
PRIME IDEALS IN VECTOR LATTICES 

D. G. JOHNSON AND J. E. KIST 

1. Introduction. Projectors, spectral functions, carriers, and collections 
of these objects are some of the tools which have been used to study vector 
lattices. One of our objectives in this paper is to show that these various 
approaches are not essentially different. We do this by proving that each of 
the above-mentioned objects can be identified with a collection of prime 
ideals. 

A linear subspace / of a vector lattice is called an ideal if \x\ < \y\ and 
y ^ I imply that x £ I. A proper ideal / in a vector lattice is called prime 
if x A y £ / implies that x £ / or y £ I. The theorem established in § 5 
shows that an archimedean vector lattice E may be represented as a vector 
lattice of extended functions on a large variety of topological spaces. The 
spaces in question are subspaces of the space of all prime ideals in E, equipped 
with the hull-kernel topology. 

The study of vector lattices via prime ideals is not new. To cite just one 
example, Yosida (13), using such ideals, proved that every archimedean 
vector lattice is isomorphic to a vector lattice of extended functions on some 
Hausdorff space. As will be shown, the space which he used is locally compact. 

In (11), Nakano proved that every ^-complete vector lattice E is isomorphic 
to a vector lattice of extended functions on some totally disconnected Haus
dorff space X. The space X is obtained by providing the collection of all 
maximal dual ideals in the distributive lattice of projectors on E with the 
dual hull-kernel topology. Yosida commented on the difference between the 
topological space which he used and the one used by Nakano. In § 6, we show 
that the representations of Yosida and Nakano can each be obtained by a 
suitable specialization of the space of prime ideals in Theorem 5.1. Our Theorem 
6.7 provides a generalization of Nakano's representation to arbitrary (not 
necessarily c-complete) archimedean vector lattices. 

Using the concept of spectral function, Amemiya (1) developed a spectral 
theory for vector lattices, generalizing Nakano's theory for the cr-complete 
and complete cases (10). In § 4, we indicate how Amemiya's spectral theory 
can be obtained by ideal-theoretic methods. We do this by showing that the 
set of all spectral functions defined on a vector lattice E is essentially the same 
as the set of all prime ideals in E. Section 2 is devoted to a brief sketch of 
part of Amemiya's spectral theory, while some of the properties of prime 
ideals which we will use are recorded in § 3. 

The lattice S of carriers of a vector lattice E, an object of recent origin (7), 
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has been useful in the s tudy of latt ice-ordered algebraic sys tems (for example, 
4; 5; 7; 12). In § 7, we show t h a t E is isomorphic to a basis for the open sets 
in SO?, the set of all minimal pr ime ideals in E equipped with the hull-kernel 
topology. Our proof of this result depends upon a characterizat ion of minimal 
prime ideals obtained in § 6. W e make another application of this character
istic proper ty of minimal pr ime ideals to reverify a theorem of Lorenzen (8) . 

T h e sett ing for our results is a vector latt ice, b u t the reader will observe 
t h a t most of the development , with obvious modifications, is valid for any 
commuta t ive latt ice-ordered group. 

2. Spec tra l t h e o r y . T h r o u g h o u t this paper, E will denote a vector latt ice, 
and E+ its cone of positive elements. W e use the terminology of (2), except 
t h a t x~ denotes the positive element (— x ) + . This section is devoted to a 
brief sketch, wi thout proofs, of pa r t of the development in (1). 

Denote the points of the three element chain 3 by the symbols — oo , 0, + oo , 
and let the order be given by — oo < 0 < + oo. A commuta t ive addit ion, 
with 0 acting as an addi t ive ident i ty , is defined in 3 such t h a t ( + °° ) + ( + 0 0 ) 
= + °°, and ( — oo ) + ( — oo ) = —oo, except t h a t ( + °° ) + ( — ra ) has no 
meaning. T h e elements of 3 are multiplied by real numbers subject to the 
following rules: 

aO = 0 for each real number a, and 0 ( ± o o ) = 0; 
a(-j-oo) = + ° ° , and a(—oo) = —oo for each positive real number a; 
a ( + o o ) = —00, and a(— oo) = -\-œ for each negative real number a. 

A function / with domain a vector lat t ice E and range contained in 3 is 
called a spectral function if it satisfies the following condit ions: 

(1) f(x) 9^ 0 for a t least one x in E; 
(2) f(ax) = af(x) for each x in E, and each real number a; 
(3) / ( x V y) = max{f(x),f(y)} for each pair x, y in E. 

Let % denote the collection of all spectral functions defined on E. Part ial ly 
order § by w r i t i n g / < g in c a s e / ( x ) < g(x) for all x in E+. For each x in E, 
pu t $x = {/ G S : / ( x ) ^ 0}. For any pair x, y in E , and any non-zero scalar 
a, we have %ax = %x = g | x | ; %\X\A\V\ = %x H g y ; a n d Sizivivi = %x W %y. T h u s 
the collection of sets {$x: x Ç E+} is a basis for the open sets for a topology 
on g, and the la t ter set, equipped with this topology, and the given partial 
order, is called the spectral space of E. 

If a is a non-zero element of E, and if / G §a> then for each x in E, the 
relative spectrum of x with respect to a a t / , denoted by ( x / a , / ) , is defined as 
the infimum of all real numbers a such t h a t f(aa — x) = / ( a ) , where the 
infimum of the empty set is understood to be + °° • 

A vector latt ice is called archimedean if nb < a for all non-negative integers 
n implies t h a t b < 0. T h e following theorem summarizes some of the properties 
of the relative spectrum. 
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T H E O R E M 2.1. Let a be a non-zero element in E , let f Ç %ai and let x and y 
be arbitrary elements of E. Then 

(a) fax±Jy Jj = ̂ ^ + ^y/^f) 

for all real numbers a and (3, provided the right-hand side makes sense; 
(b) if f(a) = + o o , then 

("P --7 = max {(x/a'^' &/<*,/)} 
and 

( ^ , / ) = rnin{(x/a,f), (y/aj)} ; 

(c) for each fixed x, (x/a, .) is a continuous function on $a, where the latter 
set is given the relative topology; 

(d) if E is archimedean, then for each x in E, (x/a, .) is real valued on an 
open, everywhere dense subset of \$a; 

(e) if E is archimedean, and if both $x and %y are contained in g a , then 
xKyif, and only if, (x/a,f) < (y/a,f) for all f in g a . 

A spectral function / is said to be maximal if / < g, where g Ç %, implies 
t ha t / = g; it is called minimal if g < / implies t ha t g = f. In general, there 
are no minimal spectral functions on E. The set of all maximal spectral 
functions is called the proper space of E. A proof of the following result will 
be given in § 6. 

T H E O R E M 2.2. The proper space of any vector lattice is a Hausdorff space in 
its relative topology, has a basis consisting of open and closed sets, and is dense 
in the spectral space. 

3. P r i m e idea ls . A homomorphism of the vector lattice £ is a linear t rans
formation / of E into a vector lattice F such tha t f(x+) = (f(x))+ for all x 
in E; a one-one homomorphism is called an isomorphism. If / is an ideal in 
E, then let I(x) denote the element of the quotient vector space E/I which 
contains the element x. The vector space E/I is partially ordered by agreeing 
t ha t a coset I(x) is positive if there is an element y in E+ such tha t x — y Ç / . 
With this ordering, E/I is a vector lattice, and the canonical mapping x —* I(x) 
of E onto E/I is a homomorphism. 

T H E O R E M 3.1. The following statements are equivalent for an ideal P in the 
vector lattice E. 

(a) P is a prime ideal. 
(b) If x A y = 0, then either x £ P or y Ç P. 
(c) The quotient vector lattice E/P is linearly ordered. 
(d) If P ~D I C\ J, where I and J are ideals in E, then either P 3 / or P 2 / . 
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Proof. That (a) implies (b) is obvious. 
(b) implies (c). For every x in E, we have x+ A x~ = 0, and so by (b), 

either x+ Ç P or xr G P. Thus, either P(x+) = (P(x))+ = 0, or P(x~) = 
(P(x))~ = 0, that is, either P(x) < 0 or P(x) > 0. 

(c) implies (d). Suppose P ~Q_ I C\ J, where / and / are ideals in E. Then, 
in E/P, we have P(I) H P(J) = {0}. But, P(7) and P(J) are ideals in £ / P , 
and the ideals in a linearly ordered vector lattice form a chain, so this means 
that either P(I) = {0} or P(J) = {0}. Thus, either P D / o r P D J . 

(d) implies (a). If, for an element w in £ , we let (w) denote the ideal 
generated by w, then this set consists of all elements v such that \v\ < n\w\ 
for some positive integer n. Now let x and y be elements of E+ such that 
x A y G P . It is easy to see that (x A y) = (x) Pi (y). Thus, (x) H (y) Ç P 
implies that (x) C P or (y) C P , that is, x Ç P or y Ç P . If x and y are any 
elements of E such that x A y G P , then (x — s) A (y — z) = 0, where 
2 = xA}i . Since x — z and 3; — z are elements of £+, the above case implies 
that x Ç P or y Ç P . This completes the proof. 

Now let 33 denote any collection of prime ideals in E. For any subset © of 
33, the kernel of ©, denoted by &(©), is defined to be the set of elements in E 
that are common to all of the ideals in ©. For any subset A of £ , the to// 
of ^4, denoted by h (A), is the set of all P in 93 such that P Z) A. If © is a 
subset of 93, then put ©~ = A(fe(©)). In virtue of the equivalence of state
ments (a) and (d) of the above theorem, the correspondence © —» @~ is a 
closure operator on 93 which makes the latter set into a topological space. The 
topology so defined on 93 is called the hull-kernel topology. If x is an element 
of £ , then let 33x = {P 6 93: x $ P } . It is easy to see that the collection 
{93*: x G £} is a basis for the open sets for the hull-kernel topology on 93. 

4. Spectral functions and prime ideals. Let P be a prime ideal in E, 
and x an element of E. If |x| $ P , then since |x| = x+ + x~, either x+ $ P or 
x~ $ P . But x+ A x~ = 0, and so either x+ Ç P or x~ G P . Hence, the three 
cases |x| Ç P ; x+ $ P ; x~ $ P are mutually exclusive and exhaustive. It follows 
that the function P, where 

(0 if |x| e p 
P(X) = j + 00 if X+£P 

[ - 00 if x" i P 

is well defined. 
We show that P is a spectral function on E. Condition (1) in the definition 

of spectral function follows since P is proper. We have \ax\ = |a||x| for all 
real numbers a, (ax)+ = ax+ for a > 0, and (ax)+ = — ax~ for a < 0. It 
follows that P satisfies condition (2). To verify condition (3), we first show 
that P(x) < P(y) whenever x < y. Suppose that P(y) = 0. Since 0 < x+ 

< y+ G P , we have x+ G P , or P(x) < 0. Suppose that P{y) = — °° ; then 
since 0 < y~ < x~, and y~ $ P , we must have x~ $ P , that is, P(x) = — 00. 
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This shows that P is order preserving, and s o P ( x V ) ' ) > max{P(x), P(y)}. 
If P(x) and P(y) are both < + ° ° , then (x V 3>)+ = x+ V y+ <E P, or 
Pipe V y) < + oo ; if P(x) = JP(y) = - oo, then (x V y)~ = x~ A y~$P, or 
P ( x V ) ' ) = —oo. Condition (3) now follows. 

If P and Q are distinct prime ideals, then there is a positive element x 
such that x £ P but x$Q, that is, P(x) = 0 and Q(x) = + oo. Thus, the 
mapping P —* P is one-to-one. 

To show that the mapping P —» P is onto, let / b e a spectral function on 
E, and put P = {x £ E:f(x) = 0}. It is shown in (1) that a spectral function 
satisfies the equality f(x + 3>) = f(x) + / ( y ) , provided the right-hand side 
makes sense. From this, and the defining properties of spectral function, it 
is easy to see that P is a prime ideal. To complete the proof, we show that 
P = / . If |*| Ç P , then also x G P , and so f(x) = P(x) = 0. If x+ # P , then 
jf(x+) = + oo ; since f(x+) = max{/(x), 0}, we have/Or) = P(x) = + °°. The 
argument for the remaining case is similar. 

Let ty denote the set of all prime ideals in E, equipped with the hull-kernel 
topology. If P and Q are elements of ty, then it is obvious that Q C P if and 
only if P < Q. Moreover, since the set ga is in one-to-one correspondence 
with the set ^5a, the mapping P •—> P of $ onto g is clearly a homeomorphism. 
We summarize the preceding statements in 

THEOREM 4.1. The set of all prime ideals in the vector lattice E, equipped 
with the hull-kernel topology, and partially ordered by set inclusion, is homeo-
morphic and order anti-isomorphic with the spectral space of E. 

5. Vector lattices of extended functions. Let P be a prime ideal in E, 
and let a be an element of E+ which is not in P . For each element x in E, 
put x(P) = ini{a:P(x) < aP(a)}. Since P(y) = + oo if and only if y+ ( P , 
it follows that x(P) is the relative spectrum of x with respect to a at the 
spectral function P. It is easily verified that x(P) is also given by the infimum 
of all real numbers a such that P(x) < aP{a), that is, x(P) = inf{a: (aa — x)~ 

For x in E, let x± denote the set of elements y such that \x\ A \y\ — 0. If 5 
is any subset of E, then let S± = P\ {s± : 5 Ç S}. A subset A of E+ is called 
orthogonal if a A b = 0 whenever a, b Ç ^4, and a ^ &. By Zorn's lemma, E 
contains a maximal orthogonal set. 

By an extended (real-valued) function on the topological space X, we mean 
a continuous mapping of X into the two-point compactification of the real 
line R which is real valued on an everywhere dense subset of X. Let D(X) 
denote the set of all extended functions on X. If / , g G D(X) and a £ R, 
then the functions af, f\/g, and f A g, which are defined pointwise, are in 
D(X). Let R(J) denote the set of points at which / is real valued. If there is 
a function h in D(X) such that h(x) = f(x) + g(x) for each x in R(J) Pi R(g), 
then h is called the sum of/ and g. Since R(f) C\ R(g) is dense in X, the sum 
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is uniquely denned, provided it exists. A subset S of D(X) which is closed 
under these four operations is called a vector lattice of extended functions on X. 

Although a proof of the following result could be based on Theorem 2.1, 
we shall use the techniques in (13). 

T H E O R E M 5.1. Let 33 be a collection of prime ideals in the archimedean vector 
lattice E such that /°\ {P: P G 33} = {0}, let A be a maximal orthogonal subset 
of E, and let the set % = KJ {%$a: a Ç. A} be equipped with the hull-kernel topo
logy. Then E is isomorphic to a vector lattice of extended functions on the topo
logical space 3£. 

Proof. First observe t ha t the sets 33a are pairwise disjoint. This follows 
since A is an orthogonal set. If P 0 G ï , then let a be the unique element of A 
such t h a t P 0 G 33a. For x in E + , pu t x(PQ) = inf{a:Po(x) < a ? 0 ( a ) } . If x 
is an arb i t rary element of P , pu t x(P0) = x + (P 0 ) — x~(P 0 ) . Since x + A %~~ — 0, 
x(Po) is well defined. For the remainder of this proof, we assume t h a t x is 
an element of E+. We show t h a t x is continuous a t each point of 36. Suppose 
first t h a t x(Po) = + °° • If a is any real number , then (aa — x)~ $ Po- P u t 
c = aA (aa - x)~; then c i P 0 , t h a t is, P 0 G 33c and 33c £ 33a. If P G 33c, 
then (aa — x)~ $ P , and so x ( P ) > a. Now let x(P0) = a0 be finite. If e > 0, 
then ((a0 + e)a — x)+ $ P 0 , and ((a0 — e)a — x)~~ $ P 0 . P u t c = a A 
((ao + e)a - x ) + A ((«<> - e)a - x)~; then P 0 G 33c C 33a. If P G 33c, then 
((aô + e)a — x)+ $ P , and ((a0 — e)a — x)~ $ P , t h a t is, x ( P ) < a0 + e, 
and x(P) > ao — e. 

We use the following lemmas to show t h a t x is an extended function on H. 

L E M M A 5.2. If 33 is a set of prime ideals in E such that C\ {P : P G 33} = {0}, 
then b± = &(336) / ^ r ^ ^ element b of E. 

Proof. If |;y| A \b\ = 0, and if P G 336, then y G P since P is a prime ideal; 
thus , y G &(33ô), t h a t is, b± C &(33&). Conversely, let y G &(336). If P G 33», 
then \y\ A |6| G P\ if P $ 35&, then also |y| A |ô| G P . Thus , \y\ A |ô| G P for 
all P G 33, and so \y\ A |ô| = 0. 

A proof of the next lemma can be found in (3) . 

L E M M A 5.3. If b G E, and if {y\:\ G A} is a collection of elements in b± 
such that y = sup{y\: X G A} exists, then y G bjL. 

Now let 36& be a basic open set in £. W e m a y assume t h a t both x and b 
are non-zero elements of E + . W e have £6 = 336 C\ ï = \J {33aA6: a G A}. 
Suppose t h a t x(P) = + oo for all P in 3£&. T h e n for each a in A, and each 
P in 33aA&, we have (na — x ) + G P , t h a t is, (a — (x/n))+ Ç P , for w = 1, 2. . . . 
By Lemma 5.2, (a — (x/n))+ G (a A &)_L for all positive integers w. Now 
a > (a — (x/?z))+ for all w; if y > (a — (x/V))+ , then a — y < # / « for all w, 
and hence a < 3> since E is archimedean. T h u s , a = sup{ (a — (x /w) ) + : 
w = 1, 2, . . . , } , and so by Lemma 5.3, a G (a A ô)JL, t h a t is, 6 G A±_. Since 
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A is a maximal orthogonal set, this implies that b = 0, a contradiction. Hence, 
R(x) is a dense subset of X. 

We have shown that the set E = {x: x G E} is a subset of D(X). It is easy 
to see that x + y = x + y, ax = ax, and x V ^ = x V y for all x, y in E, 
and all real numbers a. Hence, -Ë is a vector lattice of extended functions on 
36, and the mapping x —» x is a homomorphism. To show that this homo-
morphism is an isomorphism, let x = 0. Then for each a Ç i , and each 
P £ 25a> we have ((a/n) — x)~~ G P for all positive integers n. By Lemma 
5.2, ((a/n) — x)~ G a_L for all n. Since £ is archimedean, x = sup{ ((a/n)— x)~~: 
n = 1, 2, . . . ,}, and so Lemma 5.3 implies that x U L It follows that 
x G 4̂_L, and hence x = 0. This completes the proof of the theorem. 

As a parenthetical remark, we note that the above result leads to a repre
sentation theorem for ^-algebras. A ^-algebra s/ is an archimedean lattice-
ordered algebra containing an identity element 1 which is a weak order unit. 
Let ^ # be the set of all maximal I-ideals in s/. It is known that the zero of s/ 
is the only element that is common to all of the I-ideals in ^ and that each 
element of ^ # is a prime (vector lattice) ideal (6). Let 93 = <Jh and A = {1} 
in the above theorem; then 36 = *Jt. It is easy to see that xy = x y for all x 
and y in j^f Thus, every ^-algebra se is isomorphic (as a lattice-ordered 
algebra) t o an algebra of extended functions on ^ . This is a result of Henriksen 
and Johnson (6). 

6. Minimal prime ideals. A non-empty proper subset K of E+ is called a 
positive ideal if it is closed under addition and multiplication by non-negative 
scalars, and if x G K whenever 0 < x < y with y G K. The mapping defined 
by I —» I C\ E+, where / is an ideal in E, is a one-to-one correspondence 
between the set of all ideals in E, and the set of all positive ideals. With 
respect to this mapping, the inverse image of the positive ideal K is the 
ideal K — K, that is, the set of all elements in E which can be expressed 
as the difference of two elements in K. A positive ideal K is said to be prime 
if the ideal K — K is prime. 

Let I be an ideal in E. A prime ideal P such that I Ç P is called a minimal 
prime ideal belonging to the ideal I if there is no prime ideal containing I and 
properly contained in P. A minimal prime positive ideal belonging to a given 
positive ideal is defined analogously. It is easy to see that P is minimal prime 
ideal belonging to the ideal I if and only if P C\ E+ is a minimal prime positive 
ideal belonging to the positive ideal I C\ E+. Therefore, when characterizing 
the minimal prime ideals belonging to a given ideal, it is sufficient to consider 
only positive ideals. This characterization (Theorem 6.5) will be obtained 
via a series of lemmas. Part of the development in this section was suggested 
by the theory of minimal prime ideals in commutative rings (9). 

A non-empty subset 5 of E+ is called a lower sublattice of the vector lattice 
E provided that x A y (z S whenever both x and y are in S. Note that the 
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positive ideal K is prime if and only if K', the complement of K in E+, is a 
lower sublattice. The following result is an easy consequence of Zorn's lemma. 

LEMMA 6.1. Let K be a positive ideal in the vector lattice E, and let S be a 
lower sublattice which does not meet K. Then S is contained in a lower sublattice 
which is maximal with respect to the property of not meeting K. 

LEMMA 6.2. Let S be a lower sublattice in E, and let K be a positive ideal 
which does not meet S. Then K is contained in a positive ideal M which is maximal 
with respect to the property of not meeting S; moreover, M is prime. 

Proof. The existence of such an i f is a consequence of Zorn's lemma. It is 
clear that a positive ideal L is prime if, and only if, x A y = 0 implies that 
x G L or y G L. We use this characterization of prime positive ideals to 
show that M is prime. Let a A b = 0, but suppose that a $ M and b $ M. 
The positive ideal generated by M and a is denoted by (M, a) ; it consists 
of all x G E + such that x < na + v for some positive integer n and some 
element v in M. Because of the maximal property of M, there exist elements 
x G (M, a) r\ S and y G (M, b) H S. Thus, 0 < x < ma + i>, and 0 < y 
< nb -\-w for positive integers m, n\ and v, w in M. We may choose m = n 
and v = w, and therefore, x A y — v = (x — v) A (y — y) < m(a A £) = 0 . 
It follows that x A y (z S r\ M, a contradiction, and thus M is prime. 

In what follows, if B is a subset of E+ , then 5 ' will denote its complement 
in E+. 

LEMMA 6.3. A subset J of positive elements of the vector lattice E is a minimal 
prime positive ideal belonging to the positive ideal K if and only if J' is a lower 
sublattice which is maximal with respect to the property of not meeting K. 

Proof. Let J be a subset of E + such that Jf is a lower sublattice which is 
maximal with respect to the property of not meeting K. By Lemma 6.2, 
there is a prime positive ideal M such that K C M Ç / . Since M' is a lower 
sublattice which doesn't meet K, the maximal property of J' insures that 
J = M. This shows that / is a minimal prime positive ideal belonging to K. 

Conversely, let J be a minimal prime positive ideal belonging to K. Then 
J' is a lower sublattice which does not meet K. By Lemma 6.1, J' is contained 
in a lower sublattice 5 which is maximal with respect to the property of not 
meeting K. By the above case, S' is a minimal prime positive ideal belonging 
to K. By the minimal property of / , we conclude that S = J'. This completes 
the proof. 

LEMMA 6.4. A prime positive ideal J is a minimal prime positive ideal belonging 
to the positive ideal K if and only if whenever x G J then there exists y Ç Jf 

such that x A y G K. 

Proof. To prove sufficiency, let K C N C J, where N is prime, and choose 
x G J such that x $ N. By hypothesis, there exists an element y £ J' such that 
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x A y G K. Hence, x A y 6 N, but x # N and y # iV. Since N is prime, this 
is impossible. 

Conversely, let / be a minimal prime positive ideal belonging to K. By 
Lemma 6.3, J' is a lower sublattice which is maximal with respect to the 
property of not meeting K. Let x be an element of / , and put 5 = / ' U ja A x: 
a Ç J'}. Since a A x G / for all a Ç / ' , the set S is a lower sublattice which 
properly includes / ' , and so there is an element y in J' such that x A y (z K. 
This completes the proof. 

As an immediate consequence of the above result and the remarks at the 
beginning of this section, we obtain 

THEOREM 6.5. A prime ideal P in the vector lattice E is a minimal prime 
ideal belonging to the ideal I if and only if whenever x Ç P , then there is an 
element y $P such that \x\ A \y\ G P 

By a minimal prime ideal, we mean a minimal prime ideal belonging to the 
ideal {0}. Let 5DÎ denote the collection of all minimal prime ideals in E. In 
virtue of the order anti-isomorphism between spectral functions and prime 
ideals obtained in § 4, 99? is in one-to-one correspondence with the proper 
space of E. We now use Theorem 6.5 to give an independent proof of Theorem 
2.2. We shall make use of the following result. 

LEMMA 6.6. Every ideal is the intersection of all minimal prime ideals belonging 
to it. 

Proof. It is sufficient to consider only positive ideals. Let K be a positive 
ideal, and let a be an element of E+ such that a $ K. Then the single element 
set {a} is a lower sublattice which does not meet K. In virtue of Lemma 6.1, 
there is a lower sublattice S, containing a, and which is maximal with respect 
to the property of not meeting K. By Lemma 6.3, the set S' is a minimal 
prime positive ideal belonging to K. 

It is an immediate consequence of this lemma that k(Wft) = {0}, that is, 
9JÎ is dense in $, the set of all prime ideals in E. This proves one part of 
Theorem 2.2. To show that 2JÎ is a Hausdorff space, first recall that the 
collection {fflla: a 6 £ } , where 3Jta = {P € 2Jh a $ P], is a basis for the open 
sets when 9JJ is equipped with the hull-kernel topology. Now let P i and P2 
be distinct elements of 9J?, and choose x Ç P i P\ E+ such that x$P2î and 
y € Pi C\ E+ such that y $ Pi . By Theorem 6.5, there is a positive element 
s $Pi such that s A x = 0. Put / = s A y; then / # P i and x (P2, that is, 
Pi e Tit and P 2 e Ttx. Moreover, 2H, H 2WZ = TlSAvAX = 9Ko = 0, and hence 
SDÎ is a Hausdorff space. Finally, let P $ 9)?a, where a 6 E+. Choose a positive 
element b $ P such that a A à = 0. Then Wlb C 39?a', the complement of 9J?a 

in 90?, and so 9Jîa is both open and closed. 
If we let 93 = 9JÎ in Theorem 5.1, then it follows from the preceding discussion 
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t h a t the space X = U {23a: a Ç ^4} is a Hausdorff space which has a basis 
consisting of open-closed sets. Thus , we have 

T H E O R E M 6.7. Every archimedean vector lattice is isomorphic to a vector lattice 
of extended functions on a Hausdorff space having a basis consisting of sets 
which are both open and closed. 

II f and g are linear operators act ing on the vector latt ice E, then we wri te 
f < g in case / (V) < g(x) for all x in E+. A projection on E is an idempotent 
linear o p e r a t o r / such t h a t 0 < / < 1, where 0 is the null operator , and 1 is 
the ident i ty operator . A p ro j ec t i on / is called a projector if there is an element 
a in E such t h a t a± coincides with the nullspace of / ; in this case, we say 
t h a t a belongs to the projector / . 

Now let £ be a a-complete vector latt ice. I t is known (10) t h a t each element 
in E belongs to a projector, and t h a t the set S of all projectors, part ial ly 
ordered as above, is a conditionally (r-complete, relatively complemented, 
dis tr ibut ive lattice. I t follows from work of Amemiya (1) t h a t the collection 
of all maximal dual ideals in Ë, equipped with the dual hull-kernel topology, 
is homeomorphic with 5DÎ, and t h a t the collection of sets {Wa'a £ E], par
tially ordered by set inclusion, is isomorphic with S. Consequently, in the 
case of a d-complete vector lattice, Theorem 6.7 reduces to a representat ion 
theorem of Nakano (11). 

For each element z in the vector latt ice £ , let Hz be the set of all ideals 
which are maximal with respect to the proper ty of not containing z. By 
Lemma 6.2, such ideals exist and, moreover, each is prime, t h a t is, Hz Ç tyz. 
I t again follows from work of Amemiya t h a t E is archimedean if and only 
if 36z is dense in ^z for each z in E. Now let E be archimedean, and let A be 
a maximal orthogonal subset of E. P u t 23 = VJ {%a: a £ A}. I t is easy to see 
t h a t 23 is dense in ty. Wi th the notat ion as in Theorem 5.1, 23a = £a , and so 
X = 23. T h e space ï is the one which Yosida (13) used for his representat ion 
theorem. 

T H E O R E M 6.8 (Yosida). Every archimedean vector lattice is isomorphic to a 
vector lattice of extended functions on a locally compact Hausdorff space. 

Proof. Yosida proved t h a t the space H as defined above is a Hausdorff 
space. W e show tha t it is locally compact by proving t h a t each set £ a is 
compact . 

W e first prove t ha t each set $ a is compact . Consider a collection of relatively 
closed subsets of tya whose intersection is empty . W e may suppose t h a t they 
have the form h{b) C\ ^3a, where b ranges over some subset B of E+1 and 
where h(b) = {P 6 $:b G P). Thus , h(B) H ^ a = 0, or h(B) C h(a). By 
Lemma 6.6, each ideal is the intersection of all prime ideals containing it. I t 
follows t h a t a G ( 5 ) , where the la t ter set denotes the ideal generated by B. 
Hence, there exist positive integers ni, . . . , nk and elements b\, . . . , bk in B 
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such that a < mh + . . . + nkbk. Thus, % C U i * ^ , or rVA(6<) n ? 8 = *. 
This proves that tya is compact. 

To show that 3£a is compact, let 3£a C U {tyb: b € 5 } , where 5 is some 
subset of E+. If P Ç $ a t then there is an element <2 in Xa such that P C (). 
Moreover, there is an element b in B such that Q Ç $&. Hence, the collection 
{$&: & Ç 5} is an open covering of the compact set ^}a, and so there exist 
elements blt . . . , bk in B such that $ a C U i % . But Xa C $ a , and so the 
former set is compact. 

7. The carrier space. The elements a and b of P + are called equivalent if 
a_L = b±. It is clear that this is an equivalence relation on E+\ let a* denote 
the equivalence class containing a, and let Ê denote the collection of all 
equivalence classes a* as a ranges over E+. The set É, when partially ordered 
by writing a* < Z>* in case 5_L Q aj_, is called the carrier space of E, and its 
elements are called carriers. (We are using the terminology in (4); Jaffard (7) 
calls the elements of Ë filets.) The following result is proved in (7). 

THEOREM 7.1. 77ze carrier space of the vector lattice E is a distributive, dis
junctive lattice. 

We now proceed to give another characterization of S, together with a 
proof of the above theorem. 

THEOREM 7.2. The collection of sets {SD2« : a £ E+}, when partially ordered by 
set inclusion, is a distributive, disjunctive lattice which is isomorphic to the 
carrier space of E. 

Proof. Let 36 denote the collection of sets tyfla as a ranges over E+. Since 
2ftaA& = 9Wa ̂  Sftz» 9Wav& = Tla ^ SDÎ&, and 9ft0 = <t>, the collection X, when 
partially ordered by set inclusion, is a distributive lattice with a smallest 
element. We now show that 36 is disjunctive. For this, let 2Jîa (2 9W&, and 
choose P Ç $fta such that P $ 2W6. Since ô G P , by Theorem 6.5, there is a 
positive element c $ P for which 6 A c = 0. Put d = a A c; then d $ P . Thus, 
we have 2)î& H 93?d = </>, and </> ̂  SDîd C 23îa, that is, X is disjunctive. 

For a* in 6, put /3(a*) = 2)îa. Let a* < 6*, that is, b±_ Ç aj_. Since 
Pi { P : P Ç 50Î} = {0}, Lemma 5.2 insures that x_L = k{$Jlx) for each x, and 
so Jfe(2R6) £ *(9K«). Hence, h{k{ma)) Ç *(*(2»ft)), and since 9JÎ, is closed in 
9ft, we have 9Jîa Ç 9W6. This shows that the mapping /3 is both well defined 
and order-preserving. Now if 9Wa C 9ft6, then 6J_ = £(9JÏ&) Ç £(3fta) = a±, 
and so a* < 6*. Hence, a* < £* if, and only if, 0(a*) < £(#*). This completes 
the proof. 

Let 0 be an isomorphism of the vector lattice P onto a subdirect sum F 
of the linearly ordered vector lattices {Fa: a £ 21}. For y = {. . . , ya, . . .} in F, 
let pra(y) = ;y« G P«, and for x in P , put a(x) = { a f 31: pra(0x) ^ 0}. The 
isomorphism 0 is called completely regular if for each a Ç 91, and each x £ P+ 
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such that a(a(x), there exists an element y in E+ such that a £ o-(y), and 
a(x) P\ a(y) = </>. 

Ribenboim (12) makes use of the set 2) of all maximal dual ideals of the 
distributive lattice S to give a new proof of the following result of Lorenzen 
(8). It is not hard to show that Î) is in one-to-one correspondence with 9Ji. 
(In fact, if 3) is equipped with the dual hull-kernel topology, then this corre
spondence is a homeomorphism.) 

THEOREM 7.3. Every vector lattice admits a completely regular isomorphism 
onto a subdirect sum of linearly ordered vector lattices. 

Proof. Let the elements of Wl be indexed by the set SI, and for Pa G 9JÎ, 
put Fa = E/Pa. Since H {Pa:a Ç 21} = {0}, the mapping x -» \Pa(x): a 6 SIj 
is an isomorphism of E onto a subdirect sum of the linearly ordered vector 
lattices {Fa:a £ 31}. To see that this isomorphism is completely regular, note 
that a(x) = $Jlx for each x. Theorem 6.5 completes the proof. 
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