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1. The main result and its consequences. A (bounded, linear) operator H on a
Banach space % is said to be hermitian if ||exp(itff)|| = 1 for all real t. An operator NonX
is said to be normal if N = H+iK, where H and K are commuting hermitian operators.
These definitions generalize those familiar concepts of operators on Hilbert spaces. Also,
the normal derivations defined in [1] are normal operators. For more details about
hermitian operators and normal operators on general Banach spaces, see [4]. The main
result concerning normal operators in the present paper is the following theorem.

THEOREM A. Suppose that N in 2(86) is normal. Then ||Nx +w||>||w|| for each x in %
and each w in ker N. (In other words, the kernel of N is orthogonal to the range of N.)

The proof of Theorem A will be presented in the next section. Granting this theorem
for the moment, we can deduce the following corollaries.

COROLLARY 1. If N is a normal operator on 36 and A, fi are distinct eigenvalues of N,
then ||x + y||a:||x|| for xeker(JV-A) and y eker(iV-fi). In other words, eigenspaces corres-
ponding to distinct eigenvalues are mutually orthogonal.

Proof. Since N is normal, so is N—k. Hence, by Theorem A, ||x + y|| =

COROLLARY 2. If N is a normal operator on a separable space, then there are at most
countably many eigenvalues.

Proof. This follows from Corollary 1 and a topological consideration.

The next corollary is a special case of Proposition 1 in [7].

COROLLARY 3. / / N is a normal operator and N*x = 0, then Nx = 0.

Proof. Let w = Nx. Then Nw = 0 and hence, by Theorem A, 0 = ||N(-x) + w||>||w||.

COROLLARY 4. Let Nbe a normal operator on 36. If 0 is in the spectrum a(N) of N and
the range N36 is closed, then 0 is an isolated point in <r(N), % = ker N®N% and \\P\\ = 1
where P is the projection from 36 onto ker N along N36.

The proof of this corollary is similar to that of Proposition 3 in [9] and hence omitted.

COROLLARY 5. Let N be a normal operator on 36. If {wn} is a sequence of unit vectors
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in $£ such that lim||Afwn|| = 0, then, for each bounded sequence {xn} in SC,

Proof. First let us recall the "Berberian-Quigley extension". (See [6].) Let r°(2f) be
the Banach space of all bounded sequences in #? with sup-norm and let co(S6) be the
subspace of r°(3f) consisting of those {x^ with lim Hx̂H = 0. Let #f° be the quotient space

€°°(Se)lco(Se). For every T in £(%), the mapping {xj •-> {TxJ sends £"(%) or co(S6) into
itself and hence it induces an operator T° on 3f° with ||T°|| = ||T||. It is easy to see that if T
is hermitian or normal, then so is T°. Now the corollary follows from an application of
Theorem A to N°.

COROLLARY 6 (See [1] and [2].) Let aa and a2 be normal operators on a Hilbert space
X. Define Ne£e(<e(%)) by Nx = alx-xa2. Then we have: (1) ||Nx + w||>||w|| for all x in
2(X) and w in ker N, (2) ||x + y|| > ||x|| if Nx = Ax, Ny = /xy and A. * n, (3) N2x = 0 implies
Nx = 0, and (4) if, furthermore, the range of N is closed, then the spectra of both a^ and a2

are finite.

Proof. Suppose a, = h, + ifc, (j = 1,2), where h, and k, are commuting hermitian
operators on 5if. Then Nx = Hx + iKx, where Hx = h^x — xh2 and Kx = klx — xk2. Note
that both H and K are hermitian and HKx = h1klx + xh2k2—h1xh2—k1xk2 = KHx. Now
(1), (2) and (3) follows from Theorem A, Corollary 1 and Corollary 3 respectively and (4)
follows from Corollary 4 and Rosenblum's theorem [8].

REMARK. Corollary 6 still holds if S£(d£) is replaced by a Banach algebra and at and
a2 are assumed to be normal elements in it.

2. Proof of the main result. Now we proceed to prove Theorem A. It depends on the
construction of certain projections in ££(%*) (where %* is the dual space of d£) which
resemble conditional expectations in the theory of C*-algebra.

To begin with, let V be a power bounded operator on %, say | |y" | |^M for every
positive integer n. Let glim be a generalized (Banach) limit. For each <f> in 3f*, the map
E<f>:x-*g]im(<f>, V"x) is a bounded linear functional on 26 with ||E4>||̂ Mi|<£||. Thus we

obtain an operator E in ££(%*). Note that, in case ||V)|< 1, we have ||E^||<||^|| for a l l - i n
2f*. We list some properties of E in the following lemma.

LEMMA 1. Suppose that Vei?(#f) is power bounded and E is an operator in
defined as above. Then we have:

(1) If A e 2(9?) and AV=VA, then A*E = EA*.
(2) V*E = EV* = E.
(3) For we%, Vw = w if and only if (E<f), w) = (<f>, w) for all <f> in %*.
(4) For <f>eSe*, V*<f> = <f>if and only ifEtf> = <t>.
(5) E2 = E.
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In particular, E is a projection from d£* onto {<£ e #f*: V*<f> = <£}.

Proof. (1) For x € %, <*> € a?*, we have <J5A*<fc x) = glim<A*4>, V x ) =
glim <<f», V A x ) = {E<t>, Ax) = <A*Etf>, x> and hence EA* = A*E.

n

(2) For xeX, <f>e%*, we have <V*E<M) = <£<*>, Vx> = glim <<*>, V"+ Ix) =

glim (<f>, V x ) = (E<t>, x). Hence V*E = E.
n

(3) If Vw = w, then (E<f>, w) = glim (<f>, V w ) = (<£, w). Conversely, suppose that

<JE<fc w) = (<t>, w) for all <t> in a?*. Then, by (2), we have <<*>, Vw) = < V*<*>, w) = {EV*4>, w) =
(E<f>, w) = (<f>, w) for a l l - i n 36*. Hence Vw = w.

(4) If V*<f> = 4>, then <E<fc x> = glim (<f>, Vnx> = glim (V*n<f>, x) = <<<., x) for all x and
hence E4> = 4>. Conversely, if E$ = <f>, then, by (2), we have V*4> = V*E<f> = E4> = 4>.

(5) follows from (2) and (4).

As an aside, we give a different proof of Sinclair's result [9; Proposition 1] by
applying the above lemma (and without using Kakutani's fixed point theorem.) First we
need a technical lemma.

LEMMA 2. If TeS£(%), xe$e, (exp T)x = x and |exp A - 1 | < 1 for all A in a(T), then
Tx = 0.

oo

Proof. The lemma follows by applying the expansion T = - £ n ' ^ Z - e x p T)n to the
vector x. re=1

COROLLARY 7 (Sinclair [9]). Let Tei?(a?). If 0 is in the boundary of the closed convex
hull of the (spatial) numerical range of T, then ||Tx + w||2||w|| for xe#f and weke r T.

Proof. By multiplying T by a suitable constant which is small enough in modulus, we
may assume that R e A s O and | e x p A - l | < l for A in the closed convex hull of the
numerical range of T. Let V = exp T. Then, by [4, Theorem 3.6], ||V||<1. Let weker T.
Then Vw = w. By the spectral mapping theorem, o-(V*) = <r(V) = e x p a ( T ) s
{A: |A - 1 | < 1}. By Lemma 1, there exists a projection E in £(%*) with {<f>e%*: V*4> = <f>}
as its range such that | |E | |<1 , EV* = V*E = E and (E<f>, w) = <<£, w) for all <f>e%*. If
E4> = 4>, then exp (T*)4> = V*E<f> = E4> = 4> and hence, by Lemma 2, T*<f> = 0. Therefore
T*E = 0. If | |4>Nl, then ||E4>||<1 and hence

||Tx + w|| > |<B(fc Tx + w>| = |<T*E<fc x) + (E4>, w)\ = \(<f>, w)\.

Therefore \\Tx + w||>sup{|<«/,, w)|: W < l } = ||w||.
The next lemma is already known. (See [7].) However, for the convenience of the

reader, a proof of it is included here.

LEMMA 3. If N = H+iK is a normal operator, where H and K are commuting
hermitian operators and Nx = 0, then Hx = Kx = 0.
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Proof. From the assumption we have Kx = iHx. Since HK = KH, by induction, we
have Knx = (iH)nx for n = 1,2,3, Hence exp(A.K)x = exp(iAH)x for every complex
number A. Now, suppose A = a + ift where a and (3 are real. Then we have

exp(AK)x = exp(i/3K)exp(aK)x = exp(i0K)exp(iaH)x.

Hence ||exp(AK)x||<||x||. By Liouville's theorem, exp(AJC)x is a constant function.
Differentiate this function at A = 0. We obtain exp(AK)Kx = 0 and hence Kx = 0.

REMARK. From the proof of the above lemma we see that, besides the commutativity of
H and K, all we need is the boundedness of a •-» exp(iaH) and 0 >-»• exp(i/3K) (a, 3 eR).
Hence this lemma can be generalized for those H+iK, where H and K are commuting
pre-hermitian operators. By an argument similar to that of Corollary 6, we can deduce
Berkson, Dowson and Elliott's extension of Fuglede's theorem [3; Theorem 1] from this
fact.

Proof of Theorem A. By Lemma 3, we have Hw = Kw = 0. Let glim be a generalized
limit. Define E, F <=%(%*) by the identities <£<£, x) = glim (<f>, exp(inH)x) and <F<fc x) =

n

glim(<k exp(inK)x). Then, by Lemma 1, E and F are projections satisfying | |E | | ^1 ,
n

| |F||<1 and {E4>, w> = <<*>, w) = (F<j>, w), for all <f> in Sf*. Furthermore, (expiH)*E =
E(expiH)* = E and (exp iK)*F = F(exp iK)* = F. By Lemma 2, it is easy to see that
H*E = 0 and K*F = 0. Note that, since KH = HK, we have K*E = BK* and hence
K*EF = EK*F = 0. For ^€3?* with | | ^ | | s l , we have

w\\>\(EF<t>,Nx + w)\

i(K*EF<i>, x)+(EF<t>,

Hence ||Nx + w|| & ||w||. The proof is complete.

REMARK. We have mentioned at the beginning of this section that the projection E in
Lemma 1 resembles conditional expectations in the theory of C*-algebra. To make this
statement more clear, we consider the following special case. Let X be a Hilbert space
a? = iP(5if) and let h be a hermitian operator on W. Define H and V in #(!!?) by
Hx = hx-xh and Vx = exp(iH)x = exp(ih)xexp(- ih). Let glim be a generalized limit and
P, in £(T), be the projection defined in such a way that <(Px)& TJ) = glim<(V"x)6 TJ),
where £, -n are in 2£. It is easy to check that P is a conditional expectation from #(#0 onto
the von Neumann algebra {xeiP(3if):xh = Hx}1 the commutant of h. Define Ee <£(%*) in
the same way as that in the beginning of this section, i.e., (E<£, x) = glim(<f>, Vx) . Then we
have P*<f> = E4> if <f> is of the form <£(x) = <x£ ~n) for some vectors £ TJ in 2if. Thus E is
"almost" the dual of P. One can check that Lemma 1 still holds if E is replaced by P*.

3. Compact normal operators. Many results concerning compact hermitian
operators (see [S, §28]) can be generalized to compact normal operators.
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PROPOSITION 1. Let Tei?(#f) be compact and normal, let A,, be the non-zero (distinct)
eigenvalues of T arranged such that lA.il>|A2|>|A3|> . . . and let Pn be the spectral
projection corresponding to A^ Then the following statements hold. (1) Each eigenvalue of T
has ascent 1. (2) ||Pn|| = l . (3) If each Pn is hermitian, then T = '£\nPn, a norm-convergent
series. (4) If lim nkn = 0, then T = £AJP,,.

n

Proof. (1) and (2) follows from Corollary 4 in §1. One can modify the proof of
Theorem 28.1 in [5, p. 82] to obtain (3) and (4).

Next we show that if the underlying space 3£ is weakly complete, then the linear span
of eigenspaces of T is dense in %. First we need a technical lemma.

LEMMA 3. Let si be a Banach algebra, $ a closed two-sided ideal in si and
v:si-+ s&l$> the quotient map. Then the following two statements hold.

(1) If hesi is hermitian, then so is v(h).
(2) If h,kesi are hermitian, n = h + ik is normal and n e | , then h,ke£.

Proof. (1) for each real t, we have ||exp(±irv(h))|| = ||v(exp(±itfi))||<l. On the other
hand, ||exp(-itv(h))||||exp(itv(h))||>||exp(-ifv(h))exp(irv(h))|| = 1. Hence ||exp(Mh))|| = 1
for all real t. Therefore v(h) is hermitian.

(2) By (1), v(n) = v(h) + iv(k) is normal. By the assumption, v(n) = 0. Hence v(h) =
v(fc) = 0;i.e., h, kz$.

PROPOSITION 2. Let $£ be a weakly complete Banach space, T a compact normal
operator % and let A,,, Pn be as in Proposition 1. Then <X is the closed linear span of
eigenvectors of T.

Proof. Let T = H+iK, where H and K are commuting hermitian operators. Since T
is compact, by Lemma 3, both H and K are compact. Let an = ReAn and /3n = Im A,,.
Suppose xePn%. Then Kx = Anx; that is, ( ( H - a J + i(.K:-|3n))x = 0 and hence, by
Lemma 2 in §2, (H-a,,)x = 0 and (K- /3n)x = 0. Thus, if a is a non-zero eigenvalue of H,
Ma is the eigenspace {x:Hx = ax} and Re A,, = a, then PJ6 <=, M^. Since T commutes with
H, Ma is invariant under T. It is not hard to see that T restricted to Ma is a normal
operator on a finite dimensional space Ma. li xeMa is an eigenvector of T with Tx = Ax,
then, by the same argument as before we obtain Hx = (Re A)x and hence Re A = a. We
conclude that Ma is the direct sum of all those PJ£ with Re An = a. Similarly, if (3 is a
non-zero eigenvalue of K, we write Jf& for {x e %: Kx = (3x}, then M~e is the direct sum
X {PJC: Im An = |3}. Observe that Pn% = M^n Jf^.

By Theorem 28.5 of [5, p. 87], % is the closed linear span of the eigenspaces of H (or
K). Now it is not difficult to see that S£ is the closed linear span of eigenspaces of T.
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