can be performed by checking
if M̃c ≈ 5.46 obtained from our experimental measurements is consistent with critical
conditions in the limiting cases of purely elastic instability of a Boger fluid and a purely
inertial instability of a Newtonian fluid in a cone-and-plate geometry. We therefore project
the dimensionless criterion represented by (3.6) (with α 
 2.29 and M̃c 
 5.46) in the
modified Wi–Re plane to incorporate the effects of shear thinning and flow geometry
as shown in figure 7(b). Our heuristic blending rule provides a good collapse of all
the experimental data shown in figure 6(a). A typical non-shear-thinning Boger fluid
has βP(γ̇ ) ≡ β 
 0.4 and Re → 0, which recovers Wic ≈ 60 consistent with previous
experimental observations (McKinley et al. 1991). However, for a Newtonian fluid, (3.6)
predicts the onset of the unsteady secondary flow in a cone-and-plate geometry at Reθ �
5.68, which is consistent with, but smaller than, the value deduced from early visualization
experiments of Sdougos et al. (1984). This scaling form can, in principle, be readily
extended to other geometries by the appropriate determination of the radius of curvature
of the streamlines, the characteristic flow velocity and the identification of the appropriate
characteristic shear rate (McKinley et al. 1996). For example, in a parallel plate geometry,
the small geometric factor would be H/R, where H is the gap height between the plates.

In the spirit of Occam’s razor, we have proposed the simplest possible physically
reasonable criterion (additively combining the destabilizing effects of elasticity and
inertia). We hope that our results will serve as a motivator for a more detailed stability
analysis that fully considers the cross-coupling of perturbation terms between the equation
of motion and the nonlinear viscoelastic constitutive equation.

4. Conclusions

We have investigated the onset of time-dependent instabilities in the torsional shearing
flow between a cone and a plate with 1◦ ≤ θ ≤ 5◦ for a range of viscoelastic shear-thinning
fluids. The onset of instability depends on the coupling between the fluid elasticity,
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inertia, shear thinning and flow geometry. Specifically, shear thinning in the fluid rheology
stabilizes the unidirectional torsional base flow, while inertia destabilizes it. Furthermore,
the systematic changes in the critical conditions and the change in the slope of the
power spectra Eσσ suggests a transition in the instability mechanism from purely elastic
to elasto-inertial as we reduce the polymer concentration (and the extent of shear
thinning). We show how to represent this multidimensional flow instability transition by
constructing a state diagram of critical conditions in the Wi–Re plane. Finally, we propose
a unified criterion (3.5) to predict the onset of elasto-inertial instability by augmenting the
existing criterion for purely elastic instability to include shear thinning and coupling to
perturbations arising from inertial effects in the Cauchy momentum equation. We validate
the form of this unified criterion empirically with our experimental measurements of
the critical conditions for a range of viscoelastic fluids and different conical geometries.
The data collapse over a wide range of conditions corroborates the final functional form
of (3.6) at least for a cone-and-plate geometry. Extending this unified criterion to other
torsional flow geometries (like the parallel plate geometry and Taylor–Couette flow) using
an appropriate Görtler number would provide further verification of this representation.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2024.254.
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