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DISJOINTLY ADDITIVE OPERATORS 
AND MODULAR SPACES 

IWO LABUDA 

0. Introduction. By now the literature concerning the representation of dis-
jointly additive functionals and operators is quite extensive. A few entries on 
the subject are [6, 7, 8, 11, 20, 21]. In [7, 8, 17] further references can be 
found, in [7] the "prehistory" of the subject is also discussed. 

To quote a typical result, we may take a 1967 theorem of Drewnowski and 
Orlicz ([6] Th. 3.2, [17] 12.4) which asserts that, under proper assumptions, an 
abstract modular (= disjointly countably additive functional) p on a "substantial" 
subspace D of L° can be realized by the formula 

(1) Pix)= IHt,\x(t)\)dv. 

Having the above formula for p, the theorem can also be interpreted as saying 
that for every such 

(2) p : D — R 

there exists a modular space (notably, the familiar Musielak-Orlicz space L^) 
such that D is its subspace; furthermore (as it can be easily shown), the modular 
space in question is canonical in the following sense. 

(i) U? with its F-norm topology r is a Fatou Levi Riesz space. 
(ii) p : D —> R is r-continuous. 

(iii) L^ is the largest modular solid subspace of L° such that (i) and (ii) hold. 
The main result of this paper says, essentially, that replacing the real line R 

in (2) by an arbitrary Hausdorff topological vector space X, the latter version of 
the Drewnowski-Orlicz Theorem is still valid. 

In other words, every disjointly countably additive operator T : D —» X 
'generates' a canonical modular space LT associated with T such that (i), (ii) 
and (iii) hold. 

A part of the work on this paper was done in the Spring 1988 during author's 
stay in the Mathematical Research Institute of the Swiss Federal Institute of 
Technology in Zurich. I would like to thank Professors C. Constantinescu and 
J. Moser for the invitation to the Institute as well as for their hospitality. 

1. Modular vector core. Let E be a set, and J a filter of subsets in E. 
Suppose that J has a (filter) base V consisting of sets having some properties, 
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say P, g , — As a rule, we will then qualify V as a P ,Q, . . . filter base, and (f 
as a locally P, g , . . . filter. For instance, if E is a vector space and J is a filter of 
neighborhoods at 0 for some vector topology on P, then J is a locally balanced 
absorbent filter because there exists a base for the neighborhoods at 0 that is 
balanced and absorbent (i.e. consists of balanced absorbent sets). Sometimes the 
property under consideration is hereditary in the sense that if V has P then J 
has it (e.g. if V is absorbent then each F G 7 is such). In such cases, we 
simply say that J is P (instead of locally P). 

Let now E be a vector space and 7 a principal filter at 0. The filter J, or 
its base V, is said to be summative if 

(s) VUeV3VeV:V+VGU. 

We will say that V (or J ) is pseudo-summative if it is /7-summative for some 
P € (0, 1): 

(p-s) vu en/3v eV \p(V + V)c u. 

Note that in this terminology summative = 1-summative. 
If jF is a locally balanced summative filter then (P, J) is a topological group 

under addition whose filter of neighborhoods at 0 is precisely J. The vector 
core [12] of (P, J) is defined as follows: 

X = i/(E, 7) = {* G P : lim(l/«)x = 0 ( J ) } 

where \imn(\/n)x = 0 (̂ F) means that 

(1.1) VK G ^ F3«GN: (1 /A7) JC G V. 

As is easily seen, X is a vector subspace of E and F̂ HX = {FHX : F £ f} 
is now absorbent on X and, consequently, defines a vector topology r on X 
for which J H I is the filter of neighborhoods at 0. The vector core X is the 
largest vector space on which J defines the topological vector structure. (X,r) 
is sometimes referred to as a topological vector core [12] of the pair (E, f). 

Suppose now that J is merely pseudo-summative. X — i/(E, 7) is still a 
vector subspace of E and J ' = jF D X is a locally balanced absorbent pseudo-
summative filter on X. Such a filter or filter base will be called, following 
Lesniewicz and Orlicz [16], modular, the corresponding pair is called a modular 
(vector) space. Thus now z/(P, F̂) is the largest vector subspace of P on which 
J defines the modular space structure and we call (X, J') the modular vector-
core of (E^J). 

The w/?/?̂ r topology r on (X^f') is simply the weakest vector topology on X 
whose filter of neighborhoods at 0 is finer than J'. It can be introduced, e.g., 
by the following base of neighborhoods at 0: 

U = {XV : A > 0, V G V } where V is a base of J. 
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A modular filter J is Hausdorff if its upper topology is Hausdorff. 

2. Maximal modular enlargement. Let (S, Z, v) be a cr-finite positive mea­
sure space and L° = L°(S,X7v) the familiar (Riesz) space of a.e. finite mea­
surable functions on (S,£, v). In what follows our vector spaces will not be 
arbitrary but rather the Riesz subspaces of L°. In this setting it will be natural to 
impose that filters (besides satisfying other conditions) be locally solid. Recall 
that a subset V in a Riesz subspace L C L° is solid (i.e., solid in L) if 

(x eV,yEL,\y\^ \x\) => y G V 

and L will be said to be Z-solid if for x G L and £ G l , X\% G L. 
Our immediate aim is to apply the Abramovich process of extension (cf. 

[1][12]) to modular filters. Although the /7-summative situation is more general 
than the linear topological (= 1-summative) case discussed in [12], no essentially 
new phenomena arise. Moreover, we will show that, due to the extremely simple 
connection between a modular base and its upper topology, the general case in 
some sense reduces to the 1-summative case. Thus we shall consider "the Fatou 
case" only: this is the one that will be needed in the sequel. 

As is customary, we refer to the members of L° as functions. L+ denotes 
the cone of positive functions in L°. Our terminology concerning Riesz spaces 
follows [2] or [12]. We only recall that a solid set V in L is order complete if 
0 ^ xa ÎC V => supxa = x G V; V is order closed if (xa) C V+, xa j x G L => 
x G V; (xa) is a generic notation for a net. Following the Russian terminology, 
a solid order dense Riesz subspace of L° will be called, shortly, a foundation. 

A pair (L, F̂) is a modular space if L is a Riesz subspace in L° and F̂ is a filter 
at 0 possessing a base which is Hausdorff solid absorbent pseudo-summative. In 
what follows we will fix L° = L°(5,Z, v) and our modular spaces will always 
be prefer ûtew^ in this L°. 

Let (L, J) be given and let (M, (7 ) be another modular space. We will say that 
(M, Ç ) enlarges (L, F̂) or is an enlargement of (L, F̂) if M D L and Ç | L ^ F̂ . 
A set 5 C L is bounded in (L, ^F), or ^F-bounded, if F̂ absorbs B i.e., if for 
each F G J there is À > 0 such that XF ~D B. Let (L, F̂) be a modular space 
and let V be a (Hausdorff) absorbent solid p-summative base of J. With the 
notation 

(2.1) L, =L,, | = { « G L : |u| Û \x\}, 

set 

(2.2) L* = {x G L° : Lx is F̂ -bounded} 

(2.3) V* = { J C G L * : L M C V , V G ^ }; 

(2.4) V * = {V* : V G V } and J * is the filter generated by V *. 
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Let now (L, 7) be a Fatou modular space in L° i.e., we assume that J has 
a base 1/ which, besides of being Hausdorff absorbent solid and /7-summative 
has the property that the elements V in 1/ are order closed. 

We note that it is easy to see, from the very definition of L* and 1/*, that 

(2.5) L* is a foundation of L°. 

(2.6) Given V G V, V* is solid (in L* and so) in L° 

(2.7) V * is Hausdorff absorbent 

PROPOSITION 1.1/* is p-summative. 

Proof. Lau — aLu for a ^ 0 and, by decomposition property, Lu+V CLM+ Lv 

for M, v è 0. We now check that p(V + V)Ciy=> p(V* + V*) C W*. 
If 0 ^ / G V* + V* then/ = w + v, w G L* and v EL* with Lu C V, Lv C V. 

Thus / G L*, /?/ = pu+pv and pL/ = Lp/ = Lpu+pv = pLtt + /?LV C /?(V + V) C 

Let (L, IT) be a Fatou modular space. The discussion above shows that 
(L*,?*) is a modular space enlarging (L, ^F). Let r be the upper topology of 
(L, F̂) and T* the upper topology of (L*, ^F*). In [12] we have considered the 
Abramovich extension for a linear topological vector space denoting it by "#" 
(i.e., the extension of (L,r) was (L#,7*)). As mentioned, nothing new happens 
since we have: 

PROPOSITION 2. L* = L#, r* = 7*. 

Proof. We observe that (1^ is a modular base of (L, ^F)): a set £ C L is 
^-bounded iff it is r-bounded. This implies that L# = L*. 

Now, since r* has a base of the form {AV# : A > 0, V G V }, r* has a base of 
the form {AV* : A > 0, V G V }. But, since L* = L#, V* = V* and it follows 
that r* = 7*. 

PROPOSITION 3. Let (L, F̂) 6e (2 Fatou modular space. Then (L*, ̂ F*) /s « /o-
ca/fy boundedly order complete modular space. 

Proof. This is a consequence of Prop. 2 and Th. 4.2 in [12] taking into account 
the form of our base for the upper topology r*. • 

Remark. According to our grammar, this means that J * has a base consisting 
of (solid) boundedly order complete sets F (i.e., (xa) C F, (xa) J -bounded, (xa) 
increasing implies that xa ] x G F). We note that, in particular, f * is Fatou 
and (L*, !f*) is Lev/ (0 ^ (jta) ^F*-bounded and (xa) increasing implies that sup 
xa — x G L*). 

Write (L, ^F)C^(resp.C^)(M, £ ) if L C M and 7 is finer (resp. coarser) 
than Q PiL. (L*, ^F*) is the maximal enlargement of (L, F̂) in the sense made 
precise by the following. 

PROPOSITION 4. //(L, J ) C ^ ( M , Q ) , ffon (M, £)C^> (L*, J* ) . If(M,Q) is a 
Fatou enlargement of (L, F̂) r/z£« (L*, ̂ F*) enlarges (M, Ç). 
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Proof. The first statement is easy (cf. [12] 3.3). Let now (A/, Ç) be Fatou 
and enlarging (L, J). We first show that 

(2.8) (L*/*)C^(Af *,£*)• 

For each G G $ there exists F E f with F C G. Working with a base rather 
than original filter, we may assume that G is solid order closed. Take x such 
that Lx G F (i.e., x G F*) and consider _y G Mx. Since L is order dense in A/, 
we can find 0 ̂  xa | Iy\> (•*<*) C F. Clearly, Ly C Lx C F C G and so _y G G 
by order closedness and solidity of G. Hence Mx C G which means also that 
x G G*. We have shown F* C G* which implies (2.8). 

On the other hand, since (M*,Ç*) enlarges (L, f), by the first part we 
have (M*, Ç*)C^(L*,T*). Consequently, we have (M*, £*) = (L*, J * ) which 
shows that (L*,fF*) enlarges (M, £ ) . D 

COROLLARY. (L*,^F*) is a unique locally bounded order complete modular-
space enlarging (L, ^F). 

Proof. Suppose (M,Ç) is another such enlargement. By Prop. 4, (L*,J*) 
enlarges (Af, J). Hence (M*, Ç*) enlarges (F*, ̂ F*) by Prop. 4 again. The result 
follows by observing that 

(2.9) (M*,Ç*) = (M,Ç). 

Indeed, M* = {A- G L° : Mx is <J/-bounded}. If A- gM, we can find 0 ^ xa j Ld, 
(xa) C M. Then (xa) C (M)v and is, therefore, ^-bounded. But then, by the 
completeness assumption, \x\ (whence x) belongs to M. Hence M cannot be 
further enlarged and (2.9) holds. • 

Remark. One can apply the Abramovich extension procedure to the whole F° 
(setting, e.g., V° = {u G F° : Lu G V} for V G V in the formula 2.3). Then 
<j/° — {V° : V G ^ } is a Hausdorff solid /?-summative filter base and it can 
be shown (cf. [12]) that (L*,r*) is nothing else but the modular vector core of 
(F°, .F0) (where J ° is the filter generated by n/°). 

3. Extension. In what follows F° = F°(S, Z, v) is fixed; L™c is its foundation 
of essentially bounded functions with supports of finite measure; F° is considered 
with the topology of convergence in measure on sets of finite measure and L™c 

with the topology (3 of the inductive limit of topologies of uniform convergence 
on sets of finite measure; F is a complete Hausdorff topogical vector space. We 
recall that, by the definition of /?, T : F°° —• Y is /3-continuous means that for 
every set of finite measure E and every sequence (xm) C L°°(E) — {x\E : x G 
F00}, ||xm||^—+0 implies T(xm) —> 0 (with ||JC||^ = supess (\x\E\)). 

Let D be a Riesz subspace in F°. By saying that an operator T : DHF^. —-> F 
is uniformly /3-continuous we mean that T is uniformly continuous as a map 
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from the uniform space (associated with) (DDL00 ,/?) into the uniform space Y. 

The term Lebesgue topology (on a Riesz space) means always a locally solid 
vector topology that is Lebesgue; operator means always a disjointly additive 
operator. 

We recall few facts concerning Lebesgue topologies. Let D be an order dense 
Z-solid Riesz subspace in L° equipped with a locally solid topology r. The 
topology r is often said to be [19][22] absolutely continuous if for each i G D , 
(En) C Z and En I 0, X\E„ —> 0(f) when n —> oo. Sometimes, especially in an 
abstract situation, the following terminology is used [9]. Let (x„) C £>+; (xn) is 
said to be o-laterally decreasing to 0 (xn~\0) if x„ j 0 (x„ — xn+\) Axn+\ — 0 

(A = inf); an increasing (xn) is a-laterally increasing (xn~J) if xn+\ —xnAxn = 0; 
xn-Jx means that xn_J and xn] x. The topology r is laterally a-order continuous 

if | JC W | I 0 implies xn —> 0(r); r is said to be a-Lebesgue [2] if: (xn) CD, \xn\ [0 

implies xn —» 0(r); r is Lebesgue if it satisfies the previous condition for nets. 
The topology r is exhaustive (or pre-Lebesgue [2]) if (xn) C D, (jr„) disjoint and 
order bounded implies xn —• 0(r). 

For the following proposition see [9] Ch. X. §4. Th. 3 and [19] 2.3.5. 
(3.1) In (D,T) absolute continuity, lateral a-order continuity and a-Lebesgue 

property coincide. Either one implies exhaustivity. 

We will say that an operator T : D —> Y is countably additive if for each 
i G D and (En) C E, £„ j 0 we have r(jci£w) —> 0. It should be clear that such a 
T is also laterally cr-order continuous and exhaustive (with the obvious meaning 
of those terms). In order to be compatible with [2], we adopt the "Lebesgue" 
terminology for topologies. 

Given (D,r) , we denote by (D,r)a its subset of absolutely continuous ele­
ments: x G (D,r)a iff xn ^ \x\, xn I 0 => xn —> 0(r). Z)a can reduce to {0} but 
is always a solid vector subspace in D and r | Da is <7-Lebesgue. Indeed £)a is 
the largest vector subspace of D on which r is a-Lebesgue. 

From now on (D,r) denotes an order dense H-solid Riesz subspace in U£c 

with a a-Lebesgue topology r. We note that since L° (v is a-finite) has the 
countable sup property r is automatically Lebesgue. We have (£>,r) ^ L° ([14] 
§3, Cor. 12) and also r is weaker than (5. 

Let (/^,K) be a Lebesgue enlargement of (D^r). 

PROPOSITION 1. Let T : D —> Y be a r-continuous disjointly additive operator 

which is also uniformly ^-continuous. Then T extends uniquely to a (disjointly 

additive) continuous operator TK : (K, K) —> Y. 

Proof. By the "principle of extension by continuity" (see [4] Ch. 1, §8, 
Theorem 1), we have to check that if (xn) C D, x G K and xn —> X(K) then 
(T(xn)) is a Cauchy sequence (and so converges to a limit in Y). We note that 
we can work with sequences rather than general nets since L°°nK is sequentially 
dense in K. Thus we have to show the following lemma. Although its proof is 
routine, we give it here for the sake of completeness. 
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LEMMA 1. Suppose that xn —> x in (D,r). Then (T(xn) : n G N) is a Cauchy 
sequence in Y. 

Proof. We first show that given (xn) and (£,-) C I , £,• | 9, for each r-
neighborhood V of 0 there exists /o such that xn\Ei G V, n G N, / ^ /Q- TO this 
end note that the set functions Z B A M ^ I ^ 6: (D,T), n € N, are countably 
additive and converge pointwise on Z to the set function A i—>• xl^. Hence by 
the Nikodym Theorem these set functions are uniformly countably additive. On 
the other hand, since r-convergence implies convergence in measure on sets of 
finite measure, by the Egoroff Theorem we can find a sequence (F/) of sets of 
finite measure such that Ft ] S and xn\Fi —• xlFj in the uniform topology for 
each / G N. Now setting E[ = 5\F/, taking e > 0 and a continuous F-semi-norm 
on Y, we may write 

\\T(xn)-T(xm)\\ ^ \\T(xnlFio)-T(xmlFiQ)\\ 

+ \\T(xn\Eio)-T(xmlEio)\\ <3e 

where the first term on the right hand side is less than e by uniform /3-continuity 
of T and the second term is less than 2e, by the uniform countable additivity, 
for z'o large enough. This shows that (T(xn)) is Cauchy in Y. 

The extension is disjointly additive since any function x G K, by super order 
denseness of D, is a limit of a sequence in D such that the functions in the 
sequence have their supports contained in the support of x. D 

Let us call a topology r on D the T-topology if it is the weakest locally solid 
vector topology on D making the operator T continuous at 0. 

Let V be a base of closed balanced neighborhoods of 0 in Y. Consider the 
coarsest locally solid filter y at 0 in D such that TCf) is finer than V. J is 
generated by the following base Î1 = {U = U(V) : V G V} where U(V) = 
{xeD:T(Dx)CV}. 

(3.2) The filter J is (l/2)-summative. The proof of this fact is essentially the 
proof that if <j> is an Orlicz function, then p(x) = J <j>(\x(t)\)di/ is a modular (see 
e.g. [18] p. 10). Take V G V and Vx G V such that V\ + V{ C V. We show 
that (l/2K/(Vi) + (l/2K/(V1) C £/(V). To this end, take x,y G (\/2)U{Vx) and 
consider T(x +>>). Denote E = {s G S : x(s) ^ y(^)} and F = S\£. Then 

nx+y) = T[(x+y)lE] + T[(x+y)lF]enD2x) + nD2y). 

Since (l/2)f/(V0 = (1/2){M : T(DU) C V,} = {(l/2)n : Du C V,} = {* : 
T(D2x) CV{} = {y : T(D2y) C Vi}, we have 7(JC + y) c V i + ^ C V which 
ends the proof. • 

(3.3) IfT.D —> Y is (5-continuous, then U is absorbent. Since U is solid, 
it suffices to show that, given x G D+ and U(V) G U, x G nU(V) for some 
« G N . Equivalently, T(Dn-\x) C V for some n G N. Denying this condition, 
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we can find n^ —> oo and Xk G Dx, k G N, such that T(n^lXk) $ V. This is 
impossible since n^xXk —• 0 in L°°. 

Now, assuming T to be uniformly /3-continuous, by 3.5 and 3.6, J is a (1/2)-
summative locally solid absorbent filter such that T is continuous at zero for the 
upper topology r of J and by construction r is the T-topology on D. • 

LEMMA 2. For eac/z «^r (xa) C D, xa —> x(f), there exists a sequence (xaJ C 
(xa), n G N, S«C/J r/zdtf xa/7 —• A;(T). 

Proof. Denote by \i the topology of convergence in measure on sets of finite 
measure in L° (and D). We have /i C r and /i is metrizable. Hence there exists 
xa„ —> X(T)' Since (xan : n G N) are uniformly absolutely (r-) continuous and 
by using the Egoroff Theorem in a similar fashion as in Lemma 1, given a 
r-neighborhood V of 0 we will find E and HQ SO large that (xan — X)\E G V for 
n^ no and (jcttn — Jt)l5\£ for all « G N which implies the Lemma. • 

(3.4) T is r-continuous (for its T-topology r). In view of Lemma 2, we may 
work with sequences. Taking xn —• x in (D,r) , it is easy to check, by using 
Egoroff Theorem and uniform absolute continuity of xn's (as in the proof of the 
lemma above), that T(xn) —* T(x). 

The topology r need not be Hausdorff. However, that it will be Hausdorff 
can be assured by a familiar procedure in which the "inessential" part of D is 
thrown out. 

Let {pa : a G A} be a family of monotone F-semi-norms defining r o n D . 
Call a set E G £ a pa-zero set if p a ( l f ) = 0. Find, e.g. by Hausdorff Maximum 
Principle, a maximal disjoint family £ a of pa-zero sets of positive measure and 
observe that *£« is at most countable since v is cr-finite. Set 

Ea = U{£ : E G £«} and £ 0 = H{£ a : a G A}. 

Observe that since L° has the countable sup property, there exists a sequence 
(An) C (Aa) such that inf a Aa = inf An and so Ao = HAn G S. By construction 
EQ is a maximal r-zero set in the sense that iff EQ C E G £ and i/(E\Eo) > 0 then 
Pa(lf) > 0 for some a. Thus r is Hausdorff on D(S\Eo) — {xl 5 \ £ o : x G D } . 
It can be checked that D(Eo) is the subspace of all x G D having the property 
that, for each scalar a, T(ax) = 0. Thus, the band D(E$) of D is inessential 
and we can restrict our attention to the restriction of T on D(S\EQ) which is 
7-saturated: x G D(S\E0) =>3a such that T(ax) ^ 0 . D 

In what follows we always assume that D = D(S\Eo), i.e., that D is T-
saturated (and so our T-topology will automatically by Hausdorff). 

Summing up, we have shown the following. 

PROPOSITION 2. Eet T : D —> Y be uniformly ^-continuous (and D be T-

saturated). Then there exists a smallest Hausdorff locally solid vector topology 
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T on D such that T is r-continuous. The topology r is weaker than (3 and is the 
T-topology on D. 

The question remains when r is Lebesgue? 

PROPOSITION 3. Suppose that the operator T : D —> Y is countably additive. 
Then the T-topology r on D is Lebesgue. 

Proof. It is sufficient to show that r is cr-Lebesgue since D has the countable 
sup property. Let u G D+ and (£,) C Z, £/ | 0 be given. Let us show that, given 
a > 0 and U = U(V) G 11, there exists / so large that u\Ei G aU. Equivalently, 
we want to show that T(DXi) C V, where aTxu\Ei = Jt/, n G N. We show first: 

(3.5) There exists x G {xt : / G N} SWC/J r/zotf T([0,x]) C V. We denoted 
[0,JC] the set (/)+)*. Now let us deny (3.5) and set 

An = {xt : / ^ n} 

Bn = {z G £>+ : 3£ G N with JC* ^ z ^ *„}. 

For each w G [0,x„], the sequence (w VJC/ : i ^ n) C Bn and decreases to w. 
Further, for each / ^ «, we can write w Vi/ as a disjoint sum: w VJC/ = w/ +A/ 
since JC/ is a component of w V JC;. Moreover, xt~[0 and w/_Jw as / —> oo. 

Consequently, r(wVjc/) = r(w/)+r(jc/) —> T(w), which shows that w G T(Bn). 
But V in 1/ is closed and we are supposing that T[0,xn] (JL V so T(Bn) (£_ V. 

Set 

C = (z G D+ : T(z) gV & 3 ^ ^ z ^ j c w ) , / w > n 

and observe that 

(i) Vxn G {.x, : / G N}3z„ ^ xn, zn G C 

(ii) Vz„ G C3m > n with JCW < z„. 

Hence we can find a sequence (z/J such that zik ^ jc/t and (JC^) is an infinite 
subsequence of (x,). To simplify notation suppose that we have (XJ) and (z,), 
z/ ^ JC/, T(z/) 0 V. Take /i = 1 and zix — z\. Since V is closed and T is 
countably additive, we can find i^ so large that T(z\Eli) is small enough to have 
T(z\) ^ V where z\ — z\ — z\\Eh. Take i^ > z'2. Since Xj~[0, z/3 is disjoint with 
z/,. As above, find /4 and z-3 = z/3 — l£; such that T(z\) ^V By continuing 
this process, we find a disjoint sequence (z[ ), contained in [0, u], for which 
TXz- ) 0 V. This contradicts exhaustivity of T. Thus, (3.5) holds. The symmetric 
statement obtained by replacing 7([0,x]) in (3.5) by 7([—jt,0]) also holds (by 
duality: replace our order by antiorder and repeat the proof). Thus we can find 
/ so large that for xt = a~xu\Ei, T([0,xt]) C V and 7X[-JC/,0]) C V. Take 
x G Dxr Then *+ G [0, *,] , x_ G [-JC/, 0] so that T(x) = T(x+) + T(xJ) G V + V. 
Hence T(DXi) CK + V and, as V was arbitrary, this means that T(u\Ei) —> 0. 
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In the above « G D + but, by symmetry again, the same will hold for u G D_. 
Now, let u G D be arbitrary, and Et [ 0. Then 

T(u\Ei) = T(u+lEi) + T(-u-\Ei) — 0 

and the proof is finished. • 

COROLLARY. Let T : D —> Y be a countably additive uniformly ^-continuous 
operator. Suppose that the T-topology is Hausdorff on D. Then T extends 
uniquely to a continuous disjointly additive operator f : (Z)#,#)a —> Y, where 
D # denotes the (maximal) Abramovich extension of (D,T). 

Let now (K,K) denote a foundation K of L°, with a Hausdorff solid vector 
topology «, subject to the following conditions: 

(i) D P\K is «-dense in K 
(ii) T \ K:K DD —>Y is «-continuous 

(iii) T | K entends by continuity to a disjointly additive operator TK : K —> 7 . 
Denote by 3C the family of all such (K,K). We say that T is ^-compatible 

if for K,M G X mdueKHM we have TK(u) = TM(u). 

PROPOSITION 4. Let T : D —> Y be a uniformly ^-continuous operator such that 
its T-topology T is Hausdorff Lebesgue. Then for every K G 3 0 K C (D#,T*)a 

<2/?<i TK — f \ K; in particular, T is ^-compatible. 

Proof. We first show that « is stronger than r on DHK. Take a net (ua) C DD 
K, ua —• 0(«). Since « is locally solid, it is sufficient to show that ua —> 0(11). 
If not, then there exists a neighborhood U(V) and a subnet (w7) of (ua) such 
that w7 ^ U(V) for each 7. This means that we can find, for each 7, x1 G DUl 

such that 7Xx7) 0 V. This contradicts «-continuity of T since, as ^ is solid, 
(x7) C A' and, as « is locally solid, x1 —• 0(«). 

Now by the unicity statement (§2, Corollary) we must have (D nK,rf = 
(D,r) # . Also (DDK,T) c-> (tf,r) so that (§2, Prop. 4) ( # , « ) ^ (D(lK,rf = 
(£>,r)#. But it is implicit in (iii) that D is «-dense in K and so D is r^-dense in 
K. Thus 7* | £ is Lebesgue ([2] 10.6) and K C D # . 

The results of this section give the following 

MAIN THEOREM. Let D be an order dense H-solid Riesz subspace of ' L™c, Y a 
complete Hausdorff topological vector space and T : D —> Y a disjointly addi­
tive operator such that D is T-saturated. Suppose that T is countably additive 
and uniformly (5-continuous. Then there exists a Fatou Levi modular space D# 

such that its upper topology T* has the following properties 
(i) D C(D# ,7*) f l 

(ii) T extends to a continuous disjointly additive operator t on (D#
Ji

M)a. 
(iii) (D#,7^)a is the largest Hausdorff locally solid foundation on which T 

can be extended by continuity. 

4. Comments. (1) We have assumed before Prop. 1 and throughout the paper 
that Z), besides being order dense and S-solid, is contained in L™. The latter 
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assumption is technically convenient but otherwise is inessential in view of the 
following argument. 

Suppose D is merely order dense and Z-solid. Then D\ = D n Ufic can be 
considered instead of D (since it is still order dense Z-solid). Suppose T-topology 
exists on D. Since Dl Cc^ D we have D# C ^ Df and so D#a C Df. On the 
other hand, since D#a is the largest Hausdorff locally solid foundation on which 
T can be extended, D*a C D#a i.e., D f = D#a. 

(2) For what operators T : D —• F does it happen that (D#)" = D#? 
Recall that a sequence (JC„) or a series 5jf„, in a topological vector space, is 

said to be perfectly bounded if its set of all unordered partial sums {^nee xn : e 
finite subset of N} is bounded. Consider the following condition 

(*) For every disjoint sequence (x„) CD such that (xn) is perfectly bounded in 
D, (T(xn)) is perfectly bounded in Y. 

PROPOSITION. Let T : D —> Y be countably additive uniformly ^-continuous 
operator. Suppose moreover that T satisfies condition (*) and Y 7$ Co {i.e., Y 
has no copy of CQ). Then (D,7*) is Lebesgue (and T extends to the whole of 
£>#). 

Proof. We recall that Y 7$ cç, means that there is no subspace F C Y such that 
F is linearly homeomorphic to the Banach space CQ of sequences convergent to 0. 
We show that (D*)a = D#. Since (£)#, 7*) is complete, it will be sufficient to show 
that r* is exhaustive ([2] 10.3). Let (En) be a disjoint sequence in Z. Suppose 
x e D# and x\En -^ 0(7*). Then we can find a > 0 and U* = U(Vf G U* such 
that for some subsequence (£*) C (£w), x l ^ ^ aU# which means also that for 
v = a~lx\Ek, T(DW) çt. V i.e. there ex i s t s , k— 1,2,..., with | ^ | ^ |a-1A'l£j, 
T(xk) ^ V. Consider the bounded linear operator /• : coo —̂  K such that for 
c = (cn) G coo (sequences that are eventually zero) t(c) — TÇ^ncnxn). The 
operator t extends by continuity to CQ and t{en) = T(xn)-/+ 0. Hence F contains 
co [10][5]. 

(3) If Y is metrizable then (D # ,T*) and its underlying modular space will be 
metrizable too. 

(4) In the introduction we have emphasized the roots of the present paper 
in some classical work on the representation of modulars which certainly is 
historically true. The extension of the operator T to t is a by-product. However 
this point of view can be reversed, and in fact in a recent paper [111 Kozlowski 
does similar things declaring the extension of a disjointly additive operator his 
main goal. 

(5) The process of extension of T can also be viewed as a Daniell type exten­
sion of a not necessarily linear (vector) integral and is indeed a generalization of 
the classical extension of the integral (from the space of simple functions onto 
L1). On the other hand, the use of the Abramovich extension "#" and some other 
techniques used above are in connection with the papers of Aronszajn-Szeptycki 
[3] and Labuda-Szeptycki [15] on extensions of integral operators. 
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