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Abstract. An iterative square root of a self-map f is a self-map g such that g(g(·)) = f (·).
We obtain new characterizations for detecting the non-existence of such square roots for
self-maps on arbitrary sets. They are used to prove that continuous self-maps with no
square roots are dense in the space of all continuous self-maps for various topological
spaces. The spaces studied include those that are homeomorphic to the unit cube in R

m

and to the whole of Rm for every positive integer m. However, we also prove that every
continuous self-map on a space homeomorphic to the unit cube in R

m with a fixed point
on the boundary can be approximated by iterative squares of continuous self-maps.
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1. Introduction
Given a map f : X → X on a non-empty set X and a positive integer n, an iterative root
of order n (or simply nth root) of f is a map g : X → X such that

gn(x) = f (x) for all x ∈ X, (1.1)

where for each non-negative integer k, gk denote the kth order iterate of g defined
recursively by g0 = id, the identity map on X, and gk = g ◦ gk−1. For n = 2, a solution of
equation (1.1) is called an iterative square root (or simply a square root) of f. The iterative
root problem (1.1), which is closely related to the embedding flow problem [13, 22, 53],
the invariant curve problem [24], and linearization [9], is of particular interest [4, 8, 22,
47, 48, 54] both in the theory of the functional equations and in that of dynamical systems,
and has applications in statistics, signal processing, computer graphics, and information
techniques [16, 19, 38]. Since the initial works of Babbage [3], Abel [1], and Königs [20],
various researchers have paid increasing attention to the iterative root problem, and many
advances have been made on its solutions for various classes of maps, e.g. continuous
maps on intervals and in particular those which are piecewise monotone [6, 21, 28, 30–34,
36, 37, 57, 59], continuous complex maps [40, 45, 46, 52], series and transseries [12],
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continuous maps on planes and R
m [25, 26, 39, 51], and set-valued maps [18, 27, 29,

35]. In particular, various properties of the iterative roots have also been studied, see for
instance, approximation [60], stability [50, 58], differentiability [23, 55, 56], and category
and measure [7, 41].

Given a topological space X, let C(X) denote the set of all continuous self-maps of X.
For each positive integer n, letW(n; X) := {f n : f ∈ C(X)}, the set of nth iterates of all
the maps in C(X), and W(X) := ⋃∞

n=2 W(n; X). Then it is interesting to ask how big
these spaces are inside C(X). We need a metric or topology on C(X) to make this question
more precise.

Let X be a compact metric space with metric d. Then it is natural to have the supremum
metric (or uniform metric)

ρ(f , g) = sup{d(f (x), g(x)) : x ∈ X}
on C(X), and this is our convention unless mentioned otherwise. Humke and Laczkovich
considered the above question when X = [0, 1] with the usual metric d(x, y) = |x − y|.
This paper is heavily motivated by their results. They proved in [14, 15] thatW(2; [0, 1]) is
not dense in C([0, 1]),W(2; [0, 1]) contains no balls of C([0, 1]) (that is, its complement
(W(2; [0, 1]))c is dense in C([0, 1])), and W(n; [0, 1]) is an analytic non-Borel subset
of C([0, 1]) for n ≥ 2. Simon proved in [42–44] that W(2; [0, 1]) is nowhere dense in
C([0, 1]) and W([0, 1]) is not dense in C([0, 1]). Subsequently, nowhere denseness of
W([0, 1]) in C([0, 1]) was proved by Blokh [7] using a method different from that of
Humke-Laczkovich and Simon.

It is seen that the majority of papers on iterative roots of functions are restricted to
continuous self-maps on intervals of the real line. This is not surprising because the setup
is simpler to deal with. It has several advantages, including the intermediate value theorem,
monotonicity of bijections, and so on. Extending these results to higher dimensions or
more generic topological spaces is generally complex. We develop a new approach (see
Theorem 2.4) to determine the non-existence of square roots of self-maps on arbitrary
sets in §2. This approach can be used effectively to construct continuous self-maps on
a wide range of topological spaces, which do not even have discontinuous square roots.
We demonstrate the procedure in §3 by showing that the continuous self-maps without
square roots are dense in the space of all continuous self-maps of the unit cube in R

m

for the supremum metric ρ (see Theorem 3.8). This is a significant generalization of a
similar result in [15] (Corollary 5, p. 362) for intervals of the real line. We believe that the
most significant contribution of this article is the method itself. The scheme can be used
in various other settings. We demonstrate this claim in §4 by proving that the continuous
self-maps without square roots are dense in the space of all continuous self-maps of Rm

for the compact-open topology (see Theorem 4.3).
The outline of the paper is as follows. In §2, we study iterates and orbits of self-maps

on arbitrary sets (without any topology). Isaacs conducted a detailed investigation on the
fractional iterates of such functions in [17]. Here we discuss some of the basic aspects
of such an approach. The main new result is Theorem 2.4, which presents a variety of
cases in which we can be certain that the given function does not admit any iterative
square root. This will be our principal tool in §§3 and 4. Section 2 also contains some
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background material and new results on fractional iterates of continuous self-maps on
general topological spaces. In particular, Theorem 2.6 shows that in some cases, the
problem of the non-existence of iterative roots of continuous maps can be reduced to
elementary combinatorics.

In §3, we study iterative square roots of continuous self-maps on the unit cube Im in
R

m. We find it convenient to triangulate Im and sew together affine linear maps piece by
piece. For this purpose, we use some fundamental notions and notation from the theory
of simplicial complexes. Given any continuous self-map on Im, we approximate it with a
piecewise affine linear map, and in turn close to any such map, we find another piecewise
affine linear map with no square roots (see Theorem 3.8). This is the main result of this
section. In contrast, we also show that any continuous self-map on Im with a fixed point
on the boundary can be approximated by iterative squares of continuous self-maps (see
Theorem 3.9). A simple example shows that fixed points on the boundary are not required
for such approximations.

In §4, we analyze continuous self-maps on R
m. As in §3, we prove that the continuous

self-maps with no square roots are dense in the space of all continuous self-maps in a
suitable topology, namely the compact-open topology (see Theorem 4.3). Finally, in §5, we
prove that the squares of continuous self-maps are Lp dense in the space of all continuous
self-maps on Im, generalizing a result of [15] to higher dimensions.

2. Functions on arbitrary sets and general topological spaces
In this section, we study iterative roots of self-maps on arbitrary sets and continuous
self-maps on general topological spaces. First, we consider X to be a non-empty set with
no predefined topology, and prove some new results on the existence and non-existence of
iterative square roots of maps in F(X), the set of all self-maps on X. Surprisingly, some of
these results are useful even when X has a topology and we seek for roots inside C(X), the
space of all continuous self-maps on X.

Henceforth, let Z+ denote the set {0, 1, 2, . . .} of non-negative integers, and for each
f ∈ F(X) and A ⊆ X, let R(f ) denote the range of f and f |A the restriction of f to A.
Given an f ∈ F(X), we define its graph as the directed graph G = (X, E), whose vertex
set is X and the edge set is E = {(x, f (x)) : x ∈ X}. In other words, we are looking at
the same mathematical structure from a different viewpoint. This allows us to borrow
some notions from graph theory. To begin, consider the connected components of G in
the context of graph theory. We call C a connected component of X if it is the vertex set
of some connected component of the graph of f. Observe that a pair of vertices x and y are
in the same connected component C ⊆ X if and only if there exist m, n ∈ Z+ such that
f m(x) = f n(y). The connected component of X containing x is called the orbit of x under
f, and is denoted by Of (x). An extensive analysis of iterative square roots of functions in
F(X) can be found in [17]. In what follows, we analyze them in some special cases and
present all the results needed for our further discussions.

Let f ∈ F(X), and G1 and G2 be two connected components of the graph G of f. An
isomorphism of G1 and G2 is a bijective function φ : C1 → C2 between the vertex sets of
G1 and G2 such that any two vertices x and y are adjacent in G1 if and only if φ(x) and
φ(y) are adjacent in G2. By the definition of graphs, this means that y = f (x) if and only
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if φ(y) = f (φ(x)). In other words, G2 is isomorphic to G1 if and only if there exists a
bijective function φ : C1 → C2 such that φ ◦ f = f ◦ φ.

PROPOSITION 2.1. Let f ∈ F(X) be such that the graph of f has exactly two isomorphic
connected components. Then f has an iterative square root in F(X).

Proof. Let C1 and C2 be the two isomorphic connected components of X corresponding
to those of the graph of f. Then X = C1 ∪ C2, C1 ∩ C2 = ∅, and as indicated above,
there exists a bijective function φ : C1 → C2 such that φ ◦ f = f ◦ φ. Define a map
g : X → X by

g(x) =
{

φ(x) if x ∈ C1,

f ◦ φ−1(x) if x ∈ C2.

Now, we have g(x) = φ(x) ∈ C2 for each x ∈ C1, implying that g2(x) = f ◦ φ−1 ◦
φ(x) = f (x). Similarly, we have g(x) = f ◦ φ−1(x) ∈ C1 for each x ∈ C2, and so
g2(x) = φ ◦ f ◦ φ−1(x) = f (x). Therefore, g is an iterative square root of f on X.

The above proposition leads to the following result, where a fixed point x of f is said to
be isolated if there is no y �= x in X such that f (y) = x. By convention, the empty set and
all infinite sets are assumed to have an even number of elements here and elsewhere.

THEOREM 2.2. Let f ∈ F(X) be such that excluding isolated fixed points of f, the number
of isomorphic copies is even for each connected component of the graph of f. Then f has
an iterative square root in F(X).

Proof. Let g : X → X be a map defined as g(x) = x for isolated fixed points x ∈ X of f
and g as in the previous proposition on the union of pairs of connected components of X
corresponding to pairs of isomorphic copies of those of the graph of f. Since there are an
even number of connected components, we can pair them, and the result follows from the
previous proposition.

The above results are given for general f ∈ F(X). If we restrict ourselves to injective
maps, we can describe the functions with square roots transparently, as seen below. To
make our thoughts more concrete, we borrow some ideas and terminologies from [5]. Note
that given an injective map f ∈ F(X), any two points x, y ∈ X are in the same orbit under
f if and only if there exists an n ∈ Z+ such that either y = f n(x) or x = f n(y). Indeed,
an orbit under f has one of the following forms for some x ∈ X:

(i) {x, f (x), f 2(x), . . . , f d−1(x)} for some d ∈ N with f d(x) = x;
(ii) {x, f (x), f 2(x), . . .} with x /∈ R(f );

(iii) {. . . , f −2(x), f −1(x), x, f (x), f 2(x), . . .}.
Therefore, it follows that an injective map f ∈ F(X) with exactly one orbit Of (x) for some
x ∈ X is in bijective correspondence with precisely one of the following maps (see [5]).
(a) Cyclic permutations: For d ∈ N, consider Zd = {0, 1, 2, . . . , d − 1} with addition

modulo d . Define sd : Zd → Zd by sd(k) = k + 1 (mod d). Note that Z1 = {0} and
s1(0) = 0. Then sd is bijective and has exactly one orbit.

https://doi.org/10.1017/etds.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.35


Iterative square roots of functions 2205

(b) Unilateral translation/shift: Define s+ : Z+ → Z+ by s+(k) = k + 1. Then s+ is a
shift with a single orbit.

(c) Bilateral translation: Define s : Z → Z by s(k) = k + 1. Then s is bijective and has
exactly one orbit.

More precisely, if f ∈ F(X) has exactly one orbit Of (x), then there exists a bijective
function φ : Of (x) → Z defined by φ(f k(x)) = k, where Z is Zd (for some d ∈ N), Z+
or Z according as Of (x) has the form (i), (ii) or (iii), respectively. Consider any arbitrary
non-empty sets Md , M+ and M . We define 1Md

× sd : Md × Zd → Md × Zd by

(1Md
× sd)(l, k) = (l, k + 1(mod d)),

called the d-cyclic permutation with multiplicity Md for each d ∈ N. Similarly, we define
1M+ × s+ : M+ × Z+ → M+ × Z+ and 1M × s : M × Z → M × Z by

(1M+ × s+)(l, k) = (l, k + 1) and (1M × s)(l, k) = (l, k + 1),

called the unilateral shift with multiplicity M+ and the bilateral translation with mul-
tiplicity M, respectively. Then, given any injective map f ∈ F(X), decomposing X =⊔

x∈X Of (x) into orbits under f, we see that (X, f ) is in bijective correspondence
with (Y , f̃ ), where Y = ⊔

d∈N(Md × Zd)
⊔

(M+ × Z+)
⊔

(M × Z) for some suitable
multiplicity spaces Md , M+ and M (some of these sets may be absent in the union), and
f̃ is 1Md

× sd , 1M+ × s+ and 1M × s on Md × Zd , M+ × Z+ and M × Z, respectively.
Furthermore, the cardinalities of these multiplicity spaces are uniquely determined. We
call (m1, m2, . . . , m+, m) as the multiplicity sequence of f, where md , m+ and m are the
cardinalities of Md (for d ∈ N), M+ and M, respectively.

THEOREM 2.3. Let f ∈ F(X) be an injective map. Then f has an iterative square root in
F(X) if and only if the multiplicity sequence (m1, m2, . . . , m+, m) of f satisfies that md

with d even, m+ and m are even (0 and infinity allowed).

Proof. Let f ∈ F(X) be an injective map and (m1, m2, . . . , m+, m) be the multiplicity
sequence of f. Suppose that f = g2 for some g ∈ F(X). Then, clearly g is an injective
map on X, and therefore we can associate a multiplicity sequence (m′

1, m′
2, . . . , m′+, m′)

for g. Further, it is easily seen that an orbit under g corresponding to a cyclic permutation
on Zd gives rise to two orbits (respectively a unique orbit) under g2 corresponding to
cyclic permutation on Zd/2 (respectively on Zd ) whenever d is even (respectively odd).
Similarly, an orbit under g corresponding to the unilateral shift on Z+ (respectively the
bilateral translation on Z) gives rise to two orbits under g2 corresponding to the unilateral
shift on Z+ (respectively the bilateral translation on Z). Therefore, the multiplicity
sequence of g2 is (m′

1 + 2m′
2, 2m′

4, m′
3 + 2m′

6, 2m′
8, m′

5 + 2m′
10, 2m′

12, . . . , 2m′+, 2m′).
Consequently, we must have m+ = 2m′+, m = 2m′, and

md =
{

m′
d + 2m′

2d if d is odd,

2m′
2d if d is even,

and hence md for d even, m+ and m are even.
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Conversely, suppose that the multiplicity sequence (m1, m2, . . . , m+, m) of f satisfies
that md for d even, m+ and m are even. Then X can be decomposed into orbits under
f as X = ⊔

x∈X Of (x) and (X, f ) is in bijective correspondence with (Y , f̃ ), where
Y = ⊔

d∈N(Md × Zd)
⊔

(M+ × Z+)
⊔

(M × Z) such that:
• each orbit Of (x) in X under f has one of the above-mentioned forms (i), (ii) or (iii);
• the cardinalities of multiplicity spaces Md (for all d ∈ N), M+ and M are md , m+ and

m, respectively; and
• f̃ is 1Md

× sd , 1M+ × s+ and 1M × s on Md × Zd , M+ × Z+ and M × Z,
respectively.

Now, define a map g : X → X as follows. If d ∈ N is odd, then for each of the orbits
Of (x) = {x, f (x), f 2(x), . . . , f d−1(x)} corresponding to the cyclic permutation on Zd ,
define

g(f l(x)) = f (l+(d+1)/2)(mod d)(x)

for all 0 ≤ l ≤ d − 1. Then,

g2(f l(x)) = g(f (l+(d+1)/2)(mod d)(x)) = f l+d+1(mod d)(x) = f l+1 = f (f l(x))

for all 0 ≤ l ≤ d − 1, implying that g2 = f on Of (x). If d ∈ N is even, then as md is even,
by pairing any two distinct orbits Of (x) = {x, f (x), f 2(x), . . . , f d−1(x)} and Of (y) =
{y, f (y), f 2(y), . . . , f d−1(y)} corresponding to the cyclic permutation on Zd , define g
on Of (x) ∪ Of (y) by

g(z) =
{

φ(z) if z ∈ Of (x),

f ◦ φ−1(z) if z ∈ Of (y),

where φ : Of (x) → Of (y) is a bijective function such that φ ◦ f = f ◦ φ. Then, by a
similar argument as in Proposition 2.1, it follows that g2 = f on Of (x) ∪ Of (y). Since
m+ (respectively m) is even, g can be defined similarly on the union Of (x) ∪ Of (y)

of each pair of distinct orbits Of (x) and Of (y) corresponding to the unilateral shift
on Z+ (respectively the bilateral translation on Z) such that g2 = f on Of (x) ∪ Of (y).
Therefore, f has a square root in F(X).

For each f ∈ F(X) and x ∈ X, let f −1(x) and f −2(x) denote the usual inverse images
defined by f −1(x) = {y ∈ X : f (y) = x} and f −2(x) = {y ∈ X : f 2(y) = x}. Further,
for each set A, let #A denote the number of elements or the cardinality of A. So far, we
have studied various conditions under which maps in F(X) have square roots. We now
have some instances in which they have no square roots. The following result is very useful
for constructing functions without square roots in the next two sections.

THEOREM 2.4. Let f ∈ F(X) be such that f (x0) �= x0 for some x0 ∈ X. Then f has no
iterative square roots in F(X) in the following cases:

Case (i): #f −2(x0) > 1, and #f −1(x) ≤ 1 for all x �= x0;

Case (ii): f −2(x0) is infinite, and f −1(x) is finite for all x �= x0;

Case (iii): f −2(x0) is uncountable, and f −1(x) is countable for all x �= x0.
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Proof. Suppose that f = g2 for some g ∈ F(X). Consider the action of g on various
subsets of X around x0:

A−2
g−→ B−2

g−→ A−1
g−→ B−1

g−→ {x0} g−→ {y0},

where y0 = g(x0), A−1 = f −1(x0), A−2 = f −2(x0), B−1 = g(A−1) and B−2 = g(A−2).
Let Ã−1 = f (A−2) and B̃−1 = g(Ã−1). Then Ã−1 ⊆ A−1, B̃−1 ⊆ B−1 ⊆ g−1(x0) and
B−2 ⊆ g−1(A−1). Also, since f (x0) �= x0, we have y0 �= x0, x0 /∈ A−1 and x0 /∈ B−1.

Case (i): Since x0 /∈ A−1 and Ã−1 ⊆ A−1, we have #f −1(x) ≤ 1 for all x ∈ Ã−1.
Therefore, as A−2 ⊆ ⋃

x∈Ã−1
f −1(x) and #A−2 > 1, it follows that #Ã−1 > 1.

However, since y0 �= x0, we have #f −1(y0) ≤ 1. This implies that #B̃−1 = 1,
because B̃−1 �= ∅ and B̃−1 ⊆ B−1 ⊆ f −1(y0). Therefore, as x0 /∈ B̃−1, we get that
#f −1(B̃−1) = 1. Consequently, #B−2 = 1, implying that #Ã−1 = #f (A−2) =
#g(B−2) = 1. This contradicts an earlier conclusion. Hence, f has no square roots in
F(X).

Case (ii): Since x0 /∈ A−1 and Ã−1 ⊆ A−1, we see that f −1(x) is finite for all x ∈ Ã−1.
Therefore, as A−2 ⊆ ⋃

x∈Ã−1
f −1(x) and A−2 is infinite, it follows that Ã−1 is infinite.

However, since y0 �= x0, we have that f −1(y0) is finite. This implies that B̃−1 is finite,
because B̃−1 ⊆ B−1 ⊆ f −1(y0). Also, as x0 /∈ B−1 and B̃−1 ⊆ B−1, we see that f −1(x)

is finite for all x ∈ B̃−1. Then it follows that f −1(B̃−1) is finite. Consequently, B−2 is
finite, implying that Ã−1 = f (A−2) = g(B−2) is finite. This contradicts the conclusion of
the previous paragraph. Hence, f has no square roots in F(X).

Case (iii): The proof of Case (ii) repeatedly uses the fact that a finite union of finite sets is
finite. The proof for this case is similar, using the result that a countable union of countable
sets is countable.

It is worth noting that f −2 in the previous theorem cannot be replaced by f −1, as seen
from the following.

Example 2.5. Consider the continuous map f : [0, 1] → [0, 1] defined by

f (x) =

⎧⎪⎨
⎪⎩

3
4

if 0 ≤ x ≤ 1
2

,

5
8

+ x

4
if

1
2

< x ≤ 1.

Then f ( 3
4 ) �= 3

4 , f −1( 3
4 ) is uncountable and f −1(x) is finite for all x �= 3

4 . However, f has
a square root

g(x) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ x ≤ 1
2

,
5
4

− x

2
if

1
2

< x ≤ 1,

on [0, 1] that is even continuous.
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The above results are given for an arbitrary set X. In the rest of the section and those
that follow, we consider X to be a topological space or a specific metric space and study
continuous roots of continuous self-maps on X. It is useful to have some notation in this
context. Recall that for a topological space X, the space of all continuous self-maps of X is
denoted by C(X). For each A ⊆ X, let A0 denote the interior of A, A the closure of A and
∂A the boundary of A. In particular, if X is a metric space equipped with metric d, then
for each x ∈ X and ε > 0, let Bε(x) := {y ∈ X : d(x, y) < ε}, the open ball in X around
x of radius ε. For any index set �, let S� denote the group of all permutations (bijections)
on �, and for convenience, we denote S� by Sk when � = {1, 2, . . . , k}.

We motivate the next theorem through two examples. The map f1(x) = 1 − x on the
unit interval [0, 1] as an element of C([0, 1]), with [0, 1] in the usual metric induced
by | · |, has no continuous square roots on [0, 1] (see [24, pp. 425–426]). However,
the map f2(x, y) = (1 − x, 1 − y) on [0, 1] × [0, 1] as an element of C([0, 1] × [0, 1]),
where [0, 1] × [0, 1] has the metric induced by the norm ‖(x, y)‖∞ := max{|x|, |y|}, has
a continuous square root g(x, y) = (y, 1 − x) on [0, 1] × [0, 1]. The reason for these
contrasting conclusions can be detected by observing the fixed points of these maps.

Let f be a continuous self-map on a topological space X and Y a non-empty subset of X
invariant under f, that is, f (Y ) ⊆ Y . Then it is clear that if x and x ′ are path-connected in Y,
then so are f (x) and f (x′). Therefore, if Y = ⋃

α∈� Yα is the decomposition of Y into its
path components for some index set �, then there exists a unique map σf ,Y : � → � such
that f (x) ∈ Yβ whenever x ∈ Yα and σf ,Y (α) = β (note that y and y′ are path-connected
in Y if and only if there exists an α ∈ � such that y, y′ ∈ Yα). We call σf ,Y as the map
induced by the map f and the invariant set Y. Let F(f ) := {x ∈ X : f (x) = x}, the set of
all fixed points of f in X, and E(f ) := R(f ) \ F(f ), the complement of F(f ) in R(f ).

THEOREM 2.6. Let n ∈ N and f ∈ C(X) be such that E(f ) is invariant under f. If f = gn

for some g ∈ C(X), then E(f ) is invariant under g and the induced maps satisfy that
σf ,E(f ) = σn

g,E(f ). In other words, if σf ,E(f ) has no nth roots, then f also has no continuous
nth roots on X.

Proof. Let E(f ) = ⋃
α∈� Yα be the decomposition of E(f ) into its path components

for some index set �. The case n = 1 is trivial. So, let n > 1, and consider an
arbitrary x ∈ E(f ). Then x = f (x′) for some x′ ∈ X. Clearly, g(x) ∈ R(f ), because
g(x) = g(f (x′)) = g(gn(x′)) = gn(g(x′)) = f (g(x′)). Also, if g(x) ∈ F(f ), then
g(x) = f (g(x)) = gn(g(x)) = g(f (x)), implying that f (x) = gn(x) = gn(f (x)) =
f 2(x), that is, f (x) is a fixed point of f. This contradicts the hypothesis that E(f ) is
invariant under f. Therefore, g(x) ∈ E(f ).

The equality σf ,E(f ) = σn
g,E(f ) follows from the definitions of σf ,E(f ) and σg,E(f ), and

the relation f = gn.

In the remainder of this section, we illustrate Theorem 2.6 through some simple
examples. Remark that σ ∈ Sk , the group of permutation of k elements, has a square root
if and only if the number of even cycles of σ is even. More generally, σ ∈ Sk has an nth
root if and only if for every m = 1, 2, . . . , it is true that the number of m-cycles that σ has
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is a multiple of ((m, n)), where ((m, n)) := ∏
p|m pe(p,n), e(p, n) being the highest power

of p dividing n (see [49, pp. 155–158]).

COROLLARY 2.7. Let a < b be real numbers and f ∈ C([a, b]) be such that f |R(f ) is
a non-constant strictly decreasing map. Then f has no iterative roots of even orders in
C([a, b]).

Proof. Since f : [a, b] → [a, b] is a non-constant strictly decreasing continuous map, we
see that R(f ) is a compact interval [c, d] in R for some c < d in [a, b] and f has a unique
fixed point x0 in (c, d). Also, E(f ) = [c, x0) ∪ (x0, d] is the decomposition of E(f ) into
path components and σ := σf ,E(f ) is the transposition of the two-point set S2. Since σ has
no iterative roots of even orders in S2, it follows from Theorem 2.6 that f has no iterative
roots of even orders in C([a, b]).

Example 2.8. Consider [0, 1] × [0, 1] in the topology induced by the norm ‖(x, y)‖∞ :=
max{|x|, |y|}, and let f1, f2 be the continuous maps on [0, 1] × [0, 1] defined by
f1(x, y) = (1 − x, 0) and f2(x, y) = (y, x). Then Theorem 2.6 is applicable to f1 and f2

with

E(f1) = {
(x, 0) : 0 ≤ x < 1

2

} ∪ {
(x, 0) : 1

2 < x ≤ 1
}
;

E(f2) = {(x, y) : 0 ≤ x < y ≤ 1} ∪ {(x, y) : 0 ≤ y < x ≤ 1}.
It follows that both f1 and f2 have no iterative roots of even orders in C([0, 1] × [0, 1]).

3. Continuous functions on the unit cube in R
m

As seen in §1, much literature is available on iterative square roots of functions on compact
real intervals. In this section, we extend some of the results in [15] to the unit cube

Im := {(x1, x2, . . . , xm) ∈ R
m : xi ∈ I for 1 ≤ i ≤ m}

considered in the metric induced by the norm

‖(x1, x2, . . . , xm)‖∞ = max{|xi | : 1 ≤ i ≤ m}, (3.1)

where I := [0, 1]. In studying iterative roots of continuous maps on intervals, one observes
that it becomes essential to look at piecewise linear maps. Here we study their analogs in
higher dimensions. It is convenient to have the following elementary notions and notation
from the theory of simplicial complexes to present our proofs.

As defined in [10], a set S = {x0, x1, . . . , xk} in R
m, where k ≥ 1, is said to be geo-

metrically independent if the set {x1 − x0, x2 − x0, . . . , xk − x0} is linearly independent
in R

m. Equivalently, S is geometrically independent if and only if for arbitrary reals αi ,
the equalities

∑k
i=0 αixi = 0 and

∑k
i=0 αi = 0 imply that αi = 0 for all 0 ≤ i ≤ k. A set

having only one point is assumed to be geometrically independent. If S is geometrically
independent, then there exists a unique k-dimensional hyperplane which passes through
all the points of S and each point x on this hyperplane can be expressed uniquely as
x = ∑k

i=0 αixi such that
∑k

i=0 αi = 1. The real numbers α0, α1, . . . , αk , which are
uniquely determined by S, are called the barycentric coordinates of the point x with respect
to the set S.
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Let S = {x0, x1, . . . , xk} be a geometrically independent set in R
m, where 0 ≤ k ≤ m.

Then the k-dimensional geometric simplex or k-simplex spanned by S, denoted by σ , is
defined as the set of all points x ∈ R

m such that x = ∑k
i=0 αixi , where

∑k
i=0 αi = 1 and

αi ≥ 0 for all 0 ≤ i ≤ k. Equivalently, σ is the convex hull of S. The points x0, x1, . . . , xk

are called the vertices of σ , and we usually write σ = 〈x0, x1, . . . , xk〉 to indicate that σ

is the k-simplex with vertices x0, x1, . . . , xk . If σ = 〈x0, x1, . . . , xk〉 is a k-simplex, then
the set of those points of σ for which all barycentric coordinates are strictly positive, is
called the open k-simplex σ (or the interior of σ ), and is denoted by σ 0. If σ is a p-simplex
and τ is a q-simplex in R

m such that 0 ≤ p ≤ q ≤ m, then we say that σ is a p-dimensional
face (or simply a p-simplex) of τ if each vertex of σ is also a vertex of τ . If σ is a face of
τ with p < q, then σ is called a proper face of τ . Any zero-dimensional face of a simplex
is simply a vertex of the simplex and a one-dimensional face of a simplex is usually called
an edge of that simplex.

A finite (respectively countable) simplicial complex K is a finite (respectively count-
able) collection of simplices of Rm satisfying the following conditions: (i) If σ ∈ K, then
all the faces of σ are in K; (ii) If σ , τ ∈ K, then either σ ∩ τ = ∅ or σ ∩ τ is a common
face of both σ and τ . LetK be a finite simplicial complex and |K| = ⋃

σ∈K σ be the union
of all simplices ofK. Then |K| is a topological space with the topology inherited from R

m.
The space |K| is called the geometric carrier ofK. A topological subspace of Rm, which is
the geometric carrier of some finite simplicial complex, is called a rectilinear polyhedron.
A topological space X is said to be a polyhedron if there exists a finite simplicial complex
K such that |K| is homeomorphic to X. In this case, the space X is said to be triangulable
andK is called a triangulation of X. A space X is said to be countably triangulable if there
exists a countable triangulation of X, that is, there exists a countable simplicial complex
K of simplices of Rm such that its geometric carrier |K| is homeomorphic to X. Further,
we do not distinguish between X and its geometric carrier |K| whenever X = |K| for some
(finite or countable) triangulation K of X, because in that case, we always consider the
identity map id to be the homeomorphism between |K| and X.

If σ = 〈x0, x1, . . . , xk〉 is a k-simplex in R
m, then the point

∑k
i=0(1/(k + 1))xi is

called the barycenter of σ and is denoted by σ̇ . In other words, barycenter of σ is
that point of σ whose barycentric coordinates, with respect to each of the vertices of
σ , are equal. Given a simplicial complex K, let K(1) be a simplicial complex whose
vertices are barycenters of all simplices ofK, and for any distinct simplices σ1, σ2, . . . , σk

of K, 〈σ̇1, σ̇2, . . . , σ̇k〉 is a simplex of K(1) if and only if σi is a face of σi+1 for
i = 0, 1, . . . , k − 1. Then K(1) is a simplicial complex and is called the first barycentric
subdivision of K. By induction, we define the lth barycentric subdivision K(l) of K
to be the first barycentric subdivision of K(l−1) for each l > 1. We also put K(0) = K
for convenience. For a simplicial complex K, we define the mesh of K, denoted by
mesh(K), as

mesh(K) = max{diam(σ ) : σ is a simplex of K },

where diam(σ ) denote the diameter of σ . Then liml→∞ mesh(K(l)) = 0 for every
non-empty simplicial complex K.
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An f ∈ F(Rm) is said to be affine linear if f (·) = T (·) + z for some linear map
T ∈ F(Rm) and z ∈ R

m. Clearly, each affine linear map on R
m is continuous. An affine

linear map f is said to be of full rank if the associated linear map T is invertible. Note that
full rank affine linear maps are open maps, that is, they map open sets to open sets. They
also map geometrically independent sets to geometrically independent sets. We sew affine
linear maps on simplices piece by piece to get many continuous maps on R

m.
An R

m-valued function f on a subset X of R
m is said to be piecewise affine linear

(respectively countably piecewise affine linear) if X = |K | for some finite (respectively
countable) simplicial complex K of simplices of Rm and f |σ is the restriction of some
affine linear map φσ on R

m to σ for every σ ∈ K. In this case, we say that f is supported
by the simplicial complex K.

Here is a basic construction of piecewise affine linear maps that we use repetitively.
Let K be a simplicial complex in R

m and U = {x0, x1, . . .} be its set of vertices ordered
in some arbitrary way. Let V = {y0, y1, . . .} be an ordered set of points in R

m. Then we
can define a R

m-valued function fU ,V on |K| satisfying fU ,V (xj ) = yj for all j ∈ Z+ as
follows: If x ∈ |K|, then x is in the interior of a unique k-simplex 〈xi0 , xi1 , . . . , xik 〉 in K
for some 0 ≤ k ≤ m. We write x = ∑k

j=0 αij xij with
∑k

j=0 αij = 1 and define

fU ,V (x) =
k∑

j=0

αij yij . (3.2)

Clearly, fU ,V is a continuous piecewise affine linear map on |K| satisfying that fU ,V (xj ) =
yj for every j ∈ Z+. Furthermore, if |K| is convex and yj ∈ |K| for every j, then fU ,V is
a self-map of |K|.
LEMMA 3.1. Let K and fU ,V be as described above.
(i) If σ = 〈xi0 , xi1 , . . . , xik 〉 is a k-simplex inK and {yi0 , yi1 , . . . , yik } is geometrically

independent in R
m, then fU ,V |σ is injective and fU ,V (σ )0 = fU ,V (σ 0).

(ii) If V = {y0, y1, . . .} and W = {z0, z1, . . .} are ordered sets in |K| such that
‖yj − zj‖∞ ≤ η for all j ∈ Z+, where η > 0, then ‖fU ,V (x) − fU ,W(x)‖∞ ≤ η

for all x ∈ |K|.
Proof. The result (i) is trivial. For each x ∈ |K|, by equation (3.2) we have

‖fU ,V (x) − fU ,W(x)‖∞ ≤
k∑

j=0

αij ‖yij − zij ‖∞ ≤ η,

proving result (ii).

LEMMA 3.2. If f ∈ F(Rm) is an affine linear map such that f |S = 0 for a geometrically
independent set S = {x0, x1, . . . , xm} of Rm, then f = 0 on R

m.

Proof. Let f (·) = T (·) + z for some z ∈ R
m and a linear map T ∈ F(Rm). Since S

is geometrically independent, we have B = {x1 − x0, x2 − x0, . . . , xm − x0} is linearly
independent, and therefore it is a Hamel basis for R

m. To prove f = 0, consider an
arbitrary x ∈ R

m. Then x = ∑m
j=1 αj (xj − x0) for some α1, α2, . . . , αm ∈ R, implying
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that

f (x) = T

( m∑
j=1

αj (xj − x0)

)
+ z

=
m∑

j=1

αjT (xj ) −
m∑

j=1

αjT (x0) + z

=
m∑

j=1

αj (−z) −
m∑

j=1

αj (−z) + z = z.

In particular, f (x0) = z, and therefore we get that z = 0. Hence, f = 0 on R
m.

Using the above lemma, we can deduce the following result on the uniqueness of affine
linear maps.

COROLLARY 3.3. If f1, f2 ∈ F(Rm) are affine linear maps such that f1|σ = f2|σ for
some m-simplex σ ∈ K, then f1 = f2 on R

m. Consequently, if f1|U = f2|U for some open
subset U of Rm, then f1 = f2 on R

m.

Proof. Follows from the above lemma, because f1 − f2 is an affine linear map on R
m that

vanishes on the geometrically independent set of all vertices of σ .

COROLLARY 3.4. Let f ∈ F(Rm) be an affine linear map and σ be an m-simplex in
R

m with vertices x0, x1, . . . , xm such that y0, y1, . . . , ym are geometrically independent
in R

m, where yj = f (xj ) for all 0 ≤ j ≤ m. Then the following statements are true.
(i) f (U) is open for every open set U in the interior of σ .

(ii) f maps geometrically independent subsets of R
m to geometrically independent

subsets.
(iii) If yj �= xj for some 0 ≤ j ≤ m and {v0, v1, . . . , vm} is a geometrically independent

subset of σ , then there exists at least one j such that f (vj ) �= vj .

Proof. Results (i) and (ii) are trivially true, because geometric independence of
{y0, y1, . . . , ym} implies that f is of full rank. If f (vj ) = vj for all 0 ≤ j ≤ m, then
f = id on R

m, implying that yj = f (xj ) = xj for all 0 ≤ j ≤ m. Therefore, (iii)
follows.

For each subset S of Rm, let

Aff(S) :=
{ l∑

j=1

αjxj : xj ∈ S for 1 ≤ j ≤ l and
l∑

j=1

αj = 1
}

and

Aff0(S) :=
{ l∑

j=1

αjxj : xj ∈ S for 1 ≤ j ≤ l and
l∑

j=1

αj = 0
}

.
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Then Aff0(S) is a vector subspace of Rm and Aff(S) = Aff0(S) + x for some x ∈ S, where
Aff0(S) + x := {y + x : y ∈ Aff0(S)}. We say that Aff(S) has dimension k, written as
dim(Aff(S)) = k, if Aff0(S) is a k-dimensional vector subspace of Rm. A point z ∈ R

m

is said to be geometrically independent of S if z /∈ Aff(S). Then it is clear that z is
geometrically independent of S if and only if 0 is geometrically independent of S − z.

LEMMA 3.5. Let S be a countable subset of Rm. Then for each z ∈ R
m and ζ > 0, there

exists a y ∈ Bζ (z) such that y is geometrically independent of Z for all subsets Z of S such
that #Z ≤ m.

Proof. Since dim(Aff(Z)) ≤ m − 1, clearly Aff(Z)
⋂

Bζ/2(z) is a nowhere dense subset
of the complete metric space Bζ/2(z) for each subset Z of S such that #Z ≤ m. Therefore,
by the Baire category theorem, we have

Bζ/2(z) �=
⋃ (

Aff(Z)
⋂

Bζ/2(z)

)
,

where the union is taken over all subsets Z of S such that #Z ≤ m. Hence, there exists a
y ∈ Bζ/2(z) such that y is geometrically independent of Z for all subsets Z of S such that
#Z ≤ m. Since Bζ/2(z) ⊆ Bζ (z), the result follows.

LEMMA 3.6. Let z1, z2, . . . be a sequence of points in R
m and ζ1, ζ2, . . . be a sequence

of positive reals. Then there exists a sequence y1, y2, . . . in R
m such that yj ∈ Bζj

(zj ) for
each j ∈ N and every subset Z of S = {y1, y2, . . .} where #Z ≤ m + 1 is geometrically
independent.

Proof. Given z1 ∈ R
m and ζ1 > 0, consider any y1 ∈ Bζ1(z1) such that y1 �= z1. Then

clearly any subset Z of S1 = {y1} with #Z ≤ m + 1 is geometrically independent. Next,
by induction, suppose that k > 1, and there exist y1, y2, . . . , yk ∈ R

m with yj ∈ Bζj
(zj )

for 1 ≤ j ≤ k such that Z is geometrically independent for all subsets Z of Sk =
{y1, y2, . . . , yk} with #Z ≤ m + 1. Then by Lemma 3.5, there exists yk+1 ∈ Bζk+1(zk+1)

such that yk+1 is geometrically independent of Z for all subsets Z of Sk such that
#Z ≤ m. This implies that Z is geometrically independent for all subsets Z of Sk+1 =
{y1, y2, . . . , yk+1} such that #Z ≤ m + 1, proving the result for k + 1. Thus, continuing
the above process, we get a sequence y1, y2, . . . in R

m such that yj ∈ Bζj
(zj ) for each

j ∈ N satisfying the desired property.

In addition to the above notions and results on simplicial complexes, we need the
following lemma to prove our results.

LEMMA 3.7. Let X be a metric space with metric d and f ∈ C(X). If x ∈ X is not a fixed
point of f, then there exists an open set V in X containing x such that f −1(V ) ∩ V = ∅ and
f (V ) ∩ V = ∅.

Proof. Let ε = d(x, f (x)). Since f (x) �= x, clearly ε > 0. Since f is continuous at x,
there exists a δ > 0 with δ < ε/4 such that

d(f (x), f (y)) <
ε

4
whenever y ∈ X with d(x, y) < δ. (3.3)

Let V := Bδ/2(x).
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Claim. f −1(V ) ∩ V = ∅ and f (V ) ∩ V = ∅.

Suppose that y ∈ f −1(V ) ∩ V . Then f (y) ∈ V , implying that d(y, f (y)) ≤ d(y, x) +
d(x, f (y)) < δ. Also, by equation (3.3), we have d(f (x), f (y)) < ε/4. Therefore,
ε = d(x, f (x)) ≤ d(x, y) + d(y, f (y)) + d(f (y), f (x)) < 3ε/4 is a contradiction.
Next, suppose that y ∈ f (V ) ∩ V . Then y = f (z) for some z ∈ V . Therefore, by
equation (3.3), we have d(f (x), y) < ε/4, implying that ε = d(x, f (x)) ≤ d(x, y) +
d(y, f (x)) < ε/2, which is a contradiction. Thus the claim holds, and the result
follows.

Having the above machinery, we are ready to prove our desired results.

THEOREM 3.8. If h ∈ C(Im), then for each ε > 0 the ball Bε(h) of radius ε around h
contains a map f having no (even discontinuous) iterative square roots on Im. In particular,
W(2; Im) does not contain any ball of C(Im).

Proof. Let h ∈ C(Im) and ε > 0 be arbitrary. Our strategy to prove the existence of an
f ∈ Bε(h) with no square roots is to make use of Theorem 2.4, and we construct this f in
a few steps.

Step 1: Construct a piecewise affine linear map f0 ∈ Bε(h) supported by some suitable
triangulation K of Im. Since h is uniformly continuous on Im, there exists a δ > 0 such
that

‖h(x) − h(y)‖∞ <
ε

10
whenever x, y ∈ Imwith ‖x − y‖∞ < δ. (3.4)

Being a polyhedron, Im is triangulable. Consider a triangulation K of Im with vertices
x0, x1, x2, . . . , xr such that ‖xi0 − xi1‖∞ < δ/4 for all 2-simplex 〈xi0 , xi1〉 of σ and for
all m-simplex σ ∈ K. Choose y0, y1, y2, . . . , yr ∈ Im inductively such that yj �= xj and

‖h(xj ) − yj‖∞ <
ε

20
for all 0 ≤ j ≤ r , (3.5)

and {yi0 , yi1 , . . . , yim} is geometrically independent whenever 〈xi0 , xi1 , . . . , xim〉 ∈ K for
0 ≤ i0, i1, . . . , im ≤ r . This is possible by Lemma 3.6. Here, while choosing points yj

with yj ∈ Bε/20(h(xj )) for 0 ≤ j ≤ r satisfying the geometric independence condition,
we have some additional restrictions to fulfill, viz. yj �= xj and yj ∈ Im for all 0 ≤ j ≤ r .
However, the Baire category theorem provides this flexibility as there are plenty of vectors
to choose from. Then,

‖yi0 − yi1‖∞ ≤ ‖yi0 − h(xi0)‖∞ + ‖h(xi0) − h(xi1)‖∞ + ‖h(xi1) − yi1‖∞

<
ε

20
+ ε

10
+ ε

20
= ε

5
(3.6)

whenever 〈xi0 , xi1〉 is a 2-simplex of σ for all m-simplex σ ∈ K. Let f0 : |K| = Im → Im

be the map fU ,V defined as in equation (3.2), where U and V are the ordered sets
{x0, x1, . . . , xr} and {y0, y1, . . . , yr}, respectively. Then f0 is a continuous piecewise
affine linear self-map of Im satisfying that f0(xj ) = yj for all 0 ≤ j ≤ r . Also, by using
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result (i) of Lemma 3.1, we have R(f0)
0 �= ∅ and f0|σ is injective for all σ ∈ K. Further,

from equation (3.6) we have

diam(f0(σ )) <
ε

5
for all σ ∈ K. (3.7)

Claim. ρ(f0, h) < ε/6.

Consider an arbitrary x ∈ Im. Then x is in the interior of some unique k-simplex
〈xi0 , xi1 , . . . , xik 〉 in K for some 0 ≤ k ≤ m. Let x = ∑k

j=0 αij xij with
∑k

j=0 αij = 1.
Then by equations (3.4) and (3.5), we have

‖f0(x) − h(x)‖∞ =
∥∥∥∥

k∑
j=0

αij yij −
k∑

j=0

αij h(x)

∥∥∥∥∞

≤
k∑

j=0

αij {‖yij − h(xij )‖∞ + ‖h(xij ) − h(x)‖∞}

<
ε

20
+ ε

10

<
ε

6
, (3.8)

since ‖x − xij ‖∞ ≤ diam(〈xi0 , xi1 , . . . , xik 〉) < δ/4 for 0 ≤ j ≤ k. This proves the claim
and Step 1 follows.

Step 2: Obtain an m-simplex � ∈ K containing a non-empty open set Y ⊆ �0 ∩ R(f0)
0

such that f0(Y ) ⊆ �0
1 for some m-simplex �1 in K. Consider any m-simplex σ =

〈xi0 , xi1 , . . . , xim〉 in K. Since {yi0 , yi1 , . . . , yim} is geometrically independent by con-
struction, we have f0(Z) is open in Im for each open set Z in σ 0. Choose a non-empty
open subset Y0 of f0(σ )0 so small that Y0 ⊆ �0 for some m-simplex � ∈ K. Then f0(Y0)

has non-empty interior. Again, choose a sufficiently small non-empty open subset Y of Y0

such that f0(Y ) ⊆ �1 for some m-simplex �1 ∈ K. This completes the proof of Step 2.

Step 3: Show that there exists a barycentric subdivision K(s) of K for some s ∈ N with
an m-simplex σ0 ∈ K(s) such that σ0 ⊆ Y , and f −1

0 (σ0) ∩ σ = ∅ and f0(σ0) ∩ σ = ∅ for
all σ ∈ K(s) with σ ∩ σ0 �= ∅. Since yj �= xj for all 0 ≤ j ≤ r , by Corollary 3.4, we have
f0(z0) �= z0 for some z0 ∈ Y . Choose an open set W0 in Im such that z0 ∈ W0 ⊆ Y and
f0(x) �= x for all x ∈ W0. Then using Lemma 3.7, we get an open set W in Im with
z0 ∈ W ⊆ W0 such that f −1

0 (W) ∩ W = ∅ and f0(W) ∩ W = ∅. Perform a barycentric
subdivision of K of order s so large that W contains an m-simplex σ0 ∈ K(s) and all
m-simplices σ ∈ K(s) adjacent to it, that is, σ ⊆ W for all m-simplices σ ∈ K(s) such that
σ ∩ σ0 �= ∅. Since liml→∞ mesh(K (l)) = 0, it is possible to obtain such a subdivision
of K. This completes the proof of Step 3.

Step 4: Modify f0 slightly to get a new piecewise affine linear map f ∈ Bε(h) that is
constant on σ 0. To retain continuity, when we modify f0 on σ0, we must also modify
it on all m-simplices in K (s) adjacent to it. Let A := ⋃p

j=0 σj , where σj is precisely

an m-simplex in K (s) such that σj ∩ σ0 �= ∅ for all 0 ≤ j ≤ p. Then, it is clear that
A ⊆ W ⊆ �0.
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Let the vertices of σ0 be u0, . . . , um−1 and um, and let vj := f0(uj ) for all 0 ≤ j ≤ m.
Then vj �= uj for all 0 ≤ j ≤ m, because uj ∈ W for all 0 ≤ j ≤ m and f0(W) ∩ W = ∅.
Also, since u0, u1, . . . , um are geometrically independent vectors in �, by result (ii) of
Corollary 3.4, we see that v0, v1, . . . , vm are geometrically independent. Further, they are
all contained in the interior of a single simplex �1 of K by Step 2. Hence, by result (iii) of
Corollary 3.4, it follows that f0(vj ) �= vj for some 0 ≤ j ≤ m. Without loss of generality,
we assume that f0(v0) �= v0.

Extend {u0, . . . , um} to {u0, . . . , uk0} with k0 > m to include the vertices of all the
simplices of K(s), and let vj := f0(uj ) for all 0 ≤ j ≤ k0. Now, define f by

f (uj ) =
{

v0 if 0 ≤ j ≤ m,

vj if m < j ≤ k0,

and extend it piecewise affine linearly to the whole of |K(s)| = Im. Then f0 is modified
only on A and f (x) = v0 for all x ∈ σ0.

Consider an arbitrary x ∈ A. Then x ∈ σj for some 0 ≤ j ≤ p. Let σj = 〈uj0 , uj1 , . . . ,
ujm〉 and x = ∑m

i=0 αji
uji

with
∑m

i=0 αji
= 1. Then by equation (3.7), we have

‖f (x) − f0(x)‖∞ ≤
m∑

i=0

αji
‖f (uji

) − f0(uji
)‖∞ ≤

m∑
i=0

αji
diam(f0(�)) <

ε

5
,

implying by equation (3.8) that

‖f (x) − h(x)‖∞ ≤ ‖f (x) − f0(x)‖∞ + ‖f0(x) − h(x)‖∞ <
ε

5
+ ε

6
<

ε

2
.

Therefore, f ∈ Bε(h) and the proof of Step 4 is completed.

Step 5. Prove that f has no square roots in C(Im). Since A ⊆ W , f = f0 on Ac, and
f0(W) ∩ W = ∅, we see that f (v0) �= v0. Also, by Step 3, we have f −1

0 (σ0) ∩ σ = ∅
for all σ ∈ K(s) with σ ∩ σ0 �= ∅, implying that f = f0 on f −1

0 (σ0). Further, f −1
0 (σ0) is

infinite, since σ0 is infinite and σ0 ⊆ R(f0)
0. Therefore, as f −2(v0) ⊇ f −1(f −1(v0)) ⊇

f −1(σ 0) ⊇ f −1
0 (σ0), it follows that f −2(v0) is infinite. Moreover, f |σ is injective for

every σ ∈ K (s) with σ �= σ0 by result (i) of Lemma 3.1, and hence f −1(x) is finite for all
x �= v0 in Im. Thus, f satisfies the conditions of Case (ii) of Theorem 2.4, proving that it
has no square roots in C(Im).

THEOREM 3.9. Let h ∈ C(Im) be such that h(x0) = x0 for some x0 ∈ ∂Im. Then for each
ε > 0, the ball Bε(h) of radius ε around h contains a map f having a continuous iterative
square root on Im. In other words, the closure ofW(2; Im) contains all maps in C(Im)

that have a fixed point on the boundary of Im.

Proof. Let h ∈ C(Im) be such that h(x0) = x0 for some x0 ∈ ∂Im. In view of Step 1 of
Theorem 3.8, without loss of generality, we assume that h is piecewise affine linear on Im.
Since h is uniformly continuous on Im, there is a δ with 0 < δ < ε/4 such that

‖h(x) − h(y)‖∞ <
ε

4
whenever x, y ∈ Im with ‖x − y‖∞ < δ. (3.9)
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Consider a triangulation K of Im with vertices x0, x1, x2, . . . , xr such that
‖xi0 − xi1‖∞ < δ/4 for all 2-simplices 〈xi0 , xi1〉 of σ and for all m-simplex σ ∈ K.
Let yj := h(xj ) for all 0 ≤ j ≤ r and σ0 = 〈x0, x1, . . . , xm〉 be an m-simplex in K
having x0 as a vertex. Let φ : Im → Im be a homeomorphism such that φ(σ0) = Im \ σ0,
φ(Im \ σ0) = σ0, φ = id on ∂σ0

⋂
∂(Im \ σ0), and φ2 = id on Im. This is where we use

the assumption that x0 is on the boundary of Im. Indeed, a little thought shows that there
exists a piecewise affine linear map φ that satisfies these conditions. Define a function
f1 by

f1(xj ) =

⎧⎪⎪⎨
⎪⎪⎩

xj if xj ∈ σ0,

x1 if xj /∈ σ0 and yj ∈ σ 0
0 ,

yj if xj /∈ σ0 and yj /∈ σ 0
0 ,

and extend it piecewise affine linearly to the whole of |K| = Im. Then f1 ∈ C(Im) such
that f1|σ0 = id and f1(Im \ σ0) ⊆ Im \ σ0.

Claim. ρ(f1, h) < ε.

Let x ∈ Im be arbitrary. If x ∈ σ0, then there exist non-negative reals α0, α1, . . . , αm

with
∑m

j=0 αj = 1 such that x = ∑m
j=0 αjxj , implying by equation (3.9) that

‖f1(x) − h(x)‖∞ =
∥∥∥∥

m∑
j=0

αjf1(xj ) −
m∑

j=0

αjh(xj )

∥∥∥∥∞

≤
m∑

j=0

αj {‖xj − x0‖∞ + ‖h(x0) − h(xj )‖∞}

<
ε

4
+ ε

4
= ε

2
,

since ‖xj − x0‖∞ ≤ diam(σ0) < δ < ε/4 for all 0 ≤ j ≤ m. If x /∈ σ0, then there exists
a σ = 〈xi0 , xi1 , . . . , xim〉 ∈ K with σ �= σ0 such that x ∈ σ . Let x = ∑m

j=0 αij xij , where
αi0 , αi1 , . . . , αim are non-negative and

∑m
j=0 αij = 1. Then by using equation (3.9), we

have

‖f1(x) − h(x)‖∞ =
∥∥∥∥

m∑
j=0

αij f1(xij ) −
m∑

j=0

αij h(xij )

∥∥∥∥∞
≤

m∑
j=0

αij ‖f1(xij ) − yij ‖∞

=
∑

0≤j≤m
xij

∈σ0

αij ‖f1(xij ) − yij ‖∞ +
∑

0≤j≤m

xij
/∈σ0 and yij

∈σ 0
0

αij ‖f1(xij ) − yij ‖∞

+
∑

0≤j≤m

xij
/∈σ0 and yij

/∈σ 0
0

αij ‖f1(xij ) − yij ‖∞

≤
∑

0≤j≤m
xij

∈σ0

αij ‖xij − yij ‖∞ +
∑

0≤j≤m

xij
/∈σ0 and yij

∈σ 0
0

αij ‖x1 − yij ‖∞
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+
∑

0≤j≤m

xij
/∈σ0 and yij

/∈σ 0
0

αij ‖yij − yij ‖∞

≤
∑

0≤j≤m
xij

∈σ0

αij {‖xij − x0‖∞ + ‖h(x0) − h(xij )‖∞}

+
∑

0≤j≤m

xij
/∈σ0 and yij

∈σ 0
0

αij ‖x1 − yij ‖∞ <
ε

4
+ ε

4
+ ε

4
= 3ε

4
,

since ‖xij − x0‖∞ ≤ diam(σ0) < δ < ε/4 for all 0 ≤ j ≤ m such that xij ∈ σ0, and
‖x1 − yij ‖∞ ≤ diam(σ0) < δ < ε/4 for all 0 ≤ j ≤ m such that xij /∈ σ0 and yij ∈ σ 0

0 .
This proves the claim.

Now, define a map f : Im → Im by

f (x) =
{

f1 ◦ φ(x) if x ∈ σ0,

φ(x) if x /∈ σ0.

Since f1 ◦ φ(x) = x = φ(x) for all x ∈ ∂σ0
⋂

∂(Im \ σ0), clearly f is continuous on Im.
We prove that ρ(f 2, h) < ε. Consider an arbitrary x ∈ Im. If x ∈ σ0, then f (x) ∈ Im \ σ0,
because φ(x) ∈ Im \ σ0 and f1(Im \ σ0) ⊆ Im \ σ0. Therefore, f 2(x) ∈ σ0, implying by
equation (3.9) that

‖f 2(x) − h(x)‖∞ ≤ ‖f 2(x) − x0‖∞ + ‖h(x0) − h(x)‖∞ <
ε

4
+ ε

4
= ε

2
,

since ‖f 2(x) − x0‖∞ ≤ diam(σ0) < δ < ε/4. If x /∈ σ0, then f 2(x) = f1(x), and there-
fore ‖f 2(x) − h(x)‖∞ = ‖f1(x) − h(x)‖∞ < 3ε/4. This completes the proof.

Now it is a natural question to ask what happens if all the fixed points of the map are
in the interior of Im. Theorem 10 of [15, p. 364] shows that the map f (x) = 1 − x on the
unit interval [0, 1], with only x = 1

2 as the fixed point, cannot be approximated by squares
of continuous maps. In contrast, we have the following.

Example 3.10. In this example we show that, despite having no continuous square roots,
the map f : I 2 → I 2 defined by

f (x, y) = (
1 − x, 1

2

)
for all (x, y) ∈ I 2

having an interior point (x, y) = ( 1
2 , 1

2 ) as the unique fixed point can be approximated by
squares of continuous maps on I 2. To prove that f has no continuous square roots, on the
contrary, assume that f = g2 for some g ∈ C(I 2). Since (1 − x, 1

2 ) ∈ R(g), there exists
(f1(x), f2(x)) ∈ I 2 such that g(f1(x), f2(x)) = (1 − x, 1

2 ) for each x ∈ I . Then

g
(
1 − x, 1

2

) = g2(f1(x), f2(x)) = f (f1(x), f2(x)) = (
1 − f1(x), 1

2

)
for all x ∈ I ,

implying that

g
(
x, 1

2

) = (
f1(x), 1

2

)
for all x ∈ I . (3.10)
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Therefore,(
1 − x, 1

2

) = f
(
x, 1

2

) = g2(x, 1
2

) = g
(
f1(x), 1

2

) = (
f 2

1 (x), 1
2

)
for all x ∈ I ,

and hence f 2
1 (x) = 1 − x for all x ∈ I . Also, from equation (3.10), it follows that f1

is continuous on I. Thus, the map x �→ 1 − x has a continuous square root on I, a
contradiction to Corollary 2.7. Hence, f has no continuous square roots on I 2.

Now, to prove that f can be approximated by squares of continuous maps, consider an
arbitrary ε > 0. Without loss of generality, we assume that ε < 1

2 . The idea is to compress
I 2 to the small strip I × [ 1

2 − ε/2, 1
2 + ε/2] and then rotate this strip ninety degrees

clockwise with a suitable scaling to stay within the strip. More explicitly, let g : I 2 →
I × [ 1

2 − ε/2, 1
2 + ε/2] be defined by g = g1 ◦ g2, where g1 : I × [ 1

2 − ε/2, 1
2 + ε/2] →

I × [ 1
2 − ε/2, 1

2 + ε/2] and g2 : I 2 → I × [ 1
2 − ε/2, 1

2 + ε/2] are given by

g1(x, y) =
(

ε − 1
2ε

,
ε + 1

2

)
+ (x, y)

⎛
⎝ 0 −ε

1
ε

0

⎞
⎠ =

(
1
2

+ 2y − 1
2ε

,
1
2

− ε(2x − 1)

2

)

and

g2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
x,

1
2

− ε

2

)
if (x, y) ∈ I ×

[
0,

1
2

− ε

2

]
,

(x, y) if (x, y) ∈ I ×
[

1
2

− ε

2
,

1
2

+ ε

2

]
,

(
x,

1
2

+ ε

2

)
if (x, y) ∈ I ×

[
1
2

+ ε

2
, 1

]
.

Then g is continuous on I 2 such that

g2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − x,

1
2

+ ε

2

)
if (x, y) ∈ I ×

[
0,

1
2

− ε

2

]
,

(1 − x, 1 − y) if (x, y) ∈ I ×
[

1
2

− ε

2
,

1
2

+ ε

2

]
,

(
1 − x,

1
2

− ε

2

)
if (x, y) ∈ I ×

[
1
2

+ ε

2
, 1

]
,

and it can be easily verified that ρ(f , g2) < ε.

4. Continuous functions on R
m

Consider Rm in the metric induced by the norm ‖ · ‖∞ defined as in equation (3.1). Since
it is a locally compact separable metric space, by Corollary 7.1 of [2], the compact-open
topology on C(Rm) is metrizable with the metric D given by

D(f , g) =
∞∑

j=1

μj (f , g)
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such that

μj (f , g) = min
{

1
2j

, ρj (f , g)

}
for all j ∈ N,

ρj (f , g) = sup{‖f (x) − g(x)‖∞ : x ∈ Mj } for all j ∈ N,

where (Mj )j∈N is a sequence of compact sets in R
m satisfying that Rm = ⋃∞

j=1 Mj ,

and if M is any compact subset of R
m, then M ⊆ ⋃k

i=1 Mmi
for some finitely many

Mm1 , Mm2 , . . . , Mmk
. For convenience, we assume that Mj is an m-simplex of Rm for

each j ∈ N, and either Mi ∩ Mj = ∅ or Mi ∩ Mj is a common face of both Mi and Mj

for all i, j ∈ N. Considering all the faces Mj for all j ∈ N, we get a countable triangulation
of Rm. Throughout this section, we fix one such triangulation of Rm.

LEMMA 4.1. Let σ = 〈x0, x1, . . . , xm〉 be an m-simplex of Rm and z ∈ σ be such that
z �= xj for all 0 ≤ j ≤ m. Then there exists a simplicial complexLσ with the set of vertices
{x0, x1, . . . , xm, z} such that |Lσ | = σ . In other words, every m-simplex of Rm can be
triangulated to have a desired point as an extra vertex.

Proof. Without loss of generality, we assume that z ∈ 〈x0, x1, . . . , xk〉0 for some
1 ≤ k ≤ m, say z = ∑k

j=0 αjxj for some strictly positive real numbers αj such

that
∑k

j=0 αj = 1. Then Vi := {x0, x1, . . . , xi−1, z, xi+1, . . . , xm} is geometrically
independent for all 0 ≤ i ≤ k. In fact, for a fixed 0 ≤ i ≤ k, if the real numbers βj

are arbitrary such that
∑m

j=0 βj = 0 and

∑
0≤j≤m

j �=i

βj xj + βiz = 0,

then ∑
0≤j≤k

j �=i

(βj + βiαj )xj + βiαixi +
∑

k<j≤m

βjxj = 0,

and therefore by geometric independence of {x0, x1, . . . , xm}, we have βj + βiαj =
βiαi = 0 for all 0 ≤ j ≤ k with j �= i, and βj = 0 for all k < j ≤ m. This implies that
βj = 0 for all 0 ≤ j ≤ m, since αi > 0.

Now, let σi := 〈x0, x1, . . . , xi−1, z, xi+1, . . . xm〉 and Li be the simplicial complex of
all faces of σi for all 0 ≤ i ≤ k.

Claim. Lσ = ⋃
k
i=0Li is a triangulation of σ with the set of vertices {x0, x1, . . . , xm, z}.

Clearly, Lσ is a collection of simplices of R
m with {x0, x1, . . . , xm, z} as its set of

vertices. To show that it is a simplicial complex, consider an arbitrary λ ∈ Lσ . Then λ ∈ Li

for some 0 ≤ i ≤ k, implying that κ ∈ Li ⊆ Lσ whenever κ is a face of λ, because Li is a
simplicial complex. Next, consider any two simplices λ, η ∈ Lσ . If λ, η ∈ Li for the same
i ∈ {0, 1, . . . , k}, then clearly λ ∩ η is either empty or a common face of both λ and η,
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becauseLi is a simplicial complex. So, let λ ∩ η �= ∅, and suppose that λ ∈ Li and η ∈ Lj

for some i �= j , where 0 ≤ i, j ≤ k. Further, assume that λ and η are s and t dimensional,
respectively, for some 0 ≤ s, t ≤ m. Then it is easily seen λ ∩ η is the l-simplex with vertex
set Vi ∩ Vj , where l = #(Vi ∩ Vj ) − 1. This implies that λ ∩ η ∈ Li ∩Lj , and therefore
it is a common face of both λ and η. Hence, Lσ is a simplicial complex.

Now, to prove that Lσ is a triangulation of σ , consider an arbitrary x ∈ σ . Then
x ∈ λ := 〈xi0 , xi1 , . . . , xis 〉 for some s-dimensional face λ of σ , where 0 ≤ s ≤ m. If
λ ∈ Li for some 0 ≤ i ≤ k, then clearly x ∈ |Li | ⊆ |Lσ |. If λ /∈ Li for all 0 ≤ i ≤ k,
then there exist at least two i ∈ {0, 1, . . . , k} such that (Vλ\{z}) ∩ (Vi\{z}) �= ∅, where
Vλ = {xi0 , xi1 , . . . , xis }. This implies that x ∈ λ ⊆ ⋃

i∈� |Li | ⊆ |Lσ |, where � := {i :
0 ≤ i ≤ k and (Vλ\{z}) ∩ (Vi \ {z}) �= ∅}. Thus the claim holds and result follows.

LEMMA 4.2. Let R
m = ⋃∞

j=1 Mj be the decomposition of R
m fixed above, and let

δ1, δ2, . . . be a sequence of positive real numbers. Then there exists a countable trian-
gulation K = ⋃∞

j=1 Kj of Rm such that Kj is a triangulation of Mj and diam(σ ) < δj

for all σ ∈ Kj and j ∈ N.

Proof. Perform a barycentric subdivision of the m-simplex Mj of sufficient order to get
a simplicial complex Lj such that diam(σ ) < δj for all σ ∈ Lj and j ∈ N. Then L :=⋃∞

j=1 Lj is not necessarily a simplicial complex, and therefore need not be a countable
triangulation of R

m, as neighboring m-simplices Mj might have undergone barycentric
subdivisions of different orders. Let {σ1, σ2, . . .} be the collection of all m-simplices in
L and V be the set of vertices of all simplices in L. Observe that V may contain some
points of σi that are not its vertices for each i ∈ N due to the barycentric subdivision of its
neighboring m-simplices. However, there are at most finitely many such points of each σi ,
since every compact subset of Rm is contained in a finite union of m-simplices Mj . Now,
using Lemma 4.1, we refine σ1 inductively so that we have a triangulation of σ1, which
includes all these points as vertices. Next, we consider σ2 and repeat the same procedure.
Note that these refinements add new simplices but do not increase the number of vertices.
So, the refinement of σ2 does not disturb that of σ1 done before. Continuing in this way,
we obtain a triangulation Kj of Mj for each j ∈ N so that K = ⋃∞

j=1 Kj is a countable
triangulation of Rm with the set of vertices V . This completes the proof.

Having the above lemmas, we are ready to prove our desired result.

THEOREM 4.3. If h ∈ C(Rm), then for each ε > 0, the ball Bε(h) of radius ε around
h contains a map f having no (even discontinuous) iterative square roots on R

m. In
particular,W(2; Rm) does not contain any ball of C(Rm).

Proof. Let h ∈ C(Rm) and ε > 0 be arbitrary. Our strategy to prove the existence of an
f ∈ Bε(h) with no square roots is to make use of Theorem 2.4, and we construct this f in
a few steps as done in Theorem 3.8.

Step 1: Construct a piecewise affine linear map f0 ∈ Bε(h) supported by some suitable
triangulation K of R

m. Consider the decomposition R
m = ⋃∞

j=1 Mj of Rm fixed above.
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Since h|Mj
is uniformly continuous, there exists a δj > 0 such that

‖h(x) − h(y)‖∞ <
1

2j+5 whenever x, y ∈ Mj with ‖x − y‖∞ < δj (4.1)

for each j ∈ N. Also, by Lemma 4.2, there exists a triangulation K of R
m such that

diam(σ ) < δj/4 for all m-simplex σ ∈ K contained in Mj and for all j ∈ N.
Let x0, x1, . . . be the vertices of K. Choose y0, y1, . . . in R

m inductively such that
yj �= xj and

‖h(xj ) − yj‖∞ <
ε

2j+6 for all j ∈ Z+, (4.2)

and {yi0 , yi1 , . . . , yim} is geometrically independent whenever 〈xi0 , xi1 , . . . , xim〉 ∈ K for
i0, i1, . . . , im ∈ Z+. This is possible by Lemma 3.6. Here, while choosing points yj using
Baire Category theorem with yj ∈ Bε/2j+6(h(xj )) for all j ∈ Z+, satisfying the geometric
independence condition, it is also possible to ensure that yj �= xj for all j ∈ Z+. Then, for
each j ∈ N, we have

‖yi0 − yi1‖∞ ≤ ‖yi0 − h(xi0)‖∞ + ‖h(xi0) − h(xi1)‖∞ + ‖h(xi1) − yi1‖∞

<
ε

2j+5 + 2
ε

2j+6 = ε

2j+4 , (4.3)

whenever 〈xi0 , xi1〉 is a 2-simplex of σ for all m-simplex σ ∈ K contained in Mj . Let
f0 : |K| = R

m → R
m be the map fU ,V defined as in equation (3.2), where U and V are the

ordered sets {x0, x1, . . .} and {y0, y1, . . .}, respectively. Then f0 is a continuous piecewise
affine linear self-map of Rm satisfying that f0(xj ) = yj for all j ∈ Z+. Also, by using
result (i) of Lemma 3.1, we have R(f0)

0 �= ∅, and f0|σ is injective for all σ ∈ K contained
in Mj for all j ∈ N. Further, from equation (4.3) we have

diam(f0(σ )) <
ε

2j+4 for all σ ∈ K contained in Mj and for all j ∈ N. (4.4)

Claim. D(f0, h) < ε/4.

Consider arbitrary j ∈ N and x ∈ Mj . Then x is in the interior of a unique k-simplex
〈xi0 , xi1 , . . . , xik 〉 in K contained in Mj for some 0 ≤ k ≤ m. Let x = ∑k

j=0 αij xij with∑k
j=0 αij = 1. Then by equations (4.1) and (4.2), we have

‖f0(x) − h(x)‖∞ =
∥∥∥∥

k∑
j=0

αij yij −
k∑

j=0

αij h(x)

∥∥∥∥∞

≤
k∑

j=0

αij {‖yij − h(xij )‖∞ + ‖h(xij ) − h(x)‖∞}

<
ε

2j+6 + ε

2j+5

<
ε

2j+4 , (4.5)
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since ‖x − xij ‖∞ ≤ diam(〈xi0 , xi1 , . . . , xik 〉) < δj for all 0 ≤ j ≤ k. Therefore,
ρj (f0, h) ≤ ε/2j+4 < ε/2j+2 for all j ∈ N, implying that D(f0, h) <

∑∞
j=1(ε/2j+2) =

ε/4.

Step 2: Obtain an m-simplex � ∈ K contained in Mr for some r ∈ N containing a
non-empty open set Y ⊆ �0 ∩ R(f0)

0 such that f0(Y ) ⊆ �0
1 for some m-simplex �1

in K. Consider any m-simplex σ = 〈xi0 , xi1 , . . . , xim〉 in K. Since {yi0 , yi1 , . . . , yim} is
geometrically independent by construction, we have f0(Z) is open in R

m for each open
subset Z of σ 0. Choose a sufficiently small non-empty open subset Y0 of f0(σ )0 such
that Y0 ⊆ �0 for some m-simplex � ∈ K contained in Mr for some r ∈ N. Then f0(Y0)

has non-empty interior. Again, choose a non-empty open subset Y of Y0 so small that
f0(Y ) ⊆ �1 for some m-simplex �1 ∈ K. This completes the proof of Step 2.

Step 3: Show that there exists a barycentric subdivisionK (s) of K for some s ∈ N with an
m-simplex σ0 ∈ K (s) such that σ0 ⊆ Y , and f −1

0 (σ0) ∩ σ = ∅ and f0(σ0) ∩ σ = ∅ for all
σ ∈ K (s) with σ ∩ σ0 �= ∅. The proof is similar to that of Step 3 of Theorem 3.8.

Step 4: Modify f0 slightly to get a new piecewise affine linear map f ∈ Bε(h) that is
constant on σ 0. The proof is similar to that of Step 4 of Theorem 3.8; however, we give the
details here for clarity. To retain continuity, when we modify f0 on σ0, we must also modify
it on all m-simplices in K (s) adjacent to it. Let A := ⋃p

j=0 σj , where σj is precisely an

m-simplex in K (s) such that σj ∩ σ0 �= ∅ for all 0 ≤ j ≤ p. Then, clearly A ⊆ W ⊆ �0,
where W is as chosen in Step 3.

Let the vertices of σ0 be u0, . . . , um−1 and um, and let vj := f0(uj ) for all 0 ≤ j ≤ m.
Then vj �= uj for all 0 ≤ j ≤ m, because uj ∈ W for all 0 ≤ j ≤ m and f0(W) ∩ W = ∅.
Also, as u0, u1, . . . , um are geometrically independent vectors contained in �, by result
(ii) of Corollary 3.4, we see that v0, v1, . . . , vm are geometrically independent. Further,
by Step 2, they are all contained in the interior of a single simplex �1 of K. Hence, by
result (iii) of Corollary 3.4, we have f0(vj ) �= vj for some 0 ≤ j ≤ m. Without loss of
generality, we assume that f0(v0) �= v0.

Extend {u0, . . . , um} to {u0, u1, . . .} to include the vertices of all the simplices of K(s)

and let vj := f0(uj ) for all j ∈ Z+. Now, define f by

f (uj ) =
{

v0 if 0 ≤ j ≤ m,

vj if j > m,

and extend it countably piecewise affine linearly to the whole of |K(s)| = R
m. Then f0 is

modified only on A and f (x) = v0 for all x ∈ σ0.
Consider an arbitrary x ∈ A. Then x ∈ σj for some 0 ≤ j ≤ p. Let σj = 〈uj0 , uj1 , . . . ,

ujm〉 and x = ∑m
i=0 αji

uji
with

∑m
i=0 αji

= 1. Then by equation (4.4), we have

‖f (x) − f0(x)‖∞ ≤
m∑

i=0

αji
‖f (uji

) − f0(uji
)‖∞ ≤

m∑
i=0

αji
diam(f0(�)) <

ε

2r+4 ,

implying by equation (4.5) that

‖f (x) − h(x)‖∞ ≤ ‖f (x) − f0(x)‖∞ + ‖f0(x) − h(x)‖∞ <
ε

2r+4 + ε

2r+4 <
ε

2r+3 .
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Therefore, ρr(f , h) < ε/2r+2. Also, we have ρj (f , h) = ρj (f0, h) < ε/2j+2 for j �= r .
Hence, D(f , h) <

∑∞
j=1(ε/2j+2) = ε/4, proving that f ∈ Bε(h).

Step 5. Prove that f has no square roots in C(Rm). It is clear that f (v0) �= v0, because
A ⊆ W , f = f0 on Ac and f0(W) ∩ W = ∅. Also, by Step 3, we have f −1

0 (σ0) ∩ σ = ∅
for all σ ∈ K(s) with σ ∩ σ0 �= ∅, implying that f = f0 on f −1

0 (σ0). Further, f −1
0 (σ0)

is uncountable, since σ0 is uncountable and σ0 ⊆ R(f0)
0. Therefore, as f −2(v0) ⊇

f −1(f −1(v0)) ⊇ f −1(σ0) ⊇ f −1
0 (σ0), it follows that f −2(v0) is uncountable. Moreover,

f |σ is injective for every σ ∈ K (s) with σ �= σ0 by result (i) of Lemma 3.1, and hence
f −1(x) is countable for all x �= v0 in R

m. Thus, f satisfies the hypothesis of Case (iii) of
Theorem 2.4, proving that f has no square roots in C(Rm).

We have seen in Theorem 3.8 (respectively Theorem 4.3) that each open neighborhood
of each map in C(Im) (respectively in C(Rm)) has a continuous map which does not
have even discontinuous square roots. Additionally, if X and Y are locally compact
Hausdorff spaces, and φ : X → Y is a homeomorphism, then the map f �→ φ ◦ f ◦ φ−1 is
a homeomorphism of C(X) onto C(Y ), where both C(X) and C(Y ) have the compact-open
topology, and moreover f = g2 on X if and only if φ ◦ f ◦ φ−1 = (φ ◦ g ◦ φ−1)2 on Y.
Hence, it follows that Theorem 3.8 (respectively Theorem 4.3) is true if Im (respectively
R

m) is replaced by any topological space homeomorphic to it. For the same reason,
Theorem 3.9 is also true if Im is replaced by any topological space homeomorphic to it.

5. Lp denseness of iterative squares in C(Im)

In this section, we prove that the iterative squares of continuous self-maps on Im are Lp

dense in C(Im). Given any nontrivial compact subintervals I1, I2, . . . , Im of I, let I1 ×
I2 × · · · × Im denote the closed rectangular region in Im defined by

I1 × I2 × · · · × Im = {(x1, x2, . . . , xm) : xi ∈ Ii for 1 ≤ i ≤ m}.

Consider C(Im) in the Lp norm defined by

‖f ‖p =
( ∫

Im

‖f (x)‖p∞ dμ(x)

)1/p

,

where μ is the Lebesgue measure on R
m. First, we prove a result which gives a sufficient

condition for extending a given function to a square.

THEOREM 5.1. Let K be a proper closed subset of Im and f : K → Im be continuous.
Then there exists a g ∈ C(Im) such that f = g2|K .

Proof. Let I1 × I2 × · · · × Im be a closed rectangular region in Im \ K and g̃ be a
homeomorphism of K into I1 × I2 × · · · × Im. Extend g̃ to K ∪ R(g̃) by setting g(x) =
f (g̃−1(x)) for x ∈ R(g̃). Then g is continuous on the closed set K ∪ R(g̃), and therefore,
by an extension of Tietze’s extension theorem by Dugundji (see Theorem 4.1 and Corollary
4.2 of [11, pp. 357–358]), it has an extension to a continuous self-map of Im, which also
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we denote by g. Further, for each x ∈ K , we have

g2(x) = g(g(x))

= g(g̃(x))

= f (g̃−1(g̃(x))) (since g̃(x) ∈ R(g̃))

= f (x),

implying that f = g2|K .

It is worth noting that the assumption in the above theorem that K is a proper subset
of Im cannot be dropped. Indeed, if K = I , then the continuous map f (x) = 1 − x on K
has no square roots in C(I ) (see [24, pp. 425–426] or Corollary 2.7). Such maps can be
constructed on K = Im for general m using Theorem 2.6. We now prove our desired result.

THEOREM 5.2. W(2; Im) is Lp dense in C(Im).

Proof. Consider an arbitrary f ∈ C(Im). Then, by Theorem 5.1, for each ε > 0, there
exists a map gε ∈ C(Im) such that f |Iε×Iε×···×Iε = g2

ε |Iε×Iε×···×Iε , where Iε = [ε, 1].
Now,

‖g2
ε − f ‖p

p =
∫

Im

‖g2
ε (x) − f (x)‖p∞ dμ(x)

=
∫

(Iε×Iε×···×Iε)c
‖g2

ε (x) − f (x)‖p∞ dμ(x)

≤ μ((Iε × Iε × · · · × Iε)
c)

= 1 − (1 − ε)m,

implying that ‖g2
ε − f ‖p → 0 as ε → 0. Hence, limε→0 g2

ε = f in Lp, and the result
follows.
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