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Abstract
In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoe-
lasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced,
the temperature and the mass dissipation. First, we show that this problem is well-posed proving that the opera-
tor defining it generates a contractive semigroup of linear operators. Then, assuming that the function involving
the coupling terms is elliptic, the exponential decay of the solutions is concluded as well as the analyticity of the
solutions. Finally, we describe how to obtain the exponential stability in the case of hyperbolic dissipation.

1. Introduction

Time decay of solutions of systems of partial differential equations is a relevant topic to be studied from
the viewpoints of Mathematics and Thermomechanics. From the mathematical point of view, we would
like to know estimates for the rate of decay of the solutions for a certain mathematical problem. When
the system of equations describes the behaviour of a thermomechanical problem, it will be relevant to
know when the perturbations can be neglected and this fact can be a consequence of the rate of decay.
A situation where we can find this relevance is the study of the thermoelasticity. In fact, the time decay
of solutions to thermoelastic systems has generated much literature.

To our knowledge, the first researcher who studied the thermoelastic system from a mathematical
point of view was Dafermos [5]. Two relevant facts of this study were the proofs of the asymptotic
stability in dimension one and the existence of isothermal undamped solutions for certain geometries of
the solid (in dimension greater than one). Later, several authors obtained the exponential decay of the
solutions in dimension one [16, 19, 25] as well as the slow decay in dimension greater than one [15,
16]. Some results were also obtained when the thermoelastic theory corresponds to the hyperbolic heat
equation proposed by Cattaneo and Maxwell [4] (see, for instance, [2, 24]). A good explanation of the
results on this topic until the beginning of this century can be found in the book of Jiang and Racke [14].
Some further results with other heat equations can be found in [20, 21].

However, one fact can be concluded from all these studies. We cannot obtain exponential decay of
solutions for thermoelastic problems in dimension greater than one if we only consider one dissipation
mechanism. To overcome this fact, we could try to consider more than one dissipation mechanism as
we can see in reference [12]. Indeed, in the recent past [6–8] we have seen how it is possible to obtain
the exponential decay of the solutions if we consider n2-coupling mechanisms (being n the dimension
of the domain) in linearised elasticity. In the case when we consider the linear theory, the number of
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coupling mechanisms can be smaller [3]. However, it is important to point out that we always need to
assume that the coupling coefficients are anisotropic.

The analysis described before corresponds to the case of the usual elasticity. However, few attention
has been deserved to the case of the strain gradient elasticity. We know that, in dimension one, the solu-
tions are exponentially stable for the Fourier heat conduction in the isotropic case [9] and that, when
the heat conduction is described by the hyperbolic theories, we cannot expect a similar behaviour [23].
However, we do not know any study concerning time decay of the solutions for strain gradient thermoe-
lasticity for domains with dimension greater than one. Although we do not know any proof, it is natural
to expect that the decay will be slow for dimension greater than one. In view of the studies developed
for the classical elasticity, we could ask about the number of the dissipative coupling mechanisms that
we need to introduce to obtain exponential decay.

We want to highlight that, in the case of the strain gradient elasticity, we have spatial derivatives of
fourth order, but we also have coupling terms which have spatial derivatives of second order for non-
centrosymmetric materials. This stronger coupling proposed in this case allows us to see that we need
only n dissipative couplings to guarantee the exponential decay of solutions. This fact is remarkable if
we recall that, in the case of the classical elasticity, the number of necessary coupling mechanisms is
greater. Nevertheless, it is important to note that our results only apply in the case of Chiral materials
(the materials are not centrosymmetric). Indeed, we will see that the solutions are analytic when Fourier
law is used. This fact represents a strong regularity of the solutions. We will also consider the problem
when the dissipation mechanisms are given by using the Green-Lindsay theory [10]. In this case, we
will sketch the proof of the exponential decay of solutions.

The plan of this paper is the following. In the next section, we propose the problem to be studied as
well as the basic assumptions. In Section 3, we show that the problem is well-posed. Later, we impose a
‘relevant’ assumption on the coupling terms, which guarantees the exponential decay of the solution as
we prove in Section 4. Analyticity of the solutions is proved in Section 5. Some comments about how
to extend the results to the Green-Lindsay theory [18] are shown in Section 6. A few comments end the
paper in Section 7.

2. Basic equations and assumptions

In this section, we propose the system of equations and the basic conditions under which we are going
to work in this article. We consider a two-dimensional domain B with a boundary smooth enough (C1)
to apply our arguments (Divergence and Trace theorems).

We assume that our domain is occupied by a homogeneous1 strain gradient elastic material with two
dissipative mechanisms that we could think as temperature (θ1) and mass dissipation (θ2).

Our system of equations can be written as

ρüi =
(
Aijrsur,s + Bijpqrur,pq + al

ijθl

)
,j

− (
Brsijkur,s + Cjkipqrur,pq + Cl

ijkθl

)
,jk

, (2.1)

dljθ̇j = (klm
ij θm,j),i + al

iju̇i,j + Cl
ijku̇i,jk,

where i, j, k, m, p, q, r, s, l = 1, 2.
We are going to assume the initial conditions, for a.e. x ∈ B,

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), θj(x, 0) = θ 0
j (x), (2.2)

and the boundary conditions:

ui(x, t) = ui,j(x, t) = θi(x, t) = 0 x ∈ ∂B, t > 0. (2.3)

1The extension to non-homogeneous materials is not difficult, but we impose homogeneity to make the analysis easier.
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In system (2.1), ui is the two-dimensional displacement, θ1 is the temperature, θ2 is the mass dissipa-
tion variable, Aijrs, Bijpqr and Cijkpqr define the strain gradient elasticity, ρ is the mass density, dij plays a
role similar to the thermal capacity in the classical heat equation, and klm

ij has a role similar to the thermal
conductivity, and al

ij and Cl
ijk are the coupling terms.

From now on, we are going to assume that

(i) ρ > 0, dij is a positive definite matrix.
(ii) There exists a positive constant C such that∫

B

(
Aijrsui,jur,s + 2Bijpqrui,jur,pq + Cijlpqrul,ijur,pq

)
dA

� C
∫

B

(
ui,jui,j + ur,pqur,pq

)
dA

(2.4)

for every vector function ui vanishing on the boundary.
(iii) There exists a positive constant D such that

klm
ij θl,iθm,j � Dθi,jθi,j. (2.5)

(iv) The terms Aijrs, Bijpqr, Cijkpqr, Cl
ijk, dij and klm

ij are symmetric in the sense that

Aijrs = Arsij, Bijpqr = Bijqpr, Cijkpqr = Cjikpqr, Cl
ijk = Cl

ikj,

dij = dji, klm
ij = kml

ji .
(2.6)

We note that assumptions (i)–(iv) are natural in the study of strain gradient thermoelasticity. The
meaning of (i) is obvious, the condition (ii) can be interpreted in the context of the elastic stability,
condition (iii) guarantees that the dissipation is positive and conditions (iv) are also natural in the context
of two dissipation mechanisms.

We are going to transform our problem as a Cauchy problem defined on a suitable Hilbert space.
From now on, we denote by H the space:

H= W2,2
0 (B) × L2(B) × L2(B),

where W2,2
0 (B) = [W2,2

0 (B)]2 and L2(B) = [L2(B)]2, with W2,2
0 (B) and L2(B) being the usual Sobolev

spaces [1] (i.e. the boldface is used to define vectors). An element in our space can be determined
by (u1, u2, v1, v2, θ1, θ2). Moreover, the vector v = (v1, v2) is considered for the time derivative of the
displacement vector.

If we consider the vector (u, v, θ ), we can define the square of the norm:

‖(u, v, θ )‖2 = 1

2

∫
B

(
ρvivi + Aijrsui,jur,s + Bijpqr(ui,jur,pq + ui,jur,pq)

+ Cijlpqrul,ijur,pq + dijθiθj

)
dA,

where the bar means the conjugated complex. We consider the inner product associated to this norm.
In view of the previous assumptions, our inner product defines a norm which is equivalent to the usual
product in the Hilbert space H defined previously.

We can define the following operator:

A

⎛
⎜⎝

u
v
θ

⎞
⎟⎠ =

⎛
⎜⎝

vi

(Aijrsur,s + Bijpqrur,pq),j − (Brsijkur,s + Ckjipqrur,pq),jk + (al
ijθl),j − (Cl

ijkθl),jk

ekl[(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk]

⎞
⎟⎠ ,

where ekl is the inverse of the matrix dlj.
We remark that the domain of the operator A is the subspace made by elements (u, v, θ) such that

v ∈ W2,2
0 (B), (klm

ij θ,j),i ∈ L2(B) and (Aijrsur,s + Bijpqrur,pq),j − (Brsijkur,s + Ckjipqrur,pq),jk + (al
ijθl),j − (Cl

ijkθl),jk ∈
L2(B). Obviously, it is a dense subspace in H.
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It is relevant noting that we can write our problem in the form:

dU

dt
=AU, U(0) = (u0, v0, θ 0). (2.7)

This is the Cauchy problem which is defined in the space H that we will study in the next sections.

3. Well-posedness

In this section, we will prove that the operator A generates a contractive semigroup of linear operators.
Therefore, the existence, uniqueness and the continuous dependence with respect to the initial conditions
will be concluded.2

Lemma 1. For every U = (u, v, θ) ∈ Dom(A), the following inequality

Re〈AU, U〉� 0

holds.

Proof. If we apply the definition of the operator and we use boundary conditions (2.3), after the use
of the divergence theorem we obtain that

Re〈AU, U〉 = −1

2

∫
B

klm
ij θm,jθl,i dA.

In view of the assumptions (iii)–(iv), we see that the lemma is proved.

Lemma 2. The resolvent of the operator A contains the origin.

Proof. Let us consider (f 1, f 2, f 3) ∈H. We need to solve the system:

A

⎛
⎜⎝

u
v
θ

⎞
⎟⎠ =

⎛
⎜⎝

f 1

f 2

f 3

⎞
⎟⎠ .

That is, we find that

vi = f1i,

(Aijrsur,s + Bijpqrur,pq),j − (Brsijkur,s + Ckjipqrur,pq),jk

+ (al
ijθ,l),j − (Cl

ijkθl),jk = f2i,

(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk = eklf3k.

(3.1)

We can obtain v from the first equation. Then, we find that

(klm
ij θm,j),i = eklf3k − al

ij f1i,j − Cl
ijk f1i,jk.

It is clear that we can solve this system assuming null Dirichlet boundary conditions. In fact, the solution
satisfies the conditions for the third component of the domain of the operator. If we substitute θ into the
second component of the system (3.1), we can get the solution after the use of the Lax-Milgram lemma
(see [13]). Indeed, we can prove that

‖(u, v, θ )‖� K‖(f 1, f 2, f 3)‖,

where K is independent of the solution.

2Continuous dependence with respect to the supply terms could be also obtained, as a consequence, whenever we assume
suitable regularity conditions on the source terms.
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Since the domain of the operator is dense, we can apply the Lumer-Phillips corollary to the Hille-
Yosida theorem to prove the following.

Theorem 3.1. The operator A generates a contractive semigroup on the Hilbert space H.

In view of this theorem, we can conclude that our problem is well-posed in the sense of Hadamard.

4. Exponential stability

The aim of this section is to provide a sufficient condition on the coupling terms to guarantee the
exponential stability of the solutions to our problem.

We start by considering the operator

Pl(u) = al
ijui,j + Cl

ijkui,jk for l = 1, 2.

From now on, we will assume that

(v) The operator P = (P1, P2) is elliptic in B.

It is relevant to note that, in view of the boundary conditions (2.3), we can conclude that (see [17,
p. 14])

‖u‖W2,2(B) � C‖P(u)‖L2(B), (4.1)

where C is a positive constant which is independent of u.
With the proposed assumption, and thanks to estimate (4.1), we can obtain the following result.

Theorem 4.1. Let us assume that the operator P satisfies condition (v). Then, there exist two positive
constants M and ω such that

‖U(t)‖� Me−ωt‖U(0)‖
for every U(0) in the domain of the operator A.

The proof of this theorem is based in the following lemmas.

Lemma 3. The imaginary axis is included at the resolvent of the operator A.

Proof. In order to prove this lemma, we start by following the arguments used in the book of Liu and
Zheng [17, p. 25]. There, the proof uses a contradiction procedure. It is assumed that the thesis of the
lemma does not hold and then, in view of a series of comments, and that zero belongs to the resolvent
of A, we can find (see, again, [17, p. 25]) a sequence of real numbers βn ∈R, with βn → β �= 0, and a
sequence of elements Un = (un, vn, θ n) in the domain of the operator, with unit norm, such that

‖(iβnI −A)Un‖H → 0 as n → ∞. (4.2)

This condition is equivalent to assume that

iβui − vi → 0 in W2,2
0 (B), (4.3)

iβvi −
(

(Aijrsur,s + Bijpqrur,pq),j − (Brsijkur,s + Ckjipqrur,pq),jk

+ (al
ijθ,l),j − (Cl

ijkθl),jk

)
→ 0 in L2(B), (4.4)

iβdlkθk −
(

(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk

)
→ 0 in L2(B). (4.5)

We note that we have omitted the sub-index n in convergences (4.3)–(4.5) for the sake of simplicity in
the notation.
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Now, from the dissipation inequality and the assumption on the thermal variables, we have that

θ → 0 in W1,2(B).

If we multiply convergence (4.5) by
1

β
P(u), we find that

1

β
〈(klm

ij θm,j),i, Pl(u)〉 + i‖P(u)‖2 → 0,

and we can apply the divergence theorem to obtain that
1

β
〈(klm

ij θm,j),i, Pl(u)〉 = 1

β

∫
∂B

(klm
ij θm,j)Pl(u)ni dl

+ 1

β

∫
B

klm
ij θm,j(Pl(u)),i dA. (4.6)

where ni is the normal vector to ∂B.
We note that 1

β
(P(u)),i is bounded in view of convergences (4.4) and (4.5) and the fact that the operator

defining the elastic part is elliptic. Therefore, the last integral in (4.6) vanishes since θ → 0 in W1,2(B).
To show that the first integral tends to zero, we note that we can apply the following estimates

1

β

∫
∂B

θi,juk,lm dl � 1

β

(∫
∂B

θi,jθi,j dl

)1/2 (∫
∂B

uk,lmuk,lm dl

)1/2

.

But we also have
1

β1/2

(∫
∂B

θi,jθi,j dl

)1/2

� C1

(∫
B

∇θi∇θi dA

)1/4 1

β1/2

(∫
B

�θi�θi dA

)1/4

since θi vanishes at the boundary. At the same time, we find that

1

β1/2

(∫
∂B

uk,lmuk,lm dl

)1/2

� C2

(∫
B

�uk�uk dA

)1/4 1

β1/2

(∫
B

�2uk�2uk dA

)1/4

whenever ui and ∇ui vanish at the boundary. The parameters C1 and C2 are independent of the functions.

But we note that β−1
( ∫

B

�θi�θi dA
)1/2

and β−1
( ∫

B

�2uk�2uk dA
)1/2

are bounded3 as well as∫
B

�uk�uk dA. Since
∫

B

∇θi∇θi dA → 0,

we can conclude that the first integral in (4.6) also tends to zero, and therefore, it follows that ‖P(u)‖ → 0.
But, as we can see the estimate (4.1) we also conclude that u → 0 in W2,2(B). Now, an easy argu-
ment also shows that v → 0 in L2(B) and we arrive to a contradiction. It comes from the fact that we
assume that there would exist an element of the imaginary axis at the spectrum. Therefore, the lemma is
proved.

Lemma 4. The asymptotic condition

lim
|β|→∞

‖(iβI −A)−1‖ < ∞
holds.

Proof. The proof follows a similar strategy to the one used in the proof of the previous lemma. Let us
assume that the above asymptotic condition does not hold. Therefore, there will exist a sequence of real

3We should note that the elastic part of the system defines an elliptic operator and we can obtain a similar inequality to (4.1),
but in the space W2,2(B).
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numbers βn → ∞ and a sequence of unit norm vectors Un, at the domain of the operator A, such that
convergence (4.2) is satisfied. In view of the fact that the arguments used in the proof of the previous
lemma hold whenever βn does not tend to zero, we can conclude the thesis of this lemma.

We have proved the exponential decay result for the solutions to our problem. It is worth saying that
an easy example (for a given operator P to be elliptic) corresponds to assume

C1
1,iju1,ij = �u1, C2

2,iju2,ij = �u2,

meanwhile the remaining coefficients β l
ij and Cl

ijk vanish.

5. Analyticity of the semigroup

The aim of this section is to prove the analyticity of the solutions to problem (2.7) whenever the condi-
tions (i)–(v) hold. As a consequence, we will obtain the uniqueness of the backward in time problem,
and so, it will be proved that the unique solution vanishing for every time, after a certain value, is the
null solution.

Theorem 5.1. The semigroup generated by the operator A is analytic.

Proof. Since we have shown that the imaginary axis is contained at the resolvent of the operator, the
theorem will be concluded if we see that

lim
|β|→∞

‖β−1(iβI −A)−1‖ < ∞. (5.1)

We will prove condition (5.1) by contradiction. Let us assume the existence of a sequence βn → ∞ and
a sequence of unit norm vectors Un (at the domain of the operator) such that

iUn − β−1
n AUn → 0 in H, (5.2)

and we will conclude that Un → 0, which is a contradiction. We note that condition (5.2) is equivalent
to the convergences:

iui − β−1vi → 0 in W2,2(B), (5.3)

ivi − β−1
(

(Aijrsur,s + Bijpqrur,pq),j − (Brsijkur,s + Ckjipqrur,pq),jk

+ (al
ijθ,l),j − (Cl

ijkθl),jk

)
→ 0 in L2(B), (5.4)

idlkθk − β−1
(

(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk

)
→ 0 in L2(B), (5.5)

where we omit again the sub-index ‘n’ to simplify the notation.
If we multiply convergence (5.2) by Un, we obtain that

β−1/2θ → 0 in W1,2(B). (5.6)

Gagliardo-Niremberg’s inequality implies that

‖β−1/2v‖2
W1,2(B) � Cβ−1‖v‖W2,2(B)‖v‖L2(B).

As β−1‖v‖W2,2(B) and ‖v‖L2(B) are bounded, we see that ‖β−1/2v‖W1,2(B) is bounded.
If we multiply convergence (5.5) by θ , we get

i〈dklθk, θl〉 + 〈β−1/2Cl
ijkvi,j, β

−1/2θl,k〉 → 0.

In view of convergence (5.6) and that ‖β−1/2v‖W1/2(B) is bounded, we conclude that

θ → 0 in L2(B).
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It follows that

iP(u) + β−1(klm
ij θm,j),i → 0 in L2(B).

Since u is bounded in W2,2(B) and, in view of condition (iii), we see that

‖β−1θ‖W2,2(B) < ∞.

From convergence (5.4) and condition (iv) we have

‖β−1u‖W4,2(B) < ∞.

We use again the Gagliardo-Niremberg’s inequality to see

‖β−1/2u‖2
W3,2(B) � Cβ−1‖u‖W4,2(B)‖u‖W2,2(B).

In the next step, we multiply convergence (5.5) by P(u) to find that

i‖P(u)‖2 − 〈β−1/2klm
ij θm,j, β

−1/2(Pl(u)),i〉 + β−1

∫
∂B

klm
ij θm,jPl(u)ni dl → 0. (5.7)

Now, we want to see that this last integral tends to zero. We note that

β−1

∫
∂B

klm
ij θm,jPl(u)ni dl � Cβ−3/4‖∇θ‖L2(∂B)β

−1/4‖�u‖L2(∂B).

But we have

β−3/4‖∇θ‖L2(∂B) � C
(
β−1‖θ‖W2,2(B)

)1/2 (
β−1/2‖θ‖W1,2(B)

)1/2
, (5.8)

β−1/4‖�u‖L2(∂B) � C
(
β−1/2‖�u‖W1,2(B)

)1/2 ‖�u‖1/2

L2(B)
. (5.9)

We note that the right hand-side of (5.9) is bounded and the right hand-side of (5.8) tends to zero. Then,
we obtain that the last integral of convergence (5.7) converges to zero. We also note that the inner product
in (5.8) tends to zero thanks to convergence (5.6) and the fact that β−1‖u‖W4,2(B) is bounded. Thus, we
see that

u → 0 in W2,2(B).

If we multiply convergence (5.4) by v, we also obtain

v → 0 in L2(B).

We have arrived to a contradiction because we assumed that ‖Un‖ = 1, and so, the theorem is
proved.

In view of the fact that the semigroup generated by operator A is analytic, we can conclude the
following.

Corollary 1. Let us assume that the solution U(t) to problem (2.7) vanishes for every t � t0 � 0. Then,
U(t) ≡ 0.

6. Hyperbolic case

In this section, we sketch how to extend the exponential stability of the solutions to the case of the
Green-Lindsay dissipation mechanisms (see [10] for further details regarding this theory).

In this case, the system of equations is (see [11]):

ρüi =
(

Aijrsur,s + Bijpqrur,pq + al
ij(θl + αθ̇l)

)
,j

−
(

Brsijkur,s + Ckjipqrur,pq + Cl
ijk(θl + αθ̇l)

)
,jk

,

mlpθ̈p + dlpθ̇p = (klm
ij θm,j),i + al

iju̇i,j + Cl
ijku̇i,jk + bjl

i θ̇j,i + (bjl
i θ̇j),i.

(6.1)
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We note that, in this system, ρ, ui, Aijrs, Bijpqr, Cijkpqr, al
ij, Cl

ijk, dlp, klm
ij and θl were defined in the previous

sections. However, we have now introduced several new elements. Here, α is a positive constant which
is considered as a relaxation parameter. We also have a new symmetric matrix mlp which is assumed to
satisfy that

αdij − mij and mij

are positive definite matrices. Another new component is the matrix bjl
i which is assumed to satisfy the

following symmetry:

bjl
i = blj

i .

It is also worth to note that we need to modify assumption (iii), which is now replaced by the following
one:

(iii∗) There exists a positive constant D such that

klm
ij θl,iθm,j + 2bjl

i θ̇jθl,i + (dijα − mij)θ̇iθ̇j � D(θi,jθi,j + θ̇iθ̇i).

In this case, we also need to impose the initial conditions (2.2) and

θ̇j(x, 0) = ϑ 0
j (x) for a.e. x ∈ B, (6.2)

and boundary conditions (2.3).
We can consider the problem defined by the system (6.1), the initial conditions (2.2) and (6.2), and

the boundary conditions (2.3).
This problem can be written in the abstract form (2.7), where

U(0) = (u0, v0, θ 0, ϑ 0),

and

A

⎛
⎜⎜⎜⎜⎝

u
v
θ

ϑ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vi(
Aijrsur,s + Bijpqrur,pq + al

ij(θl + αθ̇l)
)

,j

−
(

Brsijkur,s + Ckjipqrur,pq + Cl
ijk(θl + αθ̇l)

)
,jk

ϑi

ndl[(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk + bjl

i ϑj,i + (bjl
i ϑj),i − dlpϑp]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ndl is the inverse of the matrix mlp.
This problem is defined in the modified Hilbert space:

H= W2,2
0 (B) × L2(B) × W1,2

0 (B) × L2(B).

We note that we can consider the inner product with the following square of the norm:

‖(u, v, θ , ϑ)‖2 = 1

2

∫
B

(
ρvivi + Aijrsui,jur,s + Bijpqr(ui,jur,pq + ui,jur,pq)

+Cijkpqruk,ijur,pq + α−1mlp(θl + αϑl)(θp + αϑp)

+(dlp − α−1mlp)θlθp + αklm
ij θl,iθm,j

)
dA.

This norm is equivalent to the usual one in the Hilbert space H.
We also note that the domain of the operator A is dense and it can be obtained as the elements of the

Hilbert space H such that

v ∈ W2,2
0 (B), ϑ ∈ W1,2

0 (B),

(Bijpqrur,pq),j + (Brsijkur,s + Cijkpqrur,pq + Cl
ijk(θl + αϑl)),jk ∈ L2(B),

(klm
ij θm,j),i ∈ L2(B).
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We note that, if U = (u, v, θ , ϑ) belongs to the domain of the operator A, we have

Re〈AU, U〉 = −1

2

∫
B

(
klm

ij θl,iθm,j + bjl
i (ϑjθl,i + ϑjθl,i) + (dijα − mij)ϑiϑj

)
dA,

which is less or equal than zero thanks to condition (iii∗).
We can also follow a similar argument to the one used previously to show that zero belongs to the

resolvent of the operator. Therefore, we can obtain the same result provided in Theorem 3.1 in our case.
We could also prove that Theorem 4.1 also holds in this hyperbolic case. Following the same strategy

used in the proof of Lemma 3, we arrive to a sequence Un = (un, vn, θ n, ϑ n) of unit norm vectors in
the domain of the operator and a sequence βn → β (finite or infinite but different from zero) such that
condition (4.2) holds.

This is equivalent to write

iβui − vi → 0 in W2,2
0 (B), (6.3)

iβvi −
(

Aijrsur,s + Bijpqrur,pq + al
ij(θl + αθ̇l)

)
,j

−
(

Brsijkur,s + Ckjipqrur,pq + Cl
ijk(θl + αθ̇l)

)
,jk

→ 0 in L2(B), (6.4)

iβθi − ϑi → 0 in W1,2
0 (B), (6.5)

iβdlkθk −
(

(klm
ij θm,j),i + al

ijvi,j + Cl
ijkvi,jk + bjl

i ϑj,i + (bjl
i ϑj),i

− mlkϑk

)
→ 0 in L2(B). (6.6)

Again, the dissipation inequality implies that

θ → 0 in W1,2
0 (B), ϑ → 0 in L2(B).

The remaining part of the proof follows the same points as in the proof of Lemma 3. Therefore, we have
obtained the following.

Theorem 6.1. The problem proposed by system (6.1) with the initial conditions (2.2) and (6.2), and the
boundary conditions (2.3) admits a unique solution. Furthermore, if U(0) = (u0, v0, θ 0, ϑ 0) belongs to
the domain of the operator A, then there exist two positive constants M and ω such that

‖U(t)‖� Me−ωt‖U(0)‖.

7. Further comments

In this paper, we have proved the analyticity and the exponential decay of the solutions to the two-
dimensional strain gradient thermoelasticity, with two dissipative mechanisms, in the case that we
assume that the coupling terms define an elliptic operator and the dissipation is of the type of Fourier.
Exponential decay has been also obtained when the dissipative structure is defined by the Green and
Lindsay theory. However, it is suitable to say that the extension of these arguments to the three-
dimensional case is obvious and we have restricted to the two-dimensional one for the sake of simplicity
in the notation. It is important to remark that, in order to guarantee that the coupling terms define an ellip-
tic operator, it is needed that we consider chiral materials since the tensor Cl

ijk cannot vanish. Therefore,
in the case of isotropic materials our analysis cannot be applied. It is also remarkable that, in the case of
the strain gradient theory, we need a number of dissipative mechanisms smaller than in the case of the
usual elasticity. This is because the coupling in this case is stronger.
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One could ask if the arguments and results presented in the previous sections can be applied to other
thermoelastic theories. We want to express that we have tried to extend them to the Lord-Shulmann
theory but we have not been able to obtain the exponential decay in this case. In view of the mathematical
similarity of our problem with the plate problem, and taking into account that we cannot prove the
exponential decay for the Lord-Shulmann plate [22] but it is possible to obtain the exponential decay for
the Green-Lindsay plate [23], one suspects that, in the general case, we cannot expect the exponential
decay for the Lord-Shulmann theory of strain gradient elasticity. However, this is an open question that
we hope to address in the near future.
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