BULL. AUSTRAL. MATH. SOC. VOL. 19 (1978), 217-244.

On certain function spaces and group structures

Hiroshi Yamaguchi

We generalize a result of Walter Rudin about the structure of a compact abelian group G for which $C(G) + H^{\infty}(G)$ is a closed subalgebra of $L^{\infty}(G)$.

1. Introduction

Sarason ([5], [6]) showed that $C(T) + H^{\infty}(T)$ is a closed subalgebra of $L^{\infty}(T)$, and that $C_{\mu}(R) + H^{\infty}(R)$ is a closed subalgebra of $L^{\infty}(R)$. On the other hand, for a compact abelian group G whose dual group \hat{G} is ordered, Rudin showed in [4] that $C(G) + H^{\infty}(G)$ is a closed subalgebra of $L^{\infty}(G)$ if and only if $G \cong T$. Moreover, Rudin showed the following in [4]: for a locally compact abelian group G, $C_{\mu}(G) + H$ is always a closed subspace of $L^{\infty}(G)$ for each translation invariant and weak*-closed subspace H of $L^{\infty}(G)$. For a locally compact abelian group G whose dual \hat{G} is an algebraically ordered group, we define the space $H^{\infty}_{p}(G)$. Our purpose in this paper is to investigate the relationship between the fact that $H^{\infty}_{p}(G) + C_{\mu}(G)$ becomes a subalgebra of $L^{\infty}(G)$ and the group structures of G. Let G be a locally compact abelian group with a dual group \hat{G} . $L^{1}(G)$ denotes the space of all integrable functions on G, and $L^{\infty}(G)$ is the space of all essentially bounded measurable functions on G.

Let M(G) be the Banach algebra of all bounded regular measures on G, and $C_u(G)$ the space of all bounded uniformly continuous functions on

Received 10 August 1978. Communicated by Sadayuki Yamamuro.

G.

DEFINITION 1. Let G be a locally compact abelian group. G is called an algebraically ordered group if there exists a subsemigroup P of G satisfying the (AO)-condition, namely,

- (i) $P \cup (-P) = G$ and
- (ii) $P \cap (-P) = \{0\}$.

G is an algebraically ordered group if and only if it is torsion-free (see, for example, [3]).

DEFINITION 2. Let G be a locally compact abelian group such that \hat{G} is an algebraically ordered group. Suppose P is a subsemigroup of \hat{G} with the (AO)-condition. We define $H_p^1(G)$, $H_p^{\infty}(G)$, and $M_p^2(G)$ as follows:

$$H_{P}^{1}(G) = \{f \in L^{1}(G); \hat{f}(\gamma) = 0 \text{ for } \gamma \notin P\};$$

$$H_{P}^{\infty}(G) = \left(H_{P}^{1}(G)\right)^{1} = \{g \in L^{\infty}(G); \int_{G} f(x)g(x)dx = 0 \text{ for } f \in H_{P}^{1}(G)\};$$

$$M_{P}^{2}(G) = \{\mu \in M(G); \hat{\mu}(\gamma) = 0 \text{ for } \gamma \notin P\}.$$

REMARK |. If G = R and $P = \{x \in R; x \ge 0\}$, then $H_P^{\perp}(R)$ and $H_P^{\infty}(R)$ are the usual $H^{\perp}(R)$ and $H^{\infty}(R)$ respectively.

If G = T and $P = \{n \in Z; n \ge 0\}$, then $H_p^{\infty}(T)$ is the space $H_0^{\infty}(T)$. But, in this case, we note that $H_p^{\infty}(T) + C(T) = H^{\infty}(T) + C(T)$.

DEFINITION 3. Let Σ be a set of functions on G. We call Σ invariant if $\tau_{\alpha}f$ belongs to Σ for all $f \in \Sigma$ and $a \in G$, where $\tau_{\alpha}f(x) = f(x-a)$.

PROPOSITION 1. Suppose G is a locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Then $H_p^{\infty}(G)$ is a translation invariant and weak*-closed subalgebra of $L^{\infty}(G)$. Hence, in particular, by [4], Theorem 3.3, $H_p^{\infty}(G) + C_u(G)$ is a closed subspace of $L^{\infty}(G)$.

Proof. Evidently $H_p^{\infty}(G)$ is a weak*-closed subspace. Since $H_p^{\mathbf{1}}(G)$ is translation invariant, we have

$$\int_{G} f_{z}(x)g(x)dx = \int_{G} f(x)g_{-a}(x)dx$$
$$= 0$$

for each $a \in G$, $f \in H_p^{\infty}(G)$, and $g \in H_p^{1}(G)$. Hence $H_p^{\infty}(G)$ is translation invariant. Finally, we prove that $H_p^{\infty}(G)$ is an algebra. For $g \in H_p^{\infty}(G)$ and $h \in H_p^{1}(G)$, gh belongs to $H_p^{1}(G)$.

Hence, for $f, g \in H^{\infty}_{p}(G)$, we have

$$\int_G f(x)g(x)h(x)dx = 0 \quad \text{for every} \quad h \in H^1_P(G) \quad .$$

Therefore fg belongs to $H^\infty_p(G)$. //

Our purpose in this paper is to prove the following theorem.

THEOREM. Let G be a nondiscrete locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Then the following are equivalent:

(i)
$$C_{\mu}(G) + H_{p}(G)$$
 is a closed subalgebra of $L^{\infty}(G)$;

(ii) G admits one of the following structures,

(a)
$$G = R$$
,
(b) $G = R \oplus D$,
(c) $G = T$,
(d) $G = T \oplus D$,
where D is a discrete abelian group such that \hat{D} is
torsion-free.

REMARK 2. If P is dense in \hat{G} , $H_p^1(G) = \{0\}$. Hence $C_u(G) + H_p^{\infty}(G)$ is always an algebra, since $H_p^{\infty}(G) = L^{\infty}(G)$. If G is a discrete abelian group such that \hat{G} is torsion-free, then P is necessarily dense in \hat{G} . Therefore $C_u(G) + H_p^{\infty}(G)$ is always an algebra.

2. Proof of the theorem

We prove the theorem by using the structure theorem of locally compact abelian groups. Before proving the theorem, we investigate whether $C_{\mu}(G) + H_{p}^{\infty}(G)$ becomes an algebra or not, for some special groups.

LEMMA 2. Let G be a noncompact locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Then the following are established:

(i) for $F \in L^{\infty}(G)$ and $\mu \in M^{\alpha}_{P}(G)$, $F \star \mu \in H^{\infty}_{P}(G)$; (ii) for $F \in H^{\infty}_{P}(G)$ and $\mu \in M(G)$, $F \star \mu \in H^{\infty}_{P}(G)$.

Proof. (*i*) For $f \in H^1_p(G)$, we put $\tilde{f}(x) = f(-x)$. Then \tilde{f} belongs to $H^1_{(-P)}(G)$. Hence we have

$$\int_{G} F \star \mu(x) f(x) dx = \int_{G} F \star \mu(x) \widetilde{f}(-x) dx$$
$$= (F \star \mu) \star \widetilde{f}(0)$$
$$= F \star (\mu \star \widetilde{f})(0) .$$

Since \hat{G} is not discrete, $\mu \star \tilde{f} = 0$. Hence $F \star \mu \in H_p(G)$.

(ii) For $\Phi \in H^1_p(G)$, $F \in H^\infty_p(G)$, and $\mu \in M(G)$, we have

$$\int_{G} F \star \mu(x)\Phi(x)dx = \int_{G} \int_{G} F(x-y)d\mu(y)\Phi(x)dx$$
$$= \int_{G} \int_{G} F(x-y)\Phi(x)dxd\mu(y)$$

On the other hand, by Proposition 1, $H_p^{\infty}(G)$ is translation invariant. Hence $F(x-y) \in H_p^{\infty}(G)$ for every $y \in G$. Hence $F \star \mu$ belongs to $H_p^{\infty}(G)$. // LEMMA 3. Let G be a locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . For $f \in H^{\infty}_{P}(G)$ and

 $\mu \in M^{\mathcal{A}}_{(-P)}(G)$, we have $f \star \mu = 0$.

Proof. For
$$g \in L^{1}(G)$$
 we have

$$\int_{G} f * \mu(x)g(x)dx = \int_{G} f * \mu(x)\tilde{g}(-x)dx$$

$$= (f*\mu) * \tilde{g}(0)$$

$$= f * (\mu*\tilde{g})(0)$$

$$= \int_{G} f(x)\mu * \tilde{g}(-x)dx .$$

On the other hand, $(\mu \star \tilde{g})^{\sim} \in H_P^1(G)$. Indeed, $(\mu \star \tilde{g})^{\sim}(\gamma) = \hat{\mu}(-\gamma)\hat{\tilde{g}}(-\gamma) = 0$ if $\gamma \notin P$. Hence $\int_G f \star \mu(x)g(x)dx = 0$ for all $g \in L^1(G)$; that is, $f \star \mu = 0$. //

LEMMA 4. Let G be a locally compact abelian group. Let μ and ν be in M(G) and g in $L^{\infty}(G)$. If $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_0$ for some $\gamma_0 \in \hat{G}$, then we have

$$(\gamma_0 g \star \mu) \star \nu = \gamma_0 g \star \mu$$
.

Proof.

$$\begin{aligned} (\mathbf{Y}_{0}g \star \mathbf{\mu}) &\star \mathbf{v}(x_{0}) &= \int_{G} (x_{0} - x, \mathbf{Y}_{0})g \star \mathbf{\mu}(x_{0} - x)d\mathbf{v}(x) \\ &= \int_{G} \int_{G} (x_{0} - x - y, \mathbf{Y}_{0})g(x_{0} - x - y)d(\mathbf{Y}_{0}\mathbf{\mu})(y)d\mathbf{v}(x) \\ &= (\mathbf{Y}_{0}g) \star ((\mathbf{Y}_{0}\mathbf{\mu})\star\mathbf{v})(x_{0}) \\ &= (\mathbf{Y}_{0}g) \star (\mathbf{Y}_{0}\mathbf{\mu})(x_{0}) \\ &= \int_{G} (x_{0} - x, \mathbf{Y}_{0})g(x_{0} - x)(x, \mathbf{Y}_{0})d\mathbf{\mu}(x) \\ &= (x_{0}, \mathbf{Y}_{0})g \star \mathbf{\mu}(x_{0}) . \end{aligned}$$

The following lemma is a sufficient condition for $C_{\mu}(G) + H_{p}(G)$ not

to become an algebra.

LEMMA 5. Let G be a noncompact locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . If there exist $\mu \in M_P^{\alpha}(G)$, $\nu \in M_{(-P)}^{\alpha}(G)$, $g \in L^{\infty}(G)$, and $\gamma_0 \in \hat{G}$ such that $g \star \mu \notin C_u(G)$ and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_0$, then $C_u(G) + H_P^{\infty}(G)$ is not an algebra.

Proof. Suppose $C_u(G) + H_p^{\infty}(G)$ is an algebra. Since γ_0 is in $C_u(G)$ and $g \star \mu$ in $H_p^{\infty}(G)$ by Lemma 2, there exist $H \in C_u(G)$ and $K \in H_p^{\infty}(G)$ such that

$$(x, \gamma_0)g * \mu(x) = H(x) + K(x)$$

Hence, by Lemmas 3 and 4, we have

$$\begin{split} \gamma_0 g \, * \, \mu \, = \, \left(\gamma_0 g \, * \mu \right) \, * \, \upsilon \\ &= \, H \, * \, \upsilon \, + \, K \, * \, \upsilon \\ &= \, H \, * \, \upsilon \, \cdot \end{split}$$

Since $H \in C_u(G)$, $H \star v$ belongs to $C_u(G)$. On the other hand, $\gamma_0 g \star \mu$ does not belong to $C_u(G)$. This is a contradiction. //

LEMMA 6. Let F be a compact abelian torsion-free group. Let P be a subsemigroup of $\mathbb{R}^n \oplus F$ with the (AO)-condition such that it is not dense in $\mathbb{R}^n \oplus F$. Then P includes $\overset{\circ}{P}_{R} \oplus F$, where $P_{R} = P \cap \mathbb{R}^n$ and $\overset{\circ}{P}_{R}^n$ denotes its interior.

Proof. Since P is necessarily dense in F, P is not dense in R^n . Hence there exists a unitary transformation τ on R^n such that $\tau(\overset{\circ}{P}_{R}{}^{n}) = \left\{ x = (x_1, x_2, \dots, x_n) \in R^n; x_1 > 0 \right\}$. Define an automorphism $\tilde{\tau}$ on $R^n \oplus F$ by $\tilde{\tau}(z, t) = (\tau(z), t)$ for $(z, t) \in R^n \oplus F$. Then $\tilde{\tau}(P)$ is a subsemigroup of $R^n \oplus F$ with the (AO)-condition such that it is not

dense in $R^n \oplus F$. Let \leq_P' and $\leq_{\widetilde{\tau}(P)}'$ denote the orders on $R^n \oplus F$ induced by P and $\widetilde{\tau}(P)$ respectively. Suppose there exist $y = \begin{pmatrix} y_1, \ldots, y_n \end{pmatrix} \in \overset{\circ}{P}_{R^n}$ and $s \in F$ such that $y \leq_P s$. Then $\widetilde{\tau}(y) \leq_{\widetilde{\tau}(P)} \widetilde{\tau}(s) = s$. Let $\widetilde{\tau}(y) = \begin{pmatrix} x_1, \ldots, x_n \end{pmatrix} \begin{pmatrix} x_1 > 0 \end{pmatrix}$. Then, for $z = \begin{pmatrix} z_1, \ldots, z_n \end{pmatrix}$ with $z_1 \leq x_1$, we obtain that

$$z = (0, s) + (z, -s) \in \overline{(-\tilde{\tau}(P))} + \overline{(-\tilde{\tau}(P))} = \overline{(-\tilde{\tau}(P))}.$$

Since $\overline{(-\tilde{\tau}(P))}$ is a semigroup, R^n is included in $\overline{(-\tilde{\tau}(P))}$. Therefore $-\tilde{\tau}(P)$ is dense in R^n . This is a contradiction. Hence $P \supset \overset{\circ}{P}_{n} \oplus F$.

REMARK 3. We note that Lemma 6 remains valid if we replace R^n by $R \oplus Z$.

LEMMA 7. Let G be a nondiscrete locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Let τ be an automorphism on \hat{G} . Then the following are equivalent:

(1) $C_u(G) + H_p^{\infty}(G)$ is an algebra; (2) $C_u(G) + H_{\tau(P)}^{\infty}(G)$ is an algebra.

Proof. Let τ^* be the dual automorphism of τ , that is, $(\tau^*(x), \gamma) = (x, \tau(\gamma))$ for $x \in G$ and $\gamma \in \hat{G}$. We only prove (1) implies (2).

Claim 1. For $f \in H^1_{\tau(P)}(G)$, $f \circ \tau^{*-1} \in H^1_P(G)$. Indeed, for $\gamma \notin P$, we have

$$\hat{f} \circ \tau^{\star^{-1}}(\gamma) = \int_{G} f(\tau^{\star^{-1}}(x))(-x, \gamma) dx$$
$$= k \int_{G} f(x)(\tau^{\star}(-x), \gamma) dx$$
$$= k \int_{G} f(x)(-x, \tau(\gamma)) dx$$
$$= k \hat{f}(\tau(\gamma)) ,$$

where k is a constant depending on τ^{*-1} .

Claim 2. For $g \in H_p^{\infty}(G)$, $g \circ \tau^* \in H_{\tau}(P)^{(G)}$. Indeed, for $f \in H_{\tau}^1(P)^{(G)}$, since $f \circ \tau^{*-1} \in H_p^1(G)$, we have $\int_G g(\tau^*(x))f(x)dx = k \int_G g(x)f(\tau^{*-1}(x))dx$ = 0.

In the same way, for $g \in H^{\infty}_{\tau(P)}(G)$, we have $g \circ \tau^{*-1} \in H_{p}(G)$. Therefore, since $(\tau^{-1})^* \circ \tau^* = I$, (1) implies (2) is proved.

PROPOSITION 8. Let $n \ge 2$. Let P_1 be a subsemigroup of \mathbb{R}^n with the (AO)-condition such that $P_1 \supset \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n; x_1 > 0\}$. Then $C_u(\mathbb{R}^n) + H_{P_1}^{\infty}(\mathbb{R}^n)$ is not an algebra.

11

Proof. Define measures $\mu \in M_{P_1}^{\mathcal{A}}(R^n)$ and $\nu \in N_{\left(-P_1\right)}^{\mathcal{A}}(R^n)$ as follows: $d\mu(x_1, x') = h(x_1)dx_1 \times d\delta_0(x')$, $d\nu(x_1, x') = k(x_1)dx_1 \times d\delta_0(x')$,

where h is a function in $L^{1}(R)$ with $\operatorname{supp}(\hat{h}) \subset (1, 2)$, k is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{k}) \subset (-\infty, 0)$ and $\hat{k} = 1$ on [-2, -1], and δ_{0} denotes the Dirac measure at 0 in R^{n-1} .

We choose functions $g_1 \in L^{\infty}(R)$ and $g_2 \in L^{\infty}(R^{n-1})$ such that $g_1 * h \neq 0$ and $g_2 \notin C_u(R^{n-1})$. Define a function $g \in L^{\infty}(R^n)$ by $g(x_1, x') = g_1(x_1)g_2(x')$. Moreover, we define $\gamma_0 \in \hat{R}^n = R^n$ by $\gamma_0(x) = e^{-i3x_1}$, where $x = (x_1, x_2, \dots, x_n) \in R^n$. Then $g * \mu(x_1, x') = g_1 * h(x_1)g_2(x) \notin C_u(R^n)$ and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_0$. Hence, by Lemma 5, $C_u(R^n) + H_{P_1}^{\infty}(R^n)$ is not an algebra. // PROPOSITION 9. Let $n \ge 2$ and P be a subsemigroup of \mathbb{R}^n with the (AO)-condition such that it is not dense in \mathbb{R}^n . Then $C_{\mu}(\mathbb{R}^n) + H_p^{\infty}(\mathbb{R}^n)$ is not an algebra.

Proof. There is a unitary transformation τ on R^n such that $\tau(P) \supset \left\{ x = (x_1, x_2, \dots, x_n) \in R^n; x_1 > 0 \right\}$. Hence, by Lemma 7 and Proposition 8, $C_u(R^n) + H_P^{\infty}(R^n)$ is not an algebra. //

PROPOSITION 10. Let G be a locally compact abelian group such that \hat{G} is an algebraically ordered group and $\hat{G} \cong R^n \oplus F$, where $n \ge 2$, and F is a locally compact abelian group containing F_0 as a compact open subgroup. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Then $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra.

Proof. Case 1: $F_0 = \{0\}$. In this case, F is a discrete abelian group, and $P_{R^n} (= R^n \cap P)$ is a subsemigroup of R^n with the (AO)-condition.

Case 1.1: $F_0 = \{0\}$ and P_R^n is not dense in \mathbb{R}^n . Since $n \ge 2$, by Proposition 9, $C_u(\mathbb{R}^n) + \mathcal{H}_{P_R^n}^{\infty}(\mathbb{R}^n)$ is not an algebra. Hence there exist functions $f \in C_u(\mathbb{R}^n)$ and $g \in \mathcal{H}_{P_R^n}^{\infty}(\mathbb{R}^n)$ such that $fg \notin C_u(\mathbb{R}^n) + \mathcal{H}_{P_R^n}^{\infty}(\mathbb{R}^n)$. Let F and L be functions on G defined by \mathbb{R}^n F(x, y) = f(x) and L(x, y) = g(x) for $(x, y) \in \mathbb{R}^n \oplus \hat{F}$. Evidently, Fbelongs to $C_u(G)$.

CLAIM 1. L belongs to $H_{P}^{\infty}(G)$.

Indeed, for each $A \in H_p^1(G)$ and positive integer n, there exists $B_n \in L^1(G)$ such that \hat{B}_n has compact support and

$$||A_A \star B_n||_1 < 1/n$$
.

Since F is discrete, $\operatorname{proj}_{F}(\operatorname{supp}(A \widehat{*} B_{n})) = \{Y_{1}, Y_{2}, \dots, Y_{m}\}$ for some $Y_{1}, \dots, Y_{m} \in F$, where proj_{F} denotes the projection from \widehat{G} onto F. There exist functions $\varphi_{k} \in L^{1}(\mathbb{R}^{n})$ $(k = 1, \dots, m)$ such that $A * B_{n}(x, y) = \sum_{k=1}^{n} \varphi_{k}(x)(y, Y_{k})$. If $0 \notin \{Y_{1}, \dots, Y_{k}\}$, then $\int_{G} LA * B_{n}dm_{G} = \int_{\mathbb{R}^{n}} g(x) \sum_{k=1}^{m} \varphi_{k}(x) \int_{\widehat{F}} (y, Y_{k})dm_{F}(y)dx$ = 0. If $0 \in \{Y_{1}, \dots, Y_{m}\}$, we assume $Y_{1} = 0$ without loss of generality. Then φ_{1} must belong to $H_{P}^{1}(\mathbb{R}^{n})$. Hence we have $\int_{G} LA * B_{n}dm_{G} = \int_{\mathbb{R}^{n}} g(x)\varphi_{1}(x) \int_{\widehat{F}} (y, Y_{1})dm_{\widehat{F}}(y)dx$ $+ \sum_{k=2}^{m} \int_{\mathbb{R}^{n}} g(x)\varphi_{k}(x) \int_{\widehat{F}} (y, Y_{k})dm_{F}(y)dx$ $= \int_{\mathbb{R}^{n}} g(x)\varphi_{1}(x)dx$

Hence, in each case, we have
$$\int_G LA * B_n dm_G = 0$$
. On the other hand,
 $\lim_{n \to \infty} ||A - A * B_n||_1 = 0$. Hence, we have,

$$\int_{G} LA dm_{G} = \lim_{n \to \infty} \int_{G} LA * B_{n} dm_{G}$$
$$= 0 .$$

Thus L belongs to $H_p^{\infty}(G)$.

= 0 .

Suppose that $C_u(G) + H_p^{\infty}(G)$ is an algebra. Then there exist functions $S \in C_u(G)$ and $T \in H_p^{\infty}(G)$ such that FL = S + T.

We define functions $p(x) \in C_u(\mathbb{R}^n)$ and $q(x) \in L^{\infty}(\mathbb{R}^n)$ as follows: $p(x) = \int_{\widehat{F}} S(x, y) d\pi_{\widehat{F}}(y) ;$ $q(x) = \int_{\widehat{F}} T(x, y) d\pi_{\widehat{F}}(y) .$

CLAIM 2. $q(x) \in H_p^1(\mathbb{R}^n)$.

Indeed, for each $\eta \in H_p^1(\mathbb{R}^n)$, put $Y(x, y) = \eta(x)$ for \mathbb{R}^n

 $(x, y) \in \operatorname{R}^n \oplus \widehat{F}$. Then Y belongs to $\operatorname{H}^1_{\operatorname{P}}(G)$. Hence we have

$$0 = \int_{G} YTdm_{G}$$

= $\int_{R^{n}} \int_{\widehat{F}} Y(x, y)T(x, y)dm_{\widehat{F}}(y)dx$
= $\int_{R^{n}} \eta(x) \int_{\widehat{F}} T(x, y)dm_{\widehat{F}}(y)dx$
= $\int_{R^{n}} \eta(x)q(x)dx$.

Therefore q(x) belongs to $H_p^{\infty}(\mathbb{R}^n)$. Evidently, $p(x) \in C_u(\mathbb{R}^n)$.

Hence, by Claim 2, we have

$$\begin{split} f(x)g(x) &= \int_{\widehat{F}} F(x, y)L(x, y)dm_{\widehat{F}}(y) \\ &= \int_{\widehat{F}} S(x, y)dm_{\widehat{F}}(y) + \int_{\widehat{F}} T(x, y)dm_{\widehat{F}}(y) \\ &= p(x) + q(x) \in C_{u}(\mathbb{R}^{n}) + H_{P}^{\infty}(\mathbb{R}^{n}) \quad . \end{split}$$

This is a contradiction. Hence, in this case, $C_u(G) + H_p^{\infty}(G)$ is not an algebra.

CASE 1.2. $F_0 = \{0\}$ and P_{R^n} is dense in R^n . Since R^n is an open subgroup of \hat{G} and P is not dense in \hat{G} , there exists an element $\gamma_0 \in F$ with $\gamma_0 >_P 0$ such that $R^n + \gamma_0 \subset P$. We define measures $\mu \in M_P^2(G)$ and $\nu \in M_{(-P)}^2(G)$ as follows:

$$d\mu(x, y) = d\gamma_0(x) \times (y, \gamma_0) dm_{\widehat{F}}(y) ,$$

$$d\nu(x, y) = d\gamma_0(x) \times (y, -\gamma_0) dm_{\widehat{F}}(y) .$$

Choose a nonzero function $f \in L^{\infty}(\mathbb{R}^n) \setminus C_u(\mathbb{R}^n)$, and define a function F on G by $F(x, y) = f(x)(y, \gamma_0)$. Then $F \star \mu(x, y) = f(x)(y, \gamma_0)$ does not belong to $C_u(G)$. Evidently, $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) - 2\gamma_0$.

Hence, by Lemma 5, $C_u(G) + H_p^{\infty}(G)$ is not an algebra. Thus, in Case 1, we have proved that $C_u(G) + H_p^{\infty}(G)$ is not an algebra.

CASE 2. $F_0 \neq \{0\}$. Put $P_0 = P \cap R^n \oplus F_0$. We consider two cases, depending on whether P_0 is dense in $R^n \oplus F_0$ or not.

CASE 2.1. Suppose P_0 is dense in $R^n \oplus P_0$. Then there exists an element $\gamma_0 \in F$ with $\gamma_0 >_P 0$ such that $R^n \oplus F_0 + \gamma_0 \subset P$. Let *H* be an annihilator of F_0 in \hat{F} ; that is,

$$H = \{y \in \hat{F}; (y, \gamma) = 1 \text{ for every } \gamma \in F_0\}.$$

Then *H* is an open compact subgroup of \hat{F} . Define measures $\mu \in M_P^{\mathcal{A}}(G)$ and $\nu \in M_{(-P)}^{\mathcal{A}}(G)$ as follows:

$$d\mu(x, y) = d\delta_0(x) \times (y, \gamma_0) dm_H(y) ,$$

$$d\nu(x, y) = d\delta_0(x) \times (y, -\gamma_0) dm_H(y) ,$$

where δ_0 and m_H denote the Dirac measure at 0 in R^n and the

normalised Haar measure on H, respectively. Choose a nonzero function $f(x) \in L^{\infty}(\mathbb{R}^n) \setminus C_{\mu}(\mathbb{R}^n)$, and define a function F(x, y) on G by $F(x, y) = f(x)(y, \gamma_0)$. Then $F \star \mu = F \notin C_{\mu}(G)$.

Moreover, $\hat{v} = 1$ on $\operatorname{supp}(\hat{\mu}) - 2\gamma_0$. Hence, by Lemma 5, $C_u(G) + H_p^{\infty}(G)$ is not an algebra.

CASE 2.2. Suppose P_0 is not dense in $R^n \oplus F_0$. Then there exists an automorphism τ on \hat{G} such that

$$\tau(P) \cap R^n \supset \left\{ x = (x_1, \ldots, x_n) \in R^n; x_1 > 0 \right\}.$$

Hence, by Lemma 7, we may assume that

$$P \cap R^n \supset \{x = (x_1, \ldots, x_n); x_1 > 0\}$$
.

By Lemma 6, for $z \in \overset{\circ}{P}_{R^{n}} (= \overset{\circ}{P} \overset{\circ}{\cap} \overset{n}{R^{n}})$, $z >_{P} y$ for every $y \in F_{0}$. Let c_{1} and c_{2} be positive numbers such that $0 < c_{1} < c_{2}$. Choose a nonzero function $h \in L^{1}(R)$ such that $\operatorname{supp}(\hat{h}) \subset (c_{1}, c_{2})$. We define a measure $\mu \in M_{P}^{2}(G)$ by $d\mu(x_{1}, x', y) = h(x_{1})dx_{1} \times d\delta_{0}(x') \times dm_{H}(y)$, where $\delta_{0}(x')$ is the Dirac measure at 0 in R^{n-1} and H is an annihilator of F_{0} in \hat{F} . We choose nonzero functions $g_{1} \in L^{\infty}(R)$, $g_{2} \in L^{\infty}(R^{n-1}) \setminus C_{u}(R^{n-1})$, and $g_{3} \in L^{\infty}(\hat{F})$ such that $g_{1} * h \neq 0$ and $g_{3} * m_{H} \neq 0$. Put $F(x_{1}, x', y) = g_{1}(x_{1})g_{2}(x')g_{3}(y)$; then $F * \mu \notin C_{u}(G)$. Next we define a measure $\nu \in M_{(-P)}^{\alpha}(G)$ as follows:

$$dv(x_1, x', y) = \xi(x_1)dx_1 \times d\xi_0(x') \times dm_H(y) ,$$

where ξ is in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$ and $\hat{\xi} = 1$ on $[-c_{2}, -c_{1}]$. Define a character $\eta \in \hat{G}$ by $\eta(x_{1}, x', y) = e^{-ic_{3}x_{1}}$, where $c_3 = c_1 + c_2$. Then $\hat{v} = 1$ on $\operatorname{supp}(\hat{\mu}) + \eta$. Hence, by Lemma 5, $C_u(G) + H_p^{\infty}(G)$ is not an algebra. Therefore, in each case, $C_u(G) + H_p^{\infty}(G)$ is not an algebra. //

PROPOSITION 11. Let G be a locally compact abelian group such that \hat{G} is an algebraically ordered group. Suppose that $\hat{G} \cong R \oplus F$, where F is a nontrivial discrete abelian group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Then $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra.

PROOF. CASE 1. Suppose P is dense in R. Then there exists an element $\gamma_0 \in F$ with $\gamma_0 >_P 0$ such that $R + \gamma_0 \subset P$. Hence we can prove that $C_u(G) + H_P^{\infty}(G)$ is not an algebra in the same way as in Case 2.2 of Proposition 10.

CASE 2. Suppose P is not dense in R. We may assume $P \cap R = [0, \infty)$.

CASE 2.1. First we consider the case that $F \notin Z$ (integers) and $P \cap F$ induces an archimedean order on F. Then F is order preserving and isomorphic to some subgroup of R_d which is dense in R with respect to the usual topology of R.

Fix an element $d_0 \in F$ such that $d_0 >_P 0$. Then $\{d \in F; 0 <_P d <_P d_0\}$ is an infinite set. By Bochner's Theorem, there exist measures $\mu_2 \in M_{P\cap F}^2(\hat{F})$ and $\nu_2 \in M_{(-P\cap F)}^2(\hat{F})$ such that $\operatorname{supp}(\hat{\mu}_2) \subset \{d \in F; 0 \leq_P d \leq_P 2d_0\}$, $\{d \in F; |\hat{\mu}_2(d)| \geq \frac{1}{2}\}$ is infinite, and $\hat{\nu}_2 = 1$ on $\operatorname{supp}(\hat{\mu}_2) - 4d_0$. Since $\mu_2 \notin L^1(\hat{F})$, there exists a function $g_2 \in L^{\infty}(\hat{F})$ such that $g_2 \star \mu_2 \notin C(\hat{F})$. Let h be a nonzero function in $L^1(R)$ such that $\operatorname{supp}(\hat{h}) \subset [1, 2]$. We choose a function $g_1 \in L^{\infty}(R)$ such that $g_1 \star h \neq 0$.

We define $F \in L^{\infty}(G)$, $\mu \in M_{P}^{\alpha}(G)$, and $\nu \in M_{(-P)}^{\alpha}(G)$ as follows: $F(x, y) = g_{1}(x)g_{2}(y)$,

$$d\mu(x, y) = h(x)dx \times d\mu_2(y) ,$$

$$d\nu(x, y) = \xi(x)dx \times d\nu_2(y) ,$$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$ and $\hat{\xi} = 1$ on [-2, -1]. Define $\gamma_{0} \in \hat{G}$ by $\gamma_{0}(x, y) = e^{-i\Im x}(y, -4d_{0})$. Then $F \star \mu(x, y) = g_{1} \star h(x)g_{2} \star \mu_{2}(y) \notin C_{u}(G)$, and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_{0}$. Hence, by Lemma 5, $C_{u}(G) + H_{p}^{\infty}(G)$ is not an algebra.

CASE 2.2. Suppose $F \not\cong Z$ and $P \cap F$ induces a nonarchimedean order on F .

Then there exist two elements d_1 , $d_2 \in F$ with $0 <_p d_1 <_p d_2$ such that $nd_1 <_p d_2$ for every $n \in \mathbb{Z}$. Let $\Lambda = \{nd_1; n \in \mathbb{Z}\}$, and let H be an annihilator of Λ in \hat{F} . Then m_H (the Haar measure on H) is regarded as a singular measure with respect to the Haar measure on \hat{F} .

Hence, by [2], Theorem (35.13), there exists $g_2 \in L^{\infty}(\hat{F})$ such that $g_2 * (d_2m_H) \notin C_u(\hat{F})$. Let h_1 and ξ be functions in $L^1(R)$ such that $\operatorname{supp}(\hat{h}_1) \subset [1, 2]$, $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on [-2, -1]. We choose a function $g_1 \in L^{\infty}(R)$ such that $g_1 * h_1 \neq 0$, and define a function F on G by $F(x, y) = g_1(x)g_2(y)$.

Define measures
$$\mu \in M_P^2(G)$$
 and $\nu \in M_{(-P)}^2(G)$ as follows:
 $d\mu(x, y) = h_1(x)dx \times (y, d_2)dm_H(y)$,
 $d\nu(x, y) = \xi(x)dx \times (y, -d_2)dm_H(y)$.

Then $F \star \mu \notin C_u(G)$. Define a character $\gamma_0 \notin \hat{G}$ by $\gamma_0(x, y) = e^{-i\Im x}(y, -2d_2)$. Then $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_0$. Hence, by Lemma 5, $C_u(G) + H_p^{\infty}(G)$ is not an algebra.

CASE 2.3. Suppose $F \cong Z$ (integers). In this case, we need consider only the following three cases:

(A) there exists a positive number b such that

$$\begin{pmatrix} P_A = \end{pmatrix} P = \{(n, x) \in Z \oplus R; x \ge n-bn \text{ if } n \le -1\} \\ \cup \{(n, x) \in Z \oplus R; x > n-bn \text{ if } n \ge 0\}; \\ (B) \quad \begin{pmatrix} P_B = \end{pmatrix} P = \{(n, x) \in Z \oplus R; n \ge 1, \text{ or } n = 0 \text{ and } x \ge 0\}; \\ (C) \quad \begin{pmatrix} P_C = \end{pmatrix} P = \{(n, x) \in Z \oplus R; x \ge 0 \text{ if } n \ge 0\} \\ \cup \{(n, x) \in Z \oplus R; x > 0 \text{ if } n \le -1\}. \end{cases}$$

But let $\tau(n, x) = (n, x+bn)$. Then τ is an automorphism on $Z \oplus R$, and $\tau(P_A) = P_C$. Hence, by Lemma 7, we need investigate only Cases (B) and (C). We prove only Case (C). (In Case (B), we can proceed in the same way.)

Let h be a nonzero function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{h}) \subset [1, 2]$. Choose functions $g_{1} \in L^{\infty}(R)$ and $g_{2} \in L^{\infty}(R)$ such that $g_{1} \notin C(T)$ and $g_{2} \star h \neq 0$. Define measures $\mu \in M_{P}^{\alpha}(T \oplus R)$ and $\nu \in M_{(-P)}^{\alpha}(T \oplus R)$ as follows:

$$d\mu(x, y) = d\delta_0(x) \times h(y)dy ,$$

$$d\nu(x, y) = d\delta_0(x) \times \xi(y)dy ,$$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on [-2, -1]. Then $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + (0, -3)$ and $F \star \mu \notin C_{\mu}(T \oplus R)$, where $F(x, y) = g_{1}(x)g_{2}(y) \in L^{\infty}(T \oplus R)$.

Hence, by Lemma 5, $C_u(T \oplus R) + H_p^{\infty}(T \oplus R)$ is not an algebra. Therefore, in each case, $C_u(G) + H_p^{\infty}(G)$ is not an algebra. //

LEMMA 12. Let $G = G_1 \oplus D$, where G_1 is a locally compact abelian group such that \hat{G}_1 is torsion-free, and D is a discrete abelian group such that \hat{D} is torsion-free. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . Moreover, we assume that (i) $s >_p t$ for each $s \in (P \cap \hat{G}_1)$ and $t \in \hat{D}$,

(iii) $P^{c} \subset \overline{\left(-P \cap \widehat{G}_{1}\right) \times \widehat{D}}$, and

(iii)
$$(-P \circ \hat{G}_1) \subset \overline{(P \circ \hat{G}_1)^c}$$
.
If $C_u(G_1) + H_{P \circ \hat{G}_1}^{\infty}(G_1)$ is not an algebra, $C_u(G) + H_P^{\infty}(G)$ is not an algebra.

Proof. Suppose that $C_u(G) + H_p^{\infty}(G)$ is an algebra. For $f \in H_{P \cap \widehat{G}_1}(G_1)$, put F(x, d) = f(x) for $(x, d) \in G_1 \oplus D$. CLAIM 1. F belongs to $H_p^{\infty}(G)$.

Indeed, for each $h \in H^{1}_{P}(G_{1} \oplus D)$, h can be represented as follows:

$$h(x, d) = \sum_{n=1}^{\infty} h(x, d_n) \times d\delta d_n(d) \text{ for some } d_n \in D ,$$
$$\|h\|_1 = \sum_{n=1}^{\infty} \|h(\cdot, d_n)\|_{L^1(G_1)} ,$$

and

$$h(\cdot, d_n) \in H^1_{P \cap \hat{G}_1}(G_1) \quad (n = 1, 2, 3, ...)$$

Hence we have

$$\int_{G} Fhdm_{G} = \sum_{n=1}^{\infty} \int_{G_{1}} F(x, d_{n})h(x, d_{n})dm_{\widehat{G}_{1}}(x)$$
$$= \sum_{n=1}^{\infty} \int_{G_{1}} f(x)h(x, d_{n})dm_{\widehat{G}_{1}}(x)$$
$$= 0 .$$

That is, F belongs to $H_p^{\infty}(G)$.

For $g \in C_u(G_1)$, define $K(x, y) \in C_u(G)$ by K(x, y) = g(x). Then there exist functions $H \in C_u(G_1 \oplus D)$ and $L \in H_p^{\infty}(G \oplus D)$ such that FK = H + L.

Hence, in particular, F(x, 0)K(x, 0) = H(x, 0) + L(x, 0) almost everywhere $x \in G_1$. That is, f(x)g(x) = H(x, 0) + L(x, 0) almost everywhere $x \in G_1$. Evidently $H(\cdot, 0)$ belongs to $C_{\mu}(G_1)$.

CLAIM 2.
$$K(\cdot, 0)$$
 belongs to $H_{P\cap \hat{G}_1}^{\infty}(G_1)$.

Indeed, for $k \in B^1_{P \cap \hat{G}_1}(G_1)$, define a function $N(x, d) \in L^1(G_1 \oplus D)$ as follows:

$$N(x, d) = \begin{cases} k(x) & \text{if } d = 0 \\ 0 & \text{if } d \neq 0 \end{cases}$$
Then $\hat{N}(\gamma_1, \gamma_2) = \hat{k}(\gamma_1)$ for $(\gamma_1, \gamma_2) \in (-P \stackrel{\circ}{\cap} \hat{G}_1) \times \hat{D}$. Hence $\hat{N} = 0$
on $\overline{(-P \stackrel{\circ}{\cap} \hat{G}_1) \times \hat{D}} \supset P^2$. That is, N belongs to $H^1_{\overline{P}}(G)$. Hence we have

$$\int_{G_{1}} K(x, 0)k(x)dx = \int_{G} K(x, d)N(x, d)dm_{G}$$

= 0.

Therefore $C_u(G_1) + H_{P \cap \hat{G}_1}^{\infty}(G_1)$ becomes an algebra. This is a contradiction. //

LEMMA 13. Let Γ be a locally compact abelian group and P a subsemigroup of Γ satisfying the (AO)-condition. Let F be an open subgroup of Γ such that P is dense in it. If there exists an element $\gamma_0 \in \Gamma$ such that -P is not dense in $\gamma_0 + F$, then we have $P \supset \gamma_0 + F$.

Proof. Since -P is not dense in $\gamma_0 + F$, there exists an open subset V of F such that $(\gamma_0 + V) \cap \overline{(-P)} = \emptyset$. Hence we have $\gamma_0 + V \subset P$. Since P is dense in F, we have $V + P \supset F$. Therefore we have $\gamma_0 + F \subset \gamma_0 + V + P \subset P$. //

PROPOSITION 14. Let G be a locally compact abelian group. Let \hat{G} be torsion-free and $\hat{G} \cong R \oplus F$, where F is a locally compact abelian group which contains a compact open subgroup $F_0 \neq \{0\}$. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . If $C_{\mu}(G) + H_{P}^{\infty}(G)$ is an algebra, then F is compact.

Proof. We suppose F is not compact.

CASE 1. Suppose P is dense in $R \oplus F_0$. Since $R \oplus F_0$ is an open subgroup, there exists $\gamma_0 \in F$ with $\gamma_0 >_P 0$ such that $R \oplus F_0 + \gamma_0 \subset P$. Hence, in this case, we can prove that $C_u(G) + H_p^{\infty}(G)$ is not an algebra as in Case 2.1 of the proof of Proposition 10.

CASE 2. P is not dense in $R \oplus F_0$.

CASE 2.1. Suppose P is not dense in $R \oplus F_0$ and $P \cap F$ is dense in F. Since P is necessarily dense in F_0 , it is not dense in R. Hence we may assume $P \cap R = [0, \infty)$. We note that $x + F \subset P$ for each $x \in R$ such that x > 0. Let h be a nonzero function in $L^1(R)$ such that $\operatorname{supp}(\hat{h}) \subset [1, 2]$. Choose functions $g_1 \in L^{\infty}(R)$ and $g_2 \in L^{\infty}(\hat{F}) \setminus C_u(\hat{F})$ such that $g_1 * h \neq 0$. Put $F(x, y) = g_1(x)g_2(y)$. Let γ_0 be a character of G defined by $\gamma_0(x, y) = e^{-i\Im x}$. Define measures $\mu \in M_P^2(G)$ and $\nu \in M_{(-P)}^2(G)$ as follows:

> $d\mu(x, y) = h(x)dx \times d\delta_0(y) ,$ $d\nu(x, y) = \xi(x)dx \times d\delta_0(y) ,$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on $\lfloor -2, -1 \rfloor$. Then $F \star \mu \notin C_{\mu}(G)$ and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_{0}$. Hence, by Lemma 5, $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra.

CASE 2.2. Suppose P is not dense in $R \oplus F_0$ and F respectively. Let $F = \{\gamma + F_0; \gamma \in F, O(\gamma + F_0) < \infty\}$, where $O(\gamma + F_0)$ denotes the order of the coset $\gamma + F_0$ in F/F_0 .

CLAIM 1. F is a finite set.

Suppose F is infinite. Put $F_F = \bigcup \{\gamma + F_0; \gamma + F_0 \in F\}$. Then F_F is a noncompact open subgroup of F. Evidently, P is dense in F_F . We may assume $P \cap R = [0, \infty)$. Since P is not dense in $R \oplus F_F$,

 $\{(x, y) \in R \oplus F_F; x > 0, y \in F_F\} \text{ is included in } P \text{ . Let } h \text{ be a nonzero function in } L^1(R) \text{ such that } \operatorname{supp}(\hat{h}) \subset [1, 2] \text{ . Let } H = F_F^- \text{ (the annihilator of } F_F^- \text{ in } \hat{F} \text{) and } H_0^- = F_0^- \text{ (the annihilator of } F_0^- \text{ in } \hat{F} \text{).} \text{ Then } H_0^- \text{ is a compact open subgroup of } \hat{F} \text{ . Moreover, } H_0^/H \text{ is infinite.} \text{ Hence } m_H^- \text{ (a normalized Haar measure on } H \text{) is regarded as a singular measure with respect to a Haar measure on } H_0^- \text{ . Hence there exists a function } g_2 \in L^\infty(\hat{F}) \text{ such that } g_2 * m_H \notin C_u(\hat{F}) \text{ . Let } g_1^- \text{ be a function } \text{ in } L^1(R) \text{ such that } g_1 * h \neq 0 \text{ . Put } g(x, y) = g_1(x)g_2(x) \text{ . Let } \gamma_0^- \text{ be a character of } G \text{ defined by } \gamma_0(x, y) = e^{-i\Im x}^- \text{ . Define measures } \mu \in M_P^2(G) \text{ and } \nu \in M_{(-P)}^2(G) \text{ as follows: }$

$$d\mu(x, y) = h(x)dx \times dm_{H}(y) ,$$

$$d\nu(x, y) = \xi(x)dx \times dm_{H}(y) ,$$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on [-2, -1]. Then $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_{0}$, and $g * \mu$ does not belong to $C_{\mu}(G)$. Hence, by Lemma 5, $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra. This is a contradiction. Hence Claim 1 is proved. Therefore F_{F} is a compact open subgroup of F.

CLAIM 2. Let γ be in F such that $\gamma >_P 0$ and $\gamma + F_F \neq F_F$. Then $\gamma + F_F$ is included in P.

By Lemma 13, we need only prove that $\gamma + F_F \neq \overline{(-P)}$.

Suppose $\gamma + F_F \subset \overline{(-P)}$. Since F/F_F is torsion-free, P is dense in $Z \oplus F_F \cong (Z\gamma) \oplus F_F$. Hence $\{(x, y) \in R \oplus Z \oplus F_F; x > 0, y \in Z \oplus F_F\}$ is included in P. Let H_0 and H be annihilators of F_F and $Z \oplus F_F$ in \hat{F} respectively. Then m_H is a singular measure with respect to a Haar measure on \hat{F} . Hence there exists a function g_2 in $L^{\infty}(\hat{F})$ such that $g_2 * (\gamma m_H) \notin C_u(\hat{F})$. Let h be a nonzero function in $L^1(R)$ such that $\sup_{q_1} * h \neq 0$, and define a function $g \in L^{\infty}(G)$ by $g(x, y) = g_1(x)g_2(y)$. Let γ_0 be a character of G defined by $\gamma_0(x, y) = e^{-i\Im x}(y, -2\gamma)$. Define measures $\mu \in M_p^2(G)$ and $\nu \in M_{(-P)}^2(G)$ as follows:

$$d\mu(x, y) = h(x)dx \times (y, \gamma)dm_H(y) ,$$

$$d\nu(x, y) = \xi(x)dx \times (y, -\gamma)dm_H(y) ,$$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on [-2, -1]. Then $g \star \mu$ does not belong to $C_{\mu}(G)$, and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_{0}$. Hence, by Lemma 5, $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra. This is a contradiction. Hence, Claim 2 is proved.

Put $\tilde{P} = \{\gamma + F_F; \gamma >_P 0, \gamma + F_F \neq F_F\} \cup \{[0]\}$. Then, by Claim 2, \tilde{P} is a subsemigroup of F/F_F with the (AO)-condition.

CASE 2.21. First we consider the case that $ilde{P}$ induces a nonarchimedean order on F/F_{F} .

Then there exist positive elements $[\gamma_1]$, $[\gamma_2] \in F/F_F$ such that $n[\gamma_1] \leq_{\widetilde{P}} [\gamma_2]$ for every $n \in \mathbb{Z}$. Let $[F_F, \gamma_1]$ be an open subgroup of Fgenerated by γ_1 and F_F . Then $[F_F, \gamma_1] \cong F_F \oplus \mathbb{Z}$. Let $H_{\gamma_1} = [F_F, \gamma_1]^{\perp}$ (the annihilator of $[F_F, \gamma_1]$ in F). Then $m_{H_{\gamma_1}}$ (the Haar measure on H_{γ_1}) is a singular measure with respect to a Haar measure on \widehat{F} . Hence there exists a function $g_2 \in L^{\infty}(F)$ such that $g_2 \star (\gamma_2 m_{H_{\gamma_1}}) \notin C_u(\widehat{F})$. Let h be a function in $L^1(R)$ such that $\supp(\widehat{h}) \subset [1, 2]$. Choose a function $g_1 \in L^{\infty}(R)$ such that $g_1 \star h \neq 0$. Put $g(x, y) = g_1(x)g_2(y)$ for $(x, y) \in R \oplus \widehat{F}$. Define measures $\mu \in M_P^a(G)$ and $\nu \in M_{(-P)}^a(G)$ as follows:

$$d\mu(x, y) = h(x)dx \times (y, \gamma_2)dm_{H_{\gamma_1}}(y) ,$$

$$dv(x, y) = \xi(x)dx \times (y, -\gamma_2)dm_{H_{\gamma_1}}(y) ,$$

where ξ is a function in $L^{1}(R)$ such that $\operatorname{supp}(\hat{\xi}) \subset (-\infty, 0)$, and $\hat{\xi} = 1$ on [-2, -1]. Let γ_{0} be a character of G defined by $\gamma_{0}(x, y) = e^{-i\hat{\beta}x}(y, -2\gamma_{2})$. Then $g \star \mu \notin C_{\mu}(G)$, and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_{0}$. Hence, by Lemma 5, $C_{\mu}(G) + H_{p}^{\infty}(G)$ is not an algebra. This is a contradiction.

CASE 2.22. Next, we consider the case that $F/F_F \neq Z$ and \tilde{P} induces an archimedean order on F/F_F .

Then F/F_F is order preserving isomorphic to a subgroup of R_d which is dense in R with respect to the usual topology. Hence, as seen in Case 2.1 of the proof of Proposition 11, we can construct $\gamma_0 \in \hat{G}$, $F \in L^{\infty}(G)$, $\mu \in M_P^{\alpha}(G)$, and $\nu \in M_{(-P)}^{\alpha}(G)$ such that $F \star \mu \notin C_u(G)$ and $\hat{\nu} = 1$ on $\operatorname{supp}(\hat{\mu}) + \gamma_0$. Hence $C_u(G) + H_P^{\infty}(G)$ is not an algebra by Lemma 5.

CASE 2.23. Finally, we consider the case $F/F_F \cong Z$. Then $\hat{G} \cong R \oplus Z \oplus F_F$. Let $G_1 = R \oplus T$. Then \hat{G}_1 has the following properties:

(i) $s >_{P} t$ for each $s \in (\hat{G}_{1} \cap P)$ and $t \in F_{F}$; (ii) $P^{c} \subset \overline{(-P \cap \hat{G}_{1}) \times F}$; (iii) $(-P \cap \hat{G}_{1}) \subset \overline{(P \cap \hat{G}_{1})^{c}}$.

As seen in Case 2.3 of the proof of Proposition 11, $C_u(G_1) + H_{P\cap \hat{G}_1}^{\infty}(G_1)$ is not an algebra. Hence, by Lemma 12, $C_u(G) + H_P^{\infty}(G)$ is not an algebra. Hence, in each case, we have a contradiction. Therefore F must be compact. //

The following theorems are due to Sarason (see [3], [5], and [6]). THEOREM 15. $C(T) + H^{\infty}(T)$ is a closed subalgebra of $L^{\infty}(T)$. THEOREM 16. $C_{\mu}(R) + H^{\infty}(R)$ is a closed subalgebra of $L^{\infty}(R)$.

The following theorem is due to Rudin ([4]).

THEOREM 17. Let G be a compact abelian group such that \hat{G} is ordered. Then $C(G) + H^{\circ}(G)$ is a closed subalgebra of $L^{\circ}(G)$ if and only if $G \cong T$.

PROPOSITION 18. Let G be a nondiscrete locally compact abelian group such that \hat{G} contains a compact open subgroup $F \neq \{0\}$. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} .

If $C_u(G) + H_p^{\infty}(G)$ is an algebra, then $G \cong T \oplus \hat{F}_*$ for some compact open subgroup F_* of \hat{G} .

Proof. Let $F_* = \bigcup\{\gamma + F; \gamma \in \hat{G}, O(\gamma + F) < \infty\}$. Then, as seen in Case 2.2 of the proof of Proposition 14, F_* is a compact open subgroup of \hat{G} . Put $\tilde{P} = \{\gamma + F_*; \gamma >_P 0, \gamma + F_* \neq F_*\}$.

If $\gamma >_{p} 0$ and $\gamma \notin F_{*}$, then $\gamma + F_{*}$ is contained in P.

Hence \tilde{P} is a subsemigroup of F/F_* with the (AO)-condition.

Let $H_0 = F_*^{\perp}$ (the annihilator of F_*^{\perp}). Then H_0 is a compact open subgroup of G.

CLAIM 1. For
$$f \in H_p^1(G)$$
, $f = \sum_{n=1}^{\infty} f_n$ with $\|f\|_1 = \sum_{n=1}^{\infty} \|f_n\|_1$,
where f_n is the restriction of f to some coset $x_n + H_0$
 $(n = 1, 2, ...)$. Put $h_n = \delta_{-x_n} \star f_n$. Then $f = \sum_{n=1}^{\infty} \delta_{x_n} \star h_n$, and h_n
belongs to $H_{\widetilde{P}}^1(H_0)$ $(n = 1, 2, ...)$.

Indeed, let γ be in \hat{G} such that $[\gamma]<_{\widetilde{P}}0$. Then $\gamma+s<_{p}0$ for every $s\in F_{\star}$. Hence we have

$$0 = \hat{f}(\gamma + s)$$

= $\sum_{n=1}^{\infty} \hat{h}_{n}([\gamma])(-x_{n}, \gamma)(-x_{n}, s)$ for every $s \in F_{*}$

Since $\{\hat{h}_{n}([\gamma])(-x_{n},\gamma)\} \in l^{1}$, we obtain $\hat{h}_{n}([\gamma]) = 0$ (n = 1, 2, ...). That is, $h_{n} \in H_{\widetilde{P}}^{1}(H_{0})$ (n = 1, 2, ...). Let $H_{\widetilde{P},0}^{\infty}(H_{0}) = \{g \in L^{\infty}(H_{0}); \hat{g}(\gamma) = 0 \text{ if } \gamma \leq_{\widetilde{P}} 0\}$; that is $H_{\widetilde{P},0}^{\infty}(H_{0}) = \left(H_{\widetilde{P}}^{1}(H_{0})\right)^{1}$. CLAIM 2. $H_{\widetilde{P},0}^{\infty}(H_{0}) \subset H_{\widetilde{P}}^{\infty}(G)$. This is obtained from Claim 1. We note that $C(H_{0}) + H_{\widetilde{P}}^{\infty}(H_{0}) = C(H_{0}) + H_{\widetilde{P},0}^{\infty}(H_{0})$. CLAIM 3. $C(H_{0}) + H_{\widetilde{P}}^{\infty}(H_{0})$ is an algebra.

For $f \in C(H_0)$ and $g \in H^{\infty}_{\widetilde{P},0}(H_0)$, by Claim 2, f and g can be regarded as functions in $C_{\mathcal{U}}(G)$ and $H^{\infty}_{\mathcal{P}}(G)$, respectively.

Since $C_u(G) + H_p^{\infty}(G)$ is an algebra, there exist functions $H \in C_u(G)$ and $K \in H_p^{\infty}(G)$ such that gf = H + K.

Evidently, $H|_{H_0}$ belongs to $C(H_0)$. Moreover, we can check that $K|_{H_0}$ belongs to $H_{\widetilde{P}}^{\infty}(H_0)$. Hence we have $fg \in C(H_0) + H_{\widetilde{P}}^{\infty}(H_0)$. Therefore $C(H_0) + H_{\widetilde{P}}^{\infty}(H_0)$ is an algebra.

Hence, by Theorem 17, we have $F/F_* \cong Z$. Hence $G = T \oplus \hat{F}_*$. //

THEOREM 19. Let G be a nondiscrete locally compact abelian group such that \hat{G} is an algebraically ordered group. Let P be a subsemigroup of \hat{G} with the (AO)-condition such that it is not dense in \hat{G} . If $C_u(G) + H_p^{\infty}(G)$ is a closed subalgebra of $L^{\infty}(G)$, then G admits one of the following structures

(a) $G \cong R$, (b) $G \cong R \oplus D$, (c) $G \cong T$, (d) $G \cong T \oplus D$. where D is some discrete abelian group.

Proof. By the structure theorem, $\hat{G} \cong R^n \oplus F$, where F is a locally compact abelian group which contains a compact open subgroup F_0 .

If $n \ge 2$, $C_u(G) + H_p^{\infty}(G)$ is not an algebra by Proposition 10. If n = 1, by Proposition 11 and Proposition 14, we have $G \cong R$, or $G \cong R \oplus D$ for some discrete abelian group D. If n = 0, by Theorem 17 and Proposition 18, we have $G \cong T$, or $G \cong T \oplus D$ for some discrete abelian group D. //

THEOREM 20. Let D be a discrete abelian group such that \hat{D} is torsion-free. Let P be a subsemigroup of $Z \oplus \hat{D}$ with the (AO)-condition such that it is not dense in $Z \oplus \hat{D}$. Then $C_u(T \oplus D) + H_p^{\infty}(T \oplus D)$ is a closed subalgebra of $L^{\infty}(T \oplus D)$.

Proof. Evidently $C_u(T \oplus D) + H_P^{\infty}(T \oplus D)$ is a closed subspace of $L^{\infty}(T \oplus D)$. We may assume that $P \cap Z = \{n \in Z; n \ge 0\}$. We can easily check the following:

$$H_{P}^{1}(T \oplus D) = \left\{ f \in L^{1}(T \oplus D); f(\cdot, d) \in H_{0}^{1}(T) \text{ for every } d \in D \right\},$$

$$(*)$$

$$H_{P}^{\infty}(T \oplus D) = \left\{ g \in L^{\infty}(T \oplus D); g(\cdot, d) \in H^{\infty}(T) \text{ for every } d \in D \right\}.$$

For each nonnegative integer ${\it N}$, we define ${\it Q}_{\it N}$ as follows:

$$\begin{split} & \mathcal{Q}_N = \{f(t, d) \in L^\infty(T \oplus D); \ f(\cdot, \hat{d})(n) = 0 \quad \text{if} \quad n < -N \quad \text{for every} \quad d \in D\} \;. \\ & \text{Then} \quad \mathcal{Q}_N \quad \text{is a subalgebra of} \quad L^\infty(T \oplus D) \quad \text{containing} \quad H^\infty_p(T \oplus D) \;. \quad \text{Moreover,} \\ & \mathcal{Q}_N \quad \text{is contained in} \quad C_{_{\mathcal{I}}}(T \oplus D) + H^\infty_p(T \oplus D) \;. \end{split}$$

CLAIM.
$$\bigcup_{N=0}^{\infty} Q_N$$
 is dense in $C_u(T \oplus D) + H_P^{\infty}(T \oplus D)$.

Indeed, for $f \in C_u(T \oplus D)$, we define a function $f_d \in C(T)$ by $f_d(x) = f(x, d)$ $(d \in D)$. Put $A_f = \{f_d; d \in D\}$.

Then A_f is uniformly continuous and equicontinuous. Hence, by the Ascoli-Arzela Theorem, A_f is relative compact in C(T). That is, for

 ε > 0 , there exist functions f_{d_1} , ..., $f_{d_m} \in A_f$ such that

$$\bigcup_{k=1}^{m} \{h \in C(\mathbb{T}); \|h-f_d\|_{\infty} < \varepsilon/3\} \supset A_f.$$

Let ${K \choose n}_{n=1}^{\infty}$ be Féjer's kernel. Then there exists a positive integer N such that $\|K_N \star f_{d_k} - f_{d_k}\|_{\infty} < \varepsilon/3$ (k = 1, ..., m).

For $f_d \in A_f$, there exists a positive integer k $(1 \le k \le m)$ such that $\|f_d - f_{d_k}\|_{\infty} < \epsilon/3$. Hence we have

$$\|f_{d} \star^{K}_{N} - f_{d}\|_{\infty} < \|f_{d} \star^{K}_{N} - f_{d_{k}} \star^{K}_{N}\|_{\infty} + \|f_{d_{k}} \star^{K}_{N} - f_{d_{k}}\|_{\infty} + \|f_{d_{k}} - f_{d}\|_{\infty}$$

$$< \epsilon .$$

Put $F_{ii}(x, d) = f_d \star K_{ii}(x)$. Since

$$F_N(x, d) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1}\right) \hat{f}_d(n) e^{inx} ,$$

 F_N belongs to Q_N ; and $||F_N - f||_{\infty} < \varepsilon$. That is, $\bigcup_{N=0}^{\infty} Q_N$ is dense in $C_u(T \oplus D) + H_p^{\infty}(T \oplus D)$. Therefore $C_u(T \oplus D) + H_p^{\infty}(T \oplus D)$ is a closed subalgebra of $L^{\infty}(T \oplus D)$. //

THEOREM 21. Let D be a discrete abelian group with \hat{D} torsionfree. P is a subsemigroup of $R \oplus \hat{D}$ with the (AO)-condition such that it is not dense in $R \oplus \hat{D}$. Then $C_u(R \oplus D) + H_p^{\infty}(R \oplus D)$ is a closed subalgebra of $L^{\infty}(R \oplus D)$.

Proof. $C_{u}(R \oplus D) + H_{P}^{\infty}(R \oplus D)$ is a closed subspace of $L^{\infty}(R \oplus D)$. We may assume $P \cap R = [0, \infty)$. The following equations (*) are easily checked:

$$H_{p}^{1}(R \oplus D) = \{ f \in L^{1}(R \oplus D); f(\cdot, d) \in H^{1}(R) \text{ for every } d \in D \},$$
(*)
$$H_{p}^{\infty}(R \oplus D) = \{ f \in L^{\infty}(R \oplus D); f(\cdot, d) \in H^{\infty}(R) \text{ for every } d \in D \}.$$
For an integer n , χ denotes a character on R defined by

 $\chi_n(x) = e^{inx}$. For each nonnegative integer n, we define A as follows:

$$A_{-n} = \{g \in L^{\infty}(R \oplus D); g(\cdot, d) \in \chi_{-n}H^{\infty}(R) \text{ for each } d \in D\}.$$

Then A_{-n} contains $H_p^{\infty}(R \oplus D)$ (n = 0, 1, ...).

CLAIM.
$$A_{-n} \subset C_u(R \oplus D) + H_p^{\infty}(R \oplus D)$$
 $(n = 0, 1, ...)$.

For $g \in A_{-n}$, let h be a function in $L^{1}(R)$ such that $\hat{h} = 1$ on [-n, 0]. Define a function F on $R \oplus D$ by $F(x, d) = (g(\cdot, d) * h)(x)$ for $(x, d) \in R \oplus D$. Then F belongs to $C_{u}(R \oplus D)$. Since $g(\cdot, d) - g(\cdot, d) * h \in H^{\infty}(R)$ for every $d \in D$, by (*), we have $g - F \in H^{\infty}_{p}(R \oplus D)$. Hence g = F + (g-f) belongs to $C_{u}(R \oplus D) + H^{\infty}_{p}(R \oplus D)$.

Since $H^{\infty}(R)$ is an algebra, we can prove that $\bigcup_{n=0}^{\infty} A_{-n}$ is a subalgebra contained in $C_u(R \oplus D) + H_p^{\infty}(R \oplus D)$, from (*) and the above claim. Moreover, by using ([1], Theorem 12.11.1), we can prove that $\bigcup_{n=0}^{\infty} A_{-n}$ is dense in $C_u(R \oplus D) + H_p^{\infty}(R \oplus D)$. Therefore n=0 -n is dense in $C_u(R \oplus D) + H_p^{\infty}(R \oplus D)$. Therefore $C_u(R \oplus D) + H_p^{\infty}(R \oplus D) \left(= \overline{\bigcup_{n=0}^{\infty} A_{-n}}\right)$ is a closed subalgebra of $L^{\infty}(R \oplus D)$.//

References

- [1] Ralph Philip Boas, Jr., Entire functions (Pure and Applied Mathematics, 5. Academic Press, New York, 1954).
- [2] Edwin Hewitt, Kenneth A. Ross, Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [3] Walter Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics, 12. Interscience [John Wiley & Sons], New York, London, 1962).

- [4] Walter Rudin, "Spaces of type H[∞] + C", Ann. Inst. Fourier (Grenoble) 25 (1975), 99-125.
- [5] Donald Sarason, "Algebras of functions on the unit circle", Bull. Amer. Math. Soc. 79 (1973), 286-299.
- [6] Donald Sarason, "Functions of vanishing mean oscillation", Trans. Amer. Math. Soc. 207 (1975), 391-405.

Department of Mathematics, Hokkaido University, Sapporo, Japan.