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THE ASYMPTOTIC RATIO SET AND DIRECT INTEGRAL 
DECOMPOSITIONS OF A VON NEUMANN ALGEBRA 

OLE A. NIELSEN 

The fact that any von Neumann algebra on a separable Hilbert space has 
an essentially unique direct integral decomposition into factors means that 
there is a global as well as a local aspect to any partial classification of von 
Neumann algebras. More precisely, suppose that J is a statement about 
von Neumann algebras which is either true or false for any given von Neumann 
algebra. Then a von Neumann algebra is said to satisfy / globally if it satisfies 
J, and to satsify / locally if almost all the factors appearing in some (and 
hence in any) central decomposition of it satisfy / . In a recent paper [3], 
H. Araki and E. J. Woods introduced the notion of the asymptotic ratio set 
of a factor, and by means of this they made remarkable progress in the classi
fication of factors. The asymptotic ratio set of an arbitrary von Neumann 
algebra can be defined in an obvious way, and gives a partial classification of 
von Neumann algebras. The purpose of the present paper is to investigate 
the local properties of this classification. 

Suppose that 21 is a von Neumann algebra on a separable Hilbert space, and 
let f —* 21(f) be a Borel field of factors on some standard Borel space Z whose 
direct integral with respect to some Borel measure /z on Z is spatially iso
morphic to 21. The local aspect of the classification of von Neumann algebras 
into those types I, II, and III is, of course, well known (see, for instance, 
[12, Corollary III.1.3 and Theorem III.1.6]). Its essential features are the 
following: (i) Z is the disjoint union of the ^-measurable sets 

Z , = | r e Z : 21 (f) is of type x}, 

x = I, II, and III; (ii) 21 is of type I (respectively, type II, type III) if 
and only if 21(f) is of type I (respectively, type 27", type III) for /x — a.a. 
f G Z (i.e., the local and global definitions of type coincide); and (iii) the 
sets Zx can be used in a natural way to obtain the unique decomposition of 21 
into a direct sum of algebras of types I, II, and 277. The situation is only 
slightly more complicated when the 21(f) are classified according to their 
asymptotic ratio sets. The exact analogue of (i) remains true (Corollary 5). 
The asymptotic ratio set of a von Neumann algebra 21 is always defined 
(i.e., defined globally). However, the asymptotic ratio set of 21 is not in general 
defined locally; in fact, it is defined locally if and only if the 21(f) have the 
same asymptotic ratio set for JJL — a.a. f G Z. (Here "global' ' and "local" 
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are used in the sense of the previous paragraph.) Thus the statement corres
ponding to (ii) must fail. If, however, an algebra has a locally defined asymp
totic ratio set, then the global and local definitions agree, and the algebra is 
said to be of pure asymptotic ratio type. Finally, (iii), the most important 
of the three, does carry over. The analogue must, however, be phrased in 
terms of a direct integral whose components are of pure asymptotic ratio type 
(Theorem 6). 

E. G. Effros' formulation of the direct integral theory of von Neumann 
algebras [6 ; 7] will be used throughout. It is not only more elegant than the 
customary formulation (as found in, say, [5; 12]), but also technically advan
tageous because it facilitates the application of Borel spaces to direct integral 
theory. The standard results about Borel spaces (as contained in [4, pp. 2-13; 
9, § 1-6]) will be used frequently, and the reader is assumed to be familiar 
with them. A brief review of Effros' direct integral theory is included here to 
acquaint the reader with the notation and terminology used below. All 
Hilbert spaces considered are by assumption complex, separable and positive 
dimensional. For each n = oo, 1, 2, . . . , let ffln be a fixed ^-dimensional 
Hilbert space, and let J£n and s/n be the sets of all bounded linear operators 
and all von Neumann algebras onJfM, respectively. Give toJ^w and «S?n the 
weak Borel structure and to s/n the standard Borel structure defined in [6]. 
This means that$? n (respectively, J£n) is given the Borel structure generated 
by the weak topology on 3tffn (respectively, the weak operator topology on 
o£fw), or equivalently, the strong topology3tifn (respectively, the strong operator 
topology on oêfw). The important facts about the Borel structure on s$n are 
that (i) 21 —> 31' is a Borel automorphism of s/n and that (ii) a map f —> 31(f) 
from a Borel space Z into s/n is Borel if and only if there are Borel maps 
f —>Ak(Ç), k = 1, 2, . . . , from Z into the unit ball of ^n such that the 
Ak(Ç) are weakly dense in the unit ball of 31(f) for each f in Z. Also, \et^fu be 
the Borel space union (or sum) of the^f^ and define J£u and s/u similarly. 
Suppose that Z is a standard Borel space, that [i is a finite positive Borel 
measure on Z, and that for each f Ç Z, 31(f) is a von Neumann algebra on a 
Hilbert space ^ ( f ) . Put Zn = {f G Z: dimJ^(f) = n\ for each n. Then 
f —> 31(f) is said to be a Borel field of von Neumann algebras on Z if for each n 
and each f Ç Zny there is a linear isometry 7(f) ofJ^(f) onto 3tifn such that 
f —> 7(f)§I(f)7(f)_1 is a Borel map from Z into s/u. If this is the case, then a 
von Neumann algebra 31, called the direct integral of the field f —> 31(f) with 
respect to M and denoted by 

I 2l(f)4u(f), 
J z 

can be defined as follows. (The notation makes no reference to the 7(f) since 
it turns out that, to within spatial isomorphism, the direct integral is inde
pendent of the choice of the 7(f) [7, Lemma 4.1].) The Hilbert space on which 
31 acts is the direct integral of the field f —>«^(f ) with respect to /x, which is 
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denoted by 

r jro-)dM(f). 
J z 

It consists of all those vector fields f —» x{£) (i.e., maps x : Z —> Ur<Ez^(f ) 
with x(f) G ^ ( f ) for each f G Z) which satisfy (i) f -»7(f )x(f ) is a Borel 
map from Z intoJ^M and (ii) 

where, as usual, two such vector fields f —»x(f) and f —»;y(f) are identified 
whenever 

f ||*(r)-y(f)ll^(f) = 0. 

The linear operations are the pointwise ones and the inner product is 

(x,y) = f (x(f;,:y(f))^(f). 
•J z 

If, for each Ç £ Z, A (f) is an operator in 31(f) and if f -> 7 ( fM (f M f ) _ 1 is a 
uniformly bounded Borel map from Z into o5fM, then the map which assigns 
to a vector field f —> x(f ) i n ^ f the vector field f —» A (f )x(f ), again in J^7, is 
a bounded linear operator on 34?. The set of all such operators constitutes a 
von Neumann algebra and is the desired algebra 31. I t should be pointed out 
that if f —> 33(f) is a second Borel field of von Neumann algebras on Z and 
if 31(f) is *-isomorphic (respectively, spatially isomorphic) to 33(f) for fx — a.a. 
f Ç Z, then 31 is *-isomorphic (respectively, spatially isomorphic) to 

f ®(r)<*/i(r) 

(this is stated without proof as [7, Lemma 4.1]). In fact, the proof in the case 
of spatial isomorphisms is just a straightforward application of the Mackey-
von Neumann cross-section theorem, and in the case of *-isomorphisms can 
be reduced to the first case by the device used in the proof of Proposition 1. 
In what follows, 31 — 33 will mean that 3Ï and 33 are *-isomorphic. 

Following [7, §5], (Z, JU, f —> 31(f)) is called a central decomposition of a 
von Neumann algebra 31 if each of the following statements is true: (i) ju is 
a finite positive Borel measure on a standard Borel space Z; (ii) f —* 31(f) is 
a Borel field of factors on Z; and (iii) 31 and 

2t(f)^(f) 
J z 

are spatially isomorphic. There is a refinement (or transitivity) theorem for 
central decompositions. Roughly speaking, it says that the central decomposi-
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tions of the components of a direct integral decomposition of a von Neumann 
algebra SI can be put together to give a central decomposition of 21. Although 
this theorem can be made to follow from a result of Guichardet [8, § 5, Propo
sition 2], a simpler proof of it is included here. Let n be a finite positive Borel 
measure on a standard Borel space Z, let f —> 31(f) be a Borel field of von 
Neumann algebras on Z, and let 

a = f Hoodoo. 
•̂  z 

Suppose that 31(f) acts on a Hilbert space ̂ ( f ) so that 31 acts on 

JT= f Jf(£)dnQ;). 
J z 

The algebra 21 o of diagonal operators onJ^7 is *-isomorphic to Lœ(Z, /*) and is 
a subalgebra of the center 3t r\ 21' of 31. Let v be a finite Borel measure on a 
standard Borel space F such that 31 C\ 3T and L°°(F, */) are *-isomorphic. 
The inclusion map of 3lo into 21 P\ 2T is induced by a Borel mapping / o f F 
into Z which carries v into a measure # equivalent to /J, i-e., jX = /*(*>) a n d / * 
is the inclusion map in the notation of [4] (see, e.g., [8, § 1, Proposition 1]). 
Define an equivalence relation R on F by specifying that £iRi;2 if and only if 
/ t t i ) = / (&). Let 7/ie be the quotient Borel space, p : F - > F/i? the quotient 
map, and £ the quotient measure. Let g be the unique mapping from Y/R 
into Z which satisfies g o p = / . Since g is one-one and Borel, F/i? must be 
countably separated and hence analytic. Therefore, by deleting a *>-null 
i^-saturated Borel set from F and changing notation, Y/R can be assumed to 
be standard. Then, however, the range of g (which is also the range / ) is a 
Borel subset of Z and g is a Borel isomorphism of Y/R w i t h / ( F ) , the latter 
having the relative Borel structure. Notice that /z and g*(v) are equivalent 
measures on Z and that \x{Z — / ( F ) ) = 0. 

Since the centre of 21 is *-isomorphic to L°°(F, v), there is a Borel field 
£ —-> 33(£) of factors on F such that 21 and 

f m)dv(o 
are spatially isomorphic. Suppose that 33 (J) acts on a Hilbert space J^(£). 
Choose a family OO^r/a of finite positive Borel measures on F in accordance 
with the measure disintegration theorem [7, Lemma 4.4]. It can be assumed 
that the pv, rj G Y/R, are concentrated on pairwise disjoint Borel subsets of F. 
By [7, Lemma 4.5 and its proof], 

•r »(«<MÉ) 

is a Borel field of von Neumann algebras on Y/R and there is a unitary 
operator from J^ to 
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/
•e ^e 

Y/R •/ Y Y/R 

which carries 2Io and 31 onto the diagonal algebra and 

Y/R J Y 

respectively. Now by [5, p. 173, Proposition l(ii) and p. 212, Théorème 4 and 
its proof], there is a /i-null Borel subset N o f / (F ) such that 

m)dv&) 
J Y 

and %(g(rj)) are spatially isomorphic for all y\ £ Y/R — g~l{N). The desired 
refinement theorem for central decompositions has now been proved. It is 
worth pointing out that the most general refinement theorem for direct 
integral decompositions of a von Neumann algebra can be obtained by a 
trivial modification of the above proof. 

Let &x, 0 < x < 1, be the family of factors defined in [3, Definition 3.10]. 
Recall that ^?0 is the Iœ factor, that S%\ is the hyperhnite II\ factor and that 
the S%x, 0 < x < 1, are just the mutually non-isomorphic type III factors 
studied in [11, § 4]. It is known that the S?x can be realized on J^fm in such a 
way that x-+£%x is a Borel map from [0, 1] into J^œ (see, e.g., [10]). The 
asymptotic ratio set of a von Neumann algebra 21, denoted by rœ($l), is that 
subset of [0, oo ) defined as follows: an x £ [0, 1] is in rœ(3t) if and only if 
21 ^ 31 ®@x, and an x > 1 is in fœ(3l) if and only if x"1 6 rœ(3ï). Araki [1] 
has shown that the only possibilities for the asymptotic ratio set of a factor 
are: 

S0 = 0,5O = {0},Si = {l},S0i = {0,1}, Sœ = [0,oo), 

and 

Sx = {0} U {xn: n = 0, ± 1 , ± 2 , . . .}, 0 < x < 1. 

In [3] it is shown that rœ(&x) = Sx, 0 < x < 1. 

PROPOSITION 1. Let /z be a finite positive Borel measure on a standard Borel 
space Z, let f —» 31 (f ) be a Borel field of von Neumann algebras on Z, and set 

c® 
% = ao-)d/i(f). 

Then for any non-negative number x, x Ç ^(31) if awd only if x G rœ (31(f)) /or 
/x — a.a. f € Z. 

Proo/. Say x 6 [0, 1]. If s € rœ («({•)) for M - a.a. f G Z, then x G rœ(3l). 
This is an immediate consequence of [7, Lemma 4.1] and the fact that 
f —> 31(f) ®&x is a Borel field whose direct integral with respect to M is 
spatially isomorphic to 31 ® 3%x [7, p. 443]. 
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Conversely, suppose that x G rœ(tyi). Then §1 ®C(Jf?
co) and 

21 ®3%x ®G(^fœ) are spatially isomorphic. The notation that was intro
duced during the proof of the refinement theorem for central decompositions 
is used again here. f -> 93(f) < g ) C p O and f -> 93(f) ®3ix ®C(JtJ are 
two Borel fields of factors on F whose direct integrals with respect to v are 
spatially isomorphic. Since any direct integral of factors is the central decom
position, there are *>-null Borel subsets M and M\ of F and a Borel isomor
phism A of Y - M onto F - Mx such that 58(f) and 93(/*(f)) ®S%X are 
*-isomorphic for all J G F — M [5, p. 212, Théorème 4 and p. 173, Proposition 
l(ii)]. Then for any such f, 

93(f) <g>^*^ »(*(£)) <g>^* ® ^ x 

£*«(*(?)) ® ^ z 
^ 93(f), 

i.e., x G rœ(93(f)). Now since 

0 = v(M) = f *,(M)A?0?), 

there is a /x-null Borel subset P of / ( F ) such that ^ ( M ) = 0 whenever 
7) G F / P - g~l(P). This means that 31(f) and 

r »(«*,(« 
are spatially isomorphic and that x G rœ (93(f)) for vn — a.a. f € F whenever 
f is in g(Y/R) - (N \J P) and is the image of 77 G 7/JR by g. Therefore 
(by the first part of the proof) x lies in rœ (21(f)) for all f i n / ( F ) - (N \J P). 
Since/(F) — (N U P) is the complement of a ju-null Borel set, this completes 
the proof of the Proposition. 

COROLLARY 2. The asymptotic ratio set of a von Neumann algebra must be one 
of the sets SQ, 5 0 I , Sœ, or SXt 0 < x < 1. 

Proof. Let SI be a given von Neumann algebra. From the properties of the 
S%x it follows immediately that rœ(2l) — {0} is either empty or else it is a 
multiplicative subgroup of the positive reals (cf. the proof of [3, Lemma 6.5]). 
So to show that rœ(2l) is of the desired form it is only necessary to show that 
it is closed. Suppose that (xn) is a sequence in 7^(21) which converges to a 
non-negative number x and choose a central decomposition (Z, n, f —> 21(f)) 
of 2Ï. By the Proposition there exist ju-null Borel subsets Wu W2, . . . of Z 
such that xn G rœ (21(f)) for all f G Z - Wn and all n. Then xn G rœ (21(f)) 
for all ^ and all f G Z — U»=i^». The fact that the asymptotic ratio set of 
any factor is closed then implies that x G rœ (21(f)) for all such f. Another 
application of Proposition 1 now completes the proof of the Corollary. 

Araki has recently given a completely different proof of Corollary 2 [2]. 
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When factors are classified by their asymptotic ratio set rather than by 
their type, (ii) of the second paragraph must be replaced by Proposition 1. 
The analogy, however, is far from perfect, because 

rœ(&o @3tx) = So = rœ(^o) * r œ ( ^ ) 

whenever 0 < x < 1. In obtaining the replacements for (i) and (iii), it will 
be convenient to begin with a general theorem (cf. [5, p. 180, Proposition 5]). 

THEOREM 3. If f —> 21(f) and f —> 93(f) are two B or el fields of von Neumann 
algebras on a standard Borel space Z, then ff G Z: 21(f) = 93(f)} is an analytic 
subset of Z. 

Proof. The device used in the proof of Proposition 1 reduces the theorem 
to showing that 

Wo = {f 6 Z: 81(f) is spatially isomorphic to 93(f)} 

is an analytic set. If J^( f ) and J^( f ) denote the Hilbert spaces on which 
21(f) and 93(f) act, respectively, then 

{f G Z: d i m ^ ( f ) = d i m J f (f) = w ) , l ^ w ^ o o , 

is a sequence of Borel sets whose union contains W0. This makes it possible 
to assume t h a t ^ ( f ) = J f (f) = 3f?n for all f 6 Z and some n. The set o£f « w 

of unitary operators \nJ£n is standard in the relative Borel structure. Put 

W = {(f, r ) € Z X ^ , M : T2l(f)r* = 93(f)}. 

Since W0 is the projection of W onto its first component, it is enough to show 
that IF is a Borel set. 

By [6, Theorem 3 and the Corollary to Theorem 2], there exist Borel maps 
f ->S<(f), f -> ï \ ( r ) , f - > S / ( f ) and f -* 77(f) (* = l, 2, . . .) of Z into the 
unit ball of ifn such that the 5 f(f) (respectively, the 7\(f) , 5 / ( f ) , 77(f ) ) 
are weakly dense in the unit ball of 21(f) (respectively, 93(f), 21 (f)', 93(f)') 
for each f G Z. A point (f, 70 in Z X ££n,u is in W if and only if both 

T 2 t ( f ) r * C 93(f)" 

and 

r2i(fyr*c 93(f)', 
and this in turn is the case if and only if 

rs,(r)rT/(r) = T/^TS^T* 
and 

rs/(f)r*r,(f) = r,(f)rs/(f)r*, 
for all i and j . Each side of the first equation is a Borel function in its depen
dence on (f, T) and hence this equation holds on a Borel subset of Z X S£n%u. 
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Similar considerations apply to the second equation. This means that W has 
been expressed as the intersection of a countable number of Borel sets and 
therefore is itself a Borel set. 

COROLLARY 4. Let f —> 31(f) be a Borel field of von Neumann algebras on a 
standard Borel space Z and let S% be any von Neumann algebra. Then 

{f G Z: 31(f) ® ^ ^ 3 t ( f ) } 

is an analytic subset of Z. 

COROLLARY 5. Suppose that f —> 31 (f ) is a Borel field of von Neumann algebras 
on a standard Borel space Z. Let Z<b = {f Ç Z: rœ(31(f)) = S$} and define 
Zoi, Zœ and Zx(0 < x < 1) similarly. Then each of these sets is universally 
measurable, i.e., measurable with respect to any finite Borel measure on Z. 

Proof. Notice first that for any von Neumann algebra 31, 

' « (8 ) = ^ 0 ^ 3 1 ® ^ 0 ^ 3 t and 31 ® ^ i ^ 3 l 
' „ ( « ) = S o ^ 3 l ® ^ 0 ^ 2 I and 31 ® ^ i ? É 3 l 
rœ(H) =5 i«=»8 ® ^ o ^ 3 I andSt ® ^ X ^ 3 I 
r»(H) = 5 œ ^ 3 l ® ^ i ^ 3 I and 31 ® ^ è ^ 3 l , 

and that for each x £ (0, 1), 

'«,(») = S* « 21 ® ^ x ^ 31 and 31 ® ^ ^ 31, 

for y = #*, xïï, . . . . With the exception of Z0i, the universal measurability of 
the sets in question is now a consequence of Corollary 4. 

Since (f, x) -> 31(f) ® 3$x and (f, x ) - > 31(f) are Borel fields of von 
Neumann algebras on Z X (0, 1) [7, p. 443], Theorem 3 implies that 

W= {(f,x) eZX (0,1): 31(f) ® ^ , ^ 31(f)} 

is an analytic subset of Z X (0, 1). The image W0 of W under the projection 
of Z X (0, 1) onto its first component is then universally measurable. On the 
other hand, W0 is just the union of Zœ and the Zx, 0 < x < 1. This means 
that Zoi is the complement in Z of W0 U Z# U Z0 U Z\ and therefore Z0i, 
too, is universally measurable. 

Of course, Corollary 6 implies the analogue to (i) of the second paragraph. 
The result corresponding to (iii) will now be derived. 

Let n be a finite positive Borel measure on a standard Borel space Z, let 
f —> 31(f) be a Borel field of von Neumann algebras on Z and set 

a = f 2i(?Mu(f). 
*> z 

Suppose that there is a map y : Z —» (0, 1) such that rœ (31(f)) = Sy^ for all 
f G Z. As in the proof of Corollary 5, the image Wa of 

{(f,x) e Z X (a, 1): 31(f) %9ls*L 31(f)} 
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under the projection of Z X (0, 1) on Z is /x-measurable for each a £ (0, 1). 
It is easy to see that y~l((a, 1)) = Wa for any such a, which in turn shows that 
y is /x-measurable. So by deleting a /i-null Borel set form Z and changing 
notation, y can be assumed to be Borel. Define an equivalence relation R on Z 
by specifying that Ç1RÇ2 if and only if y(fi) = 3/(£"2). As m the proof of the 
refinement theorem, it can be assumed that y(Z) is a Borel set and is in a 
natural way Borel isomorphic to Z/R. Moreover, this isomorphism carries 
the quotient measure on Z/R onto v, the restriction to y(Z) of the measure 
y*(n) on (0, 1) defined by \x and y. By [7, Lemmas 4.4 and 4.5], there is a 
family ((JLx)xey(z) of finite positive Borel measures on Z such that each px is 
concentrated on y~l(x) and such that 2Ï and 

/

•© /•© 
2I(f)<Mf)<M*) 

2KZ) ^ ^ 

are spatially isomorphic. 
Now suppose that (Z, /x, f —» 21(f)) is a central decomposition of a von 

Neumann algebra 21. 21 is said to be of pure asymptotic ratio type So if 
ĉo (21(f)) = S$ for \x — a.a. f G Z, and similarly for the other possibilities for 

the asymptotic ratio set (cf. [12, p. 234, Definition 4]). Restricting Corollary 5 
and the above discussion to the case of a Borel field of factors gives the promised 
analogy to (iii). 

THEOREM 6. Let % be a von Neumann algebra. There exist pairwise orthogonal 
projections E, F and G in the centre of 21 such that (i) if E (respectively, F, G) is 
non-zero, then 2l# (respectively, t\F, §lG) is of pure asymptotic ratio type S$ 
(respectively, 50i, Sœ), and (ii) if I ^ E + F + G, then there is a finite positive 
Borel measure ix on [0, 1] and a field x —> 2IX of von Neumann algebras on [0, 1] 
such that 2Ï/_(^+F+G) o/ni 

nxdn(x) 
J [0,1] 

are spatially isomorphic and such that 21̂  is of pure asymptotic ratio type Sx for 
each x G [0, 1]. Moreover, the above conditions determine E, F, G uniquely and 
(if I 9^ E + F + G) determine jii to within equivalence and the 2lx to within 
spatial isomorphism for fx — a.a. x G [0, 1]. 
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