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Abstract

We consider a hard-sphere model in R
d generated by a stationary point process N and

the lilypond growth protocol: at time 0, every point of N starts growing with unit speed
in all directions to form a system of balls in which any particular ball ceases its growth
at the instant that it collides with another ball. Some quite general conditions are given,
under which it is shown that the model is well defined and exhibits no percolation. The
absence of percolation is attributable to the fact that, under our assumptions, there can be
no descending chains inN . The proof of this fact forms a significant part of the paper. It is
also shown that, in the absence of descending chains, mutual-nearest-neighbour matching
can be used to construct a bijective point map as defined by Thorisson.
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1. Introduction

We consider the lilypond model introduced and studied in [5] and [3]. It is based on a point
process N on R

d and defined according to the lilypond growth protocol as follows. The points
of N , also called germs, start growing at the same time with unit speed in all directions, so that
in t time units, in the absence of any interaction with growth around other points, a given germ
grows into a ball (also called a grain) of radius t . The other critical feature of the lilypond
growth protocol concerns the cessation of growth: any grain stops growing at the instant that it
touches another grain (which may itself be either growing or have ceased growing at an earlier
time). Any such instant is called a collision time. The union of all grains obtained in this way
constitutes the lilypond model generated byN . It can be described by the marked point process
{(x, R(x)) : x ∈ N}, where R(x) is the radius of the grain with centre the germ x.

When N is a (stationary) lattice, the lilypond model percolates, i.e. the union of all grains
contains an unbounded (connected) component (think of grains as being ‘connected’ if and
only if they either touch or are ‘linked’ by a sequence of touching grains). However, it was
proved in [5] and Section 8.3 of [12] that percolation can almost surely (a.s.) not occur when
N is a homogeneous Poisson process. In this paper, we prove this result for a much broader
class of point processes N . This class includes Poisson cluster processes, Cox processes, and
Gibbs processes satisfying suitable (exponential) moment conditions. While the result is not
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unexpected, its proof seems to be far from straightforward. Without the strong independence
properties of the Poisson process we have to resort here to more general point process arguments.

Under suitable nonlattice-type conditions that hold when N is a Poisson process as in [5]
and [3], the absence of percolation in the lilypond model is a consequence of a more basic
feature, namely thatN a.s. has no descending chains (see [8]). By a descending chain we mean
an infinite sequence x1, x2, . . . of different points of N for which |xi−1 − xi | ≥ |xi − xi+1|
for all i ≥ 2. In fact, we devote a significant part of this paper to proving that our assumptions
imply that N is descending chain free in the sense that descending chains a.s. do not exist.

A bijective point shift (ofN ) in the sense of [16] shifts the ‘typical point’ofN to a (possibly)
different point of N without changing the Palm distribution of N . The existence of nontrivial
bijective point shifts is an intriguing invariance property of the Palm distribution ofN , but when
N is in two or more dimensions it is at first not clear whether a stationary point process will
actually have this property. For Poisson processes, the problem was resolved in [4] and [8],
while the general case was discussed in [6]. Mutual-nearest-neighbour matching, as described
in [4] and [8], is one rather straightforward way of constructing bijective point maps. The
absence of descending chains guarantees the success of this procedure.

Olle Häggström (personal communication) has indicated to us an example of a stationary
nonlattice point process possessing descending chains (see [8] for a related example). Fol-
lowing a proposal of Venkat Anantharam and Francois Baccelli (personal communication), in
Subsection 3.4 we give another example based on Poisson line processes. These examples
show that there must exist some nontrivial criteria for excluding descending chains. Finding
the most general form of such criteria remains an open problem.

The paper is organized as follows. Section 2 contains a detailed discussion of the lilypond
model as based on a (deterministic) locally finite point pattern. In particular, we will prove that
the model exists and is unique whenever the underlying pattern has no descending chain. In
Section 3, we first recall some basic definitions from point process theory before discussing
specific nonlattice-type conditions that are needed to prove the absence of percolation in a
(stochastic) lilypond model. This section also contains a simple argument proving that a Poisson
process a.s. has no descending chain. This argument is considerably generalized in Section 4,
where we state and prove the main result of this paper, on the absence of descending chains for
a large class of stationary point processes. Section 5 contains the applications to the lilypond
model while, in Section 6, we apply our main result to mutual-nearest-neighbour matching.
Section 7 gives examples of Cox processes, Poisson cluster processes, and Gibbs processes that
are descending chain free.

We work in d-dimensional space R
d with norm | · |. By d(x, A) := infy∈A{|y − x|} we

define the distance between a point x ∈ R
d and a setA ⊂ R

d , where inf ∅ := ∞. |A|d denotes
the volume of a (measurable) set A and B(x, r) ≡ Br(x) := {y : |y − x| ≤ r} denotes the
ball with centre x and radius r ≥ 0. The unit ball B1(0) has volume κd = |B1(0)|d , while its
boundary Sd−1 (the unit sphere) has surface content dκd .

2. Hard-sphere models and the lilypond protocol

2.1. Some basic definitions

This section builds on the informal description of a lilypond model given in the introduction,
by describing phenomena that are excluded from the description of the lilypond model based
on point sets ϕ that arise from a Poisson process, as in [5] and [3]. While some facets may be
regarded as mathematical, pathological cases, they point to better formal descriptions of the
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concepts that underlie germ–grain models in general. Before starting even this informal work,
it is helpful to define some basic properties of hard-sphere models.

Our discussion centres on germ–grain models in which to each point or germ x there is
associated a grain that is in fact a ball BR(x)(x) with centre x and radius R(x); one view of
such a process is as a marked point process in which each point x in the process N has a
[0,∞)-valued label R(x). To avoid trivialities, every ϕ we consider has cardinality greater
than or equal to 2.

Definition 2.1. Let ϕ be a locally finite subset of R
d with associated mapping x �→ R(ϕ, x) ≡

R(x) ∈ [0,∞) defined on ϕ.

(a) {(x, R(x)) : x ∈ ϕ} is a hard-sphere model on ϕ if, for any point pair {x, y} ⊆ ϕ with
x �= y, we have R(x)+ R(y) ≤ |x − y|.

(b) Distinct germs x, y ∈ ϕ in a hard-sphere model are grain-neighbours if R(x)+R(y) =
|x − y|, i.e. if BR(x)(x) ∩ BR(y)(y) �= ∅ or, more precisely, their intersection is the
one-point set

BR(x)(x) ∩ BR(y)(y) =
{
R(y)x + R(x)y

R(x)+ R(y)

}
.

(c) For grain-neighbours x and y, y is a smaller grain-neighbour of x when R(y) ≤ R(x).

(d) A hard-sphere model is a lilypond model if every x ∈ ϕ has a smaller grain-neighbour.

In this definition, the inequalityR(x)+R(y) ≤ |x−y| in part (a) states that, in a hard-sphere
model, the interiors of different balls do not intersect. Part (b) states that, for grain-neighbours
x and y, equality holds in this weak inequality. Part (c) uses ‘smaller’ in the weak (nonstrict
inequality) sense; this is particularly relevant in our discussion of the possible absence of
percolation in Section 4. Part (d) asserts that every germ in a lilypond model has at least one
grain-neighbour and, amongst its grain-neighbours, one that is (weakly) smaller. These two
facets of part (d) reflect the ‘growth termination’ conditions in the description given in Section
1.

Definition 2.2. Consider a hard-sphere model on ϕ and let x ∈ ϕ. A nontrivial cluster
C(ϕ, x) ≡ C(x) ⊆ ϕ is a subset of ϕ with the following properties:

(i) x ∈ C(x);

(ii) C(x) contains all the grain-neighbours of y for every y ∈ C(x);
(iii) there exists, for every z ∈ C(x), a sequence y0, y1, . . . , yn of distinct elements of

C(x), with y0 = x and yn = z, such that yr−1 and yr are grain-neighbours for every
r = 1, . . . , n.

It is now almost trivial to observe that the clusters of a hard-sphere model with germ set ϕ
furnish a partition of ϕ into equivalence classes of germs. It is not so simple (see below) to
decide whether a cluster is necessarily finite (in the sense that card C(x) < ∞).

Lemma 2.1. The germ sets of the grain clusters of a hard-sphere model on ϕ constitute a
partition of all points in ϕ.

In fact, more is true of the clusters in a finite lilypond model, because each cluster is a finite set
(and of cardinality greater than or equal to 2), meaning that miny∈C(x) R(y) = R(zx) for some
zx ∈ C(x). Then, by Definition 2.1(d), zx has a smaller grain-neighbour that, by Lemma 2.1,
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must belong to C(x), and must have the same radius as zx , i.e. the two grains constitute a
doublet (we call grain-neighbours x and y a doublet when R(x) = R(y) = 1

2 |x − y|).
Lemma 2.2. Every finite cluster in a lilypond model on ϕ contains at least one doublet.

Finally we record a relationship that need not be reflexive, although when it is some stronger
results ensue (see Section 2.4).

Definition 2.3. Given a locally finite point set ϕ ⊂ R
d , every x ∈ ϕ has a not necessarily

uniquely determined nearest neighbour η(ϕ, x) in ϕ, for which

|x − η(ϕ, x)| = inf
z∈ϕ\{x} |x − z|.

Distinct elements x and y of ϕ are mutual nearest neighbours when

|x − y| = inf
z∈ϕ\{x} |x − z| = inf

z∈ϕ\{y} |y − z|.

Thus, in a lilypond model, a pair of mutual nearest neighbours constitutes a doublet, but not
every doublet is a pair of mutual nearest neighbours.

2.2. A naive algorithm for lilypond models on finite sets

Whenϕ is a finite set, there certainly exists a simple algorithm (it need not be efficient(!)) that
constructs a well-defined lilypond model based on ϕ: we call it the naive algorithm. Starting
from the germ set ϕ at time 0, around each and every germ x a grain starts growing at unit
rate. Take ‘snapshots’ of the growing (and grown) grains every time a collision occurs between
a growing grain and another grain (so that the growing grain ceases growth at the time of the
snapshot). Then the set of all snapshot times coincides with the set of all radii of the grains.
Since ϕ is a finite set, this procedure generates a finite set of times, and since ϕ is a bounded
set, there is a maximum time within which this finite set of snapshot times is located. The
procedure is thus determinate.

In [3], an algorithm was given that determines the radii R(x) for x ∈ ϕ when ϕ is finite and,
in practice, for cases of local finiteness as well; for such cases the existence of the lilypond
model is discussed shortly. The naive algorithm can be shown to be equivalent to both the
algorithm in Section 2 of [3] and our Definition 2.1(d) for finite ϕ.

2.3. Descending chains: a deterministic example

As described, both the naive algorithm and the definition of a grain cluster C(x) depend on
the finiteness of ϕ to ensure their uniqueness. To see what may go awry without finiteness, we
now describe a countably infinite set, using N to denote the positive integers {1, 2, . . . } and N0
the nonnegative integers {0} ∪ N.

Definition 2.4. A countable but locally finite set ϕ = {x0, . . . , xi , xi+1, . . . } is a descending
chain (of germs) when

|xi−1 − xi | ≥ |xi − xi+1| (i ∈ N).

If, in addition,

d(xi , ϕ \ {x0, . . . , xi}) = |xi+1 − xi | (i ∈ N0), (2.1)

we call ϕ a strong descending chain.
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Figure 1: Part of an infinite set of points generating a topologically connected lilypond model.

Given a strong descending chain ϕ = {xi , i ∈ N0} (Figure 1 illustrates part of such a set ϕ),
limi→∞ |xi+1 − xi | exists and equals 2r ≥ 0, say. Then |xi − xi+1| − 2r ↓ 0 and, therefore,
the quantities

rm := r +
∞∑
i=1

(−1)i+1(|xm+i−1 − xm+i | − 2r) (m ∈ N0) (2.2)

are well defined and positive, and satisfy

rm = r +
∞∑
i=1

(−1)i+1(|xm+i−1 − xm+i | − 2r)

= |xm − xm+1| − r −
∞∑
i=1

(−1)i+1(|xm+i − xm+1+i | − 2r) = |xm − xm+1| − rm+1,

i.e.

ri + ri+1 = |xi − xi+1| (i ∈ N0). (2.3)

Having made this observation, it is now easy to state conditions necessary and sufficient for
{(xi , ri)} to constitute a lilypond model.

Lemma 2.3. Let {xi} be a strong descending chain of germs and define the sequence {ri}
according to (2.2), where 2r = limi→∞ |xi − xi+1|. Then {(xi , ri)} constitutes a lilypond
model if and only if {ri} is monotone decreasing.

Proof. We first note that

ri−2 ≥ ri (i ≥ 2). (2.4)

Assume that {ri} is monotone decreasing. By (2.3), we then find that, for any i, j ∈ N0 with
i < j ,

|xi − xj | ≥ |xi − xi+1| = ri + ri+1 ≥ ri + rj .

Hence, {(xi , ri)} is a hard-sphere model. Since {ri} is decreasing, (2.3) implies that it is a
lilypond model.

Conversely, we assume now that {(xi , ri)} is a lilypond model. Let us further assume that
{ri} is not decreasing. Then there is some j ∈ N such that

r0 ≥ · · · ≥ rj−1 < rj . (2.5)
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By the lilypond property, there must be some i ∈ N0 \ {j − 1, j} such that

|xj−1 − xi | = rj−1 + ri and rj−1 ≥ ri . (2.6)

Assume first that j ≥ 2 and that i ≤ j − 2. By (2.5), we then have rj−2 = rj−1 < rj ,
contradicting (2.4). Hence, we can assume that i ≥ j + 1. We now distinguish two cases. If
i − j is even then (2.4) implies that ri ≤ rj . Since the equality ri = rj would contradict (2.5)
and (2.6), we deduce that ri < rj . Hence,

|xj−1 − xi | = rj−1 + ri < rj−1 + rj = |xj−1 − xj |,

contradicting (2.1). If i − j is odd then (2.4) implies that ri ≤ rj−1 < rj . This yields a
contradiction as above.

By the preceding lemma, {xi} is a descending chain of germs when {ri} is monotone.
Hence, the union set

⋃
i Bri (xi ) is topologically connected and unbounded, meaning that

the lilypond model percolates. More generally, if a locally finite set does not contain a
descending chain of germs, then the lilypond model cannot contain a descending chain of grains.
Consequently, percolation could only occur along an ascending chain of grains. However, the
latter behaviour is not possible for a stationary point process satisfying some suitable condition
of nonarithmeticity (see Section 5 and [5]).

Trivially, by using (2.3), the inequalities rm ≤ 1
2 |xm−1 − xm| (for all m ∈ N0) hold if and

only if rm ≤ rm−1, i.e. if {xi} defines a descending chain of grains, and the model therefore
percolates. A sufficient condition, in terms of the distances �i := |xi − xi+1|, is that {�i} be
a convex decreasing sequence; this follows from writing

rm − rm+1 =
∞∑
i=1

(−1)i+1(�m+i−1 −�m+i )

and observing that this infinite sum is nonnegative when the terms (�m+i−1 −�m+i ) decrease
in i.

When |xi−1 −xi | > |xi−xi+1| for all i, the radii (2.2) are all strictly decreasing, and there is
no smallest collision time. Therefore, for any ε > 0, the (open) time interval (r, r+ε) contains
infinitely many collision times. The naive algorithm for determining R(xi ) thus fails on two
accounts: first, the set of snapshot times is countably infinite and, second, there is no smallest
snapshot time, only an infimum.

Observe also that, when the rm decrease strictly, each rm depends on all points {xn, n ≥ m}
rather than just a finite subset of ϕ. Hence, the algorithm in [3] that, for practical purposes,
determines R(xi ) would in principle fail.

2.4. Existence of the lilypond model

We now prove that, when ϕ is descending chain free, the lilypond growth protocol leads to a
uniquely determined hard-sphere model, i.e. the lilypond model is then well defined (meaning
that, given ϕ, all the radii R(x) are determined uniquely and satisfy Definition 2.1).

Proposition 2.1. Let ϕ be a locally finite subset of R
d with card ϕ ≥ 2. When ϕ has no

descending chain, there is a uniquely determined lilypond model {(x, R(x)) : x ∈ ϕ} based
on ϕ.
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Proof. We use a version of mutual-nearest-neighbour matching (see [8]) to construct a
sequence {(x, R(x)) : x ∈ ϕn}, n ∈ N0, such that ϕn ⊆ ϕn+1 ⊆ ϕ for any n ∈ N0, and
ultimately determineR(x) for all x ∈ ϕ. We then check that these, and only these, R(x) values
satisfy the conditions of Definition 2.1.

We proceed recursively; start by setting ϕ0 := ∅. At step n ≥ 0, define the set νn(x), for all
x ∈ ϕ \ ϕn, by

νn(x) = {x} ∪ {y ∈ ϕ \ (ϕn ∪ {x}) : y is a mutual nearest neighbour of x in ϕ \ ϕn}.
Then νn(x) is nonempty and contains at most a finite number of points (the maximum such
number depends on the dimension d). Let

ψn := {x ∈ ϕ \ ϕn : νn(x) �= {x}},
i.e. ψn contains all mutual-nearest-neighbour pairs to be found in the complement in ϕ of ϕn
(in particular, ψ0 is the union of all mutual-nearest-neighbour sets). It is possible that ψn is
empty. In this case, we define ϕn+1 = ϕn (and in fact ϕm = ϕn for all m ≥ n+ 1). Otherwise,
we proceed, as below, to construct ϕn+1 from ϕn and determine R(x) for x ∈ ϕn+1 \ ϕn.

For x ∈ ψn, define
rn(x) := inf

z∈ϕn
{|x − z| − R(z)},

where inf ∅ := ∞, let

s′n(x) = 1
2 |x − y| (y ∈ νn(x) \ {x}) and s′′n(x) = min

y∈νn(x)
rn(y),

and finally let
Rn(x) := min{s′n(x), s′′n(x)}.

We now add certain points in ψn to ϕn to construct ϕn+1, distinguishing, for each x ∈ ψn, the
two cases Rn(x) = s′n(x) and Rn(x) < s′n(x). In the former case, we augment ϕn by adding
all points of νn(x) to ϕn+1, and set R(y) := Rn(x) for any y ∈ νn(x). In the other case,
we augment ϕn by including those points y ∈ νn(x) for which Rn(x) = rn(y), and define
R(y) := Rn(x). Applying this argument for all x ∈ ψn yields the (n+ 1)th hard-sphere model
{(x, R(x)) : x ∈ ϕn+1}.

Define

ϕ∞ :=
∞⋃
n=1

ϕn, ψ := ϕ \ ϕ∞ =
∞⋂
n=1

(ϕ \ ϕn).

Since ψ ⊆ ϕ is a countable set, ψ is either empty, finite and nonempty, or countably infinite.
In the first case we are done, while if ψ contains just one point, i.e. ψ = {x} for some x ∈ ϕ,
it is enough to define R(x) := infy∈ϕ∞(|x − y| − R(y)).

Otherwise, ψ contains several points. Let us show that it contains no pair of mutual nearest
neighbours. To prove this, we take some x ∈ ψ and consider the set ν(x) of all mutual nearest
neighbours of x in ψ . Certainly, from nearest-neighbour properties, the compact set

A(x) :=
⋃

y∈ν(x)
B|x−y|(y)

contains no point of ψ \ (ν(x) ∪ {x}). Because ψ is the intersection of the decreasing sets
ϕ \ ϕn, n ∈ N, there must be an n ∈ N such that A(x), which is compact, contains no points of
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ϕ \ ϕn other than those in ν(x) ∪ {x}. If ν(x) were nonempty then some points that are both
mutual nearest neighbours and in ν(x) would have been removed in step n + 1. Hence, ν(x)
is empty and, thus, ψ contains no pairs of mutual nearest neighbours.

Since a finite set with at least two elements contains at least one pair of mutual nearest
neighbours, it follows thatψ cannot be finite and contain at least two points: the only possibility
is that it contains infinitely many points. We show that, for this to occur, and for ψ to have no
pairs of mutual nearest neighbours, it must have a descending chain {xi}. Letx0 be any point ofψ
and let x1 be one of its nearest neighbours inψ . To proceed by induction, assume that x0, . . . , xn
(n ≥ 2) are different points in ψ satisfying |xi+1 −xi | ≤ |xi −xi−1| for all i ∈ {1, . . . , n− 1}.
Let xn+1 be a nearest neighbour of xn. Then |xn+1 − xn| ≤ |xn − xn−1| (otherwise xn and
xn−1 would be mutual nearest neighbours). To show that xn+1 /∈ {x0, . . . , xn−1}, assume, on
the contrary, that xn+1 = xj for some j ∈ {0, . . . , n− 1}. If xn were not a nearest neighbour
of xj then there would exist x ∈ ψ such that

|xj − x| < |xj − xn| = |xn+1 − xn| ≤ |xj+1 − xj |,
contradicting the fact that xj+1 is a nearest neighbour of xj . Hence, xn and xj are mutual
nearest neighbours, contrary to what we already know of ψ . Thus, ψ and therefore also ϕ each
have a descending chain, contradicting the assumption on ϕ. This completes the construction
of R(x) for all x ∈ ϕ.

Let {(x, R′(x)) : x ∈ ϕ} be a lilypond model based on ϕ, as in Definition 2.1. We prove, by
induction, that R′(x) = R(x) for any x ∈ ϕn and any n ∈ N. The set ψ0 consists of all pairs of
mutual nearest neighbours in ϕ. Take x ∈ ψ0 and y ∈ ν0(x) \ {x}. If R′(x) �= 1

2 |x − y| then
the hard-sphere property implies that at least one of the radii R′(x) and R′(y), R′(x) say, must
be strictly smaller than 1

2 |x − y|. The lilypond property then implies that there is some point
z ∈ ϕ \ {x} such that R′(z) ≤ R′(x) and R′(z)+ R′(x) = |x − z|. Since this contradicts the
nearest-neighbour property of y, we obtain

R′(x) = R′(y) = 1
2 |x − y| = R(x) = R(y).

Therefore, the statement of the induction hypothesis holds for n = 1.
Now fix n ≥ 1 and consider a point x ∈ ψn. Assume first that Rn(x) = s′n(x), i.e.

rn(y) ≥ s′n(x), y ∈ νn(x). (2.7)

If R′(x) < 1
2 |x − y| for some y ∈ νn(x) \ {x} then, as we have just seen, either x or y cannot

have a (weakly) smaller grain-neighbour in ϕ \ ϕn. Suppose, for definiteness, that this is true
of y. Then there must be a grain-neighbour w ∈ ϕn of y such that R′(w) ≤ R′(y). Using the
induction hypothesis R′(w) = R(w), we obtain

|w − y| − Rn(w) = R′(y) < 1
2 |x − y|,

contradicting (2.7). WereR′(x) > 1
2 |x − y| for some y ∈ νn(x) \ {x}, thenR′(y) < 1

2 |x − y|,
which would again contradict (2.7). Hence, R′(x) = 1

2 |x − y| = R(x).
Now consider the case s′′n(x) < s′n(x) and let y ∈ νn(x) such that rn(y) < s′n(x). The

hard-sphere property and the induction hypothesis imply that R′(y) ≤ rn(y). To show that this
inequality is in fact an equality we assume, on the contrary, that R′(y) < rn(y). Then none of
the points in ϕn is a grain-neighbour of y. Since rn(y) < s′n(x) (whence R′(y) < 1

2 |x − y|)
and {x, y} is a pair of mutual nearest neighbours in ϕ \ ϕn, the point y cannot have a smaller
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grain-neighbour. Hence, R′(y) = rn(y) = R(y), and the induction hypothesis holds for n+ 1.
Consequently, when a lilypond model based on ϕ exists, it is unique.

To check that the hard-sphere model {(x, R(x)) : x ∈ ϕ} is indeed a lilypond model, take
n ∈ N0 and x ∈ ϕn+1 \ ϕn. If Rn(x) = s′n(x) then x has at least one grain-neighbour of
equal radius. Assume that n ≥ 1 and Rn(x) < s′n(x). Then there exists a z ∈ ϕn satisfying
R(x) = |x − z| − R(z). To prove that z is a smaller grain-neighbour of x, suppose, on the
contrary, that R(x) < R(z). Then,

|x − z| = R(x)+ R(z) < 2R(z).

Let i ∈ {1, . . . , n} be such that z ∈ ϕi \ϕi−1 and take some w ∈ νi−1(z)\{z}. By construction,
we then have R(z) ≤ 1

2 |z − w|, meaning that

|x − z| < 2R(z) ≤ |z − w|.
Since x /∈ ϕi−1, the points z and w cannot be mutual nearest neighbours in ϕ \ ϕi . This
contradiction shows that z is a smaller grain-neighbour of x. Hence, all points in ϕ∞ do have a
smaller grain-neighbour. If ψ = ϕ \ϕ∞ contains just a single point x then, by definition, there
are some i ∈ N and z ∈ ϕi \ ϕi−1 such that |x − z| = R(x)+ R(z). As above, it follows that
z is a smaller grain-neighbour of x.

The following property of the above construction will be useful in Section 5.

Corollary 2.1. Let ϕ be as in Proposition 2.1, let n ≥ 1, and let x ∈ ϕn+1 \ ϕn. Let y ∈ ϕn+1
be a grain-neighbour of x. Then y is a smaller grain-neighbour of x, i.e. R(y) ≤ R(x).

Proof. If y ∈ ϕn then the last step of the preceding proof shows that y is a smaller grain-
neighbour of x. Assume now that y ∈ ϕn+1 and choose some z ∈ νn(y). By construction,
R(y) ≤ 1

2 |y − z|. Assuming, in addition, that R(y) > R(x), we obtain

|x − y| = R(x)+ R(y) < 2R(y) ≤ |y − z|.
However, y and z cannot then be mutual nearest neighbours in ϕ \ϕn. This contradiction shows
that R(y) ≤ R(x).

Remark 2.1. In the first (submitted) version of this paper, the authors conjectured that the
lilypond model exists and is unique for any locally finite ϕ having at least two points. Since
then, this has been proved in [7] (using a very different approach) for quite general spaces.

3. Stationary point processes

3.1. Palm probabilities

Let N be a (simple) point process on R
d , defined on some probability space (�,F ,P).

Such a process is defined as a random variable taking values in the space N of all locally finite
subsets of R

d equipped with the smallest σ -field N containing the sets {ϕ ∈ N : ϕ(B) = k},
for any bounded Borel set B ∈ B(Rd) and any k ∈ N0, where ϕ(B) := card(ϕ ∩ B). Hence,
ϕ can be interpreted as a counting measure: it can be written as a finite or countably infinite
sum

∑
i δxi of Dirac measures located at some points xi ∈ ϕ. Accordingly, we can and will

consider N to be a random (counting) measure on B(Rd).
Throughout the paper we consider a stationary point process N , i.e. a point process whose

distribution is invariant under all translations. We assume thatN �= ∅ a.s. and that the intensity

λN := E[N([0, 1]d)]
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is finite. Quite often it is useful to work under the Palm probability measure PN0 of N on
(�,F ), under which PN0 (0 ∈ N) = 1, where 0 denotes the origin of R

d . The Palm theory
needed in this paper is contained in the refined Campbell theorem (see [14, Theorem 6.12] or
[2, Proposition 12.1.IV]), stating that, for any nonnegative random field {Y (x) : x ∈ R

d} that
is jointly stationary with N ,

E

[∫
h(x)Y (x)N(dx)

]
= E

[∑
x∈N

Y(x)h(x)

]
= λN E0[Y (0)]

∫
h(x) dx, (3.1)

where h : R
d → [0,∞) is measurable and E0 denotes expectation with respect to PN0 . If N is

Poisson, then N \ {0} is Poisson under PN0 . We can also use (3.1) with N replaced by some
other point process M that has finite intensity λM and that is jointly stationary with N . If we
denote the Palm probability measure associated with M by PM0 , then, for all measurable and
nonnegative functions h : N × R

d → [0,∞), we have

E

[∫
h(N − x, x)M(dx)

]
= λM EM0

[∫
h(N, x) dx

]
, (3.2)

where N − x := {y − x : y ∈ N} and EM0 denotes expectation with respect to PM0 .
More details on stationary point processes and their associated Palm probabilities can be

found in [2] and [14].

3.2. Factorial moment measures

For any ϕ ∈ N and n ∈ N we let ϕ(n) denote the set of all n-tuples (x1, . . . , xn) ∈ ϕn with
pairwise different entries. Identify ϕ(n) with the measure

ϕ(n)(B) :=
∑

(x1,...,xn)∈ϕ(n)
1((x1, . . . , xn) ∈ B) (B ∈ B((Rd)(n))),

where 1(·) denotes the indicator function, and define the nth factorial moment measure of a
point process N , on such a set B, by

α(n)(B) := E

[ ∑
(x1,...,xn)∈N(n)

1((x1, . . . , xn) ∈ B)
]

= E(N(B1)[N(B1)− 1] · · · [N(B1)− n+ 1]) if B = (B1)
(n) with B1 ∈ B(Rd).

Now assume that N is a stationary point process satisfying

α(n)(dx1, . . . , dxn) ≤ cndx1 · · · dxn (n ∈ N) (3.3)

for some c > 0. A Poisson process, for instance, has α(n)(dx1, . . . , dxn) = λnNdx1 · · · dxn for
all n ∈ N. For b > 0, let C(b) be the set of all ϕ ∈ N containing a descending chain x1, x2, . . .

such that b ≥ |x1| ≥ |x2 − x1| ≥ |x3 − x2| ≥ · · · , and let Cn(b) denote the set of all ϕ ∈ N
containing points x1, x2, . . . , xn such that b ≥ |x1| ≥ |x2 − x1| ≥ · · · ≥ |xn − xn−1|. These
sets Cn(b) are decreasing and, by inspection, P(C(b)) ≤ limn→∞ P(Cn(b)). Since clearly

P(N ∈ Cn(b)) ≤ E

[∫
· · ·

∫
1(b ≥ |x1| ≥ |x2 − x1| ≥ · · · ≥ |xn − xn−1|)N(dx1 · · · dxn)

]
,
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we find, from (3.3) and a change of variables, that

P(N ∈ Cn(b)) ≤ αn
∫

· · ·
∫

1(b ≥ |x1| ≥ |x2 − x1| ≥ · · · ≥ |xn − xn−1|) dx1 · · · dxn

= cn

n! (b
dκd)

n

→ 0 as n → ∞
(recall that κd is the volume of the unit ball in R

d ). Hence, P(N ∈ C(b)) = 0, which in
turn implies (see also the proof of Theorem 4.1) thatN a.s. contains no descending chain. This
argument does not require any independence properties ofN ; it will be generalized in Section 4.

3.3. Nonlattice-type processes

A finite or countably infinite set ϕ ⊆ R
d is called nonlattice if, for any m ≥ 2 and any

mutually different points x1, . . . , xm ∈ ϕ, the equality∑
1≤i<j≤m

cij |xi − xj | = 0,

for some integers cij (1 ≤ i < j ≤ m), implies that cij = 0 for all i < j .
The nonlattice property of a set is not affected by shifts. Hence, the point processN is P-a.s.

nonlattice if and only if it is PN0 -a.s. nonlattice. In this case, we simply call N nonlattice.

Lemma 3.1. Assume that d ≥ 2 and that N is a stationary point process satisfying

α(n)(dx1, . . . , dxn) � dx1 · · · dxn (n ∈ N) (3.4)

i.e. assume that, for each n ∈ N, α(n) is absolutely continuous with respect to the Lebesgue
measure on R

nd . Then N is nonlattice.

Proof. Let m ≥ 2 and cij ∈ R, 1 ≤ i < j ≤ m, and assume that cij �= 0 for at least one
pair (i, j). Consider the event A that there is an m-tuple (x1, . . . , xm) ∈ N(m) such that∑

1≤i<j≤m
cij |xi − xj | = 0.

It is enough to prove that P(A) = 0. Obviously, the indicator of A can be bounded from above
by ∑

(x1,...,xm)∈N(m)
1(f (x1, . . . , xm) = 0),

where

f (x1, . . . , xm) :=
∑

1≤i<j≤m
cij |xi − xj |. (3.5)

Taking expectations and using (3.4), we obtain

P(A) ≤
∫

· · ·
∫

1(f (x1, . . . , xm) = 0)gm(x1, . . . , xm) dx1 · · · dxm

for some nonnegative measurable function gm. Lemma 3.2 now implies the assertion.
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Lemma 3.2. Assume that d ≥ 2. Let m ∈ N, with m ≥ 2, and let cij ∈ R, 1 ≤ i < j ≤ m,
with cij �= 0 for at least one pair (i, j). Then the set of all (x1, . . . , xm) ∈ (Rd)m satisfying∑

1≤i<j≤m cij |xi − xj | = 0 has (md)-dimensional Lebesgue measure 0.

Proof. Define a function f : (Rd)m → R by (3.5). This function is smooth on the set A of
all (x1, . . . , xm) ∈ (Rd)m satisfying xi �= xj for any i �= j . A simple calculation shows that
the gradient f ′(x) of f is given by

f ′(x1, . . . , xm) =
(∑
i �=1

a1i
x1 − xi

|x1 − xi | , . . . ,
∑
i �=m

ami
xm − xi

|xm − xi |
)

(x1, . . . , xm ∈ A),

where

aij :=
{
cij if i < j,

cji if i > j.

Let {An}, n ∈ N, be a sequence of compact sets whose union is A. Then

{(x1, . . . , xm) ∈ A : f ′(x1, . . . , xm) �= 0}

=
∞⋃
n=1

{
(x1, . . . , xm) ∈ An : |f ′(x1, . . . , xm)| ≥ 1

n

}

is a countable union of compact sets. By the implicit function theorem, each of these sets
is a smooth (md − 1)-dimensional manifold and, hence, has Lebesgue measure 0. Since the
complement of A clearly has Lebesgue measure 0, it now suffices to show that

{(x1, . . . , xm) ∈ A : f ′(x1, . . . , xm) = 0}

has Lebesgue measure 0. To this end, we assume without loss of generality that a21 = c12 �= 0.
Then∫

· · ·
∫

1((x1, . . . , xm) ∈ A)1(f ′(x1, . . . , xm) = 0) dx1 · · · dxm

≤
∫

· · ·
∫

1((x1, . . . , xm) ∈ A)1
(
a21

x2 − x1

|x2 − x1| = −
m∑
i=3

a2i
x2 − xi

|x2 − xi |
)

dx1 · · · dxm.

Using polar coordinates t ≥ 0 and u ∈ Sd−1, such that x1 − x2 = tu, for the inner integral we
find that the latter volume equals

dκd

∫
· · ·

∫ ∫ ∫
1((x2 + tu, x2, . . . , xm) ∈ A)1

(
a21u =

m∑
i=3

a2i
x2 − xi

|x2 − xi |
)

× td−1ν(du) dtdx2 · · · dxm,

where ν denotes the spherical Lebesgue measure on the unit sphere Sd−1. Since d ≥ 2, the
measure ν is diffuse, which in turn implies that the inner integral above vanishes.
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3.4. Descending chains: a stochastic example

Following a proposal by Venkat Anantharam and Francois Baccelli (personal communica-
tion, Oberwolfach, December 2003) we construct a stationary, ergodic nonlattice point process
N , with finite intensity, that has descending chains. The essential idea is to piece together, via a
zigzag path, segments of point processes located on the elements of two independent unit-rate
Poisson line processes X1 and X2, respectively consisting of vertical and horizontal lines, so
that the intersections of any line of X1 or X2 with the lines of the other constitute a Poisson
process with unit rate.

Independently label each line L ∈ (X1 ∪ X2) to be of type k ∈ N with probability pk .
On each such line L of type k, we place points �L according to a (generic) one-dimensional
point process �k . The latter is assumed to have ‘regenerative cycles’ of points, for which the
length of the cycles isDk and the intensity of points (per unit length) is λk ≈ 3k (meaning that
there are about λkDk points in each cycle). Within a cycle, the points constitute a finite strictly
descending chain in the positive direction of the axis to which the line is parallel; the points are
almost equally spaced, separated by a distance arbitrarily slightly different from 1/λk .

The zigzag paths are constructed by switching from a line of type k − 1 to a line of type k
at the points of intersection of Lk−1 ∈ X1, say, with Lk ∈ X2, subject to the condition that
the points on Lk closest to the intersection are located within the first half of a cycle. Then,
because the line processes are Poisson with unit rate, the length τk of such a zigzag segment on
Lk is exponentially distributed with P(τk > x) = exp(− 1

2pk+1x).
Each zigzag path is used to construct a set of points consisting, roughly speaking, of the

members of�Lk on the segment; the provisos are that, of the points on an Lk segment, not the
first but the second point after the intersection with Lk−1 is included, and the point closest to
Lk+1 is the last point included. These provisos ensure that at least one point fromLk is included,
that the distance from the last point of Lk to the first point of Lk+1 in the neighbourhood of the
intersection lies between 1/λk+1 and (4/λ2

k+1 + ( 1
2 )

2/λ2
k)

1/2, and that this upper bound is less
than 1/λk when λk < (

√
3/4)λk+1.

Thus, when this condition holds, points on successive segments of each zigzag path are part
of a longer (finite) descending chain as long as each segment of length τk , say, is contained
within the same regenerative cycle of�Lk , where the intersection betweenLk−1 andLk occurs.
To ensure this, it is enough that τk < 1

2Dk . Consequently, an infinite descending chain of points
exists and follows on from the points on some line LK if, for all segments {τk, k ≥ K} it holds
that τk < 1

2Dk . These events are mutually independent and, by the Borel–Cantelli lemma, we
have

P(τk < 1
2Dk for all k > K , for some finite K) = 1

if and only if ∑
k≥1

exp(− 1
2pk+1

1
2Dk) < ∞.

To ensure this, it is enough that pk+1Dk = O(k).
Finally, the points N of �L over all possible lines L constitute a planar point process of

finite intensity if and only if
∑
k pkλk < ∞.

Setting λk = 3k is enough to satisfy the intersection property, and setting pk = c/k2λk ,
where 1/c = ∑

k 1/k2λk , ensures that the planar point process has finite intensity. Choosing
Dk=k/pk = k33k/c ensures that the critical sum resulting from the Borel–Cantelli lemma is
finite.
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It is routine that a stationary Poisson line process exists, and it is likewise routine to construct
stationary deterministic regenerative cycles of points �k . These can be given arbitrarily small
perturbations to ensure that they are still composed of finite descending chains of points as
described, and that the resulting union point processN satisfies the absolute continuity condition
(3.4). The example is now constructed as claimed.

4. Absence of descending chains

In this section, we introduce assumptions on the stationary point process N that ensure that
N a.s. has no descending chain. To make our assumptions more flexible, we use a random field
ξ = {ξx, x ∈ R

d} that takes values in some measurable space (E, E) and is jointly stationary
with N . In more detail, we assume that ξ is a random element in a subset W of the path space
ER

d
, which is invariant under shifts and equipped with a σ -field W rendering all mappings

w �→ w(x), x ∈ R
d , measurable. As in [16], assume that (x, w) �→ Txw is measurable

with respect to both B(Rd)⊗ W and W , where the shift operator Tx : W → W is defined by
Txw(y) := w(x + y), y ∈ R

d . The shift operators on N are denoted by the same symbols and
are defined by Txϕ := ϕ − x. Joint stationarity of N and ξ then requires that the distribution
of the pair (TxN, Txξ) does not depend on x ∈ R

d .
Our basic assumption on N is that

λN PN0 ((N \ {0}, ξ) ∈ ·) = E

[
µ(N, ξ)

∫
1((N ∪ ϕ, ξ) ∈ ·)Q0(dϕ)

]
, (4.1)

where µ is a nonnegative measurable function on N × W and Q0 is a probability measure
on (N,N ). We call µ the Gibbs–Cox component and Q0 the cluster component of N . This
framework encompasses some examples that we will discuss in more detail in Section 7:

(i) When Q0({∅}) = 1 and µ(N, ξ) does not depend on N , N is a Cox process.

(ii) When Q0({∅}) = 1 and µ(N, ξ) does not depend on ξ , N is a Gibbs process.

(iii) When µ ≡ λN , N is a Poisson cluster process.

(iv) When µ ≡ λN and Q0({∅}) = 1, N is a stationary Poisson process.

We next formulate additional assumptions on µ and Q0. Let

e(x, ϕ,w) := µ(Txϕ, Txw) ((x, ϕ,w) ∈ R
d × N × W)

and, for any x1, . . . , xn ∈ R
d , define

en(x1, . . . , xn) := e(x1, N, ξ)e(x2, N ∪ {x1}, ξ) · · · e(xn,N ∪ {x1, . . . , xn−1}, ξ).
Assume that

E[en(x1, . . . , xn)] ≤ cn (n ∈ N, x1, . . . , xn ∈ R
d) (4.2)

for some sequence (cn). Our assumption on Q0 is that∫
ϕ(n)(dx1, . . . , dxn)Q0(dϕ) ≤ bndx1 · · · dxn (n ∈ N) (4.3)
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for some sequence (bn). Our main result requires the following assumptions on the sequences
(cn) and (bn):

lim sup
n→∞

n
√
cn

n
< ∞, (4.4)

lim sup
n→∞

n
√
bn

n
< ∞. (4.5)

Theorem 4.1. Let assumptions (4.1), (4.2), and (4.3) be satisfied and assume, moreover, that
(4.4) and (4.5) hold. Then N is descending chain free.

Our proof of this theorem uses the following two lemmas, which are of a combinatorial
nature. The first lemma is easily proved by induction.

Let dn ≡ dn(i1, . . . , in) denote the number of distinct partitions of n distinguishable objects
into ir subsets of size r (r = 1, . . . , n). Then, elementary combinatorics (see, e.g. Theorem
13.2 of [1]) give

dn(i1, . . . , in) = n!
(
∏n
r=1 ir !)(

∏n
r=1 (r!)ir )

. (4.6)

The following lemma is readily checked.

Lemma 4.1. The numbers dn(i1, . . . , in) ∈ N, where i1 + 2i2 + · · · + nin = n and n ∈ N0,
are uniquely determined by d0 = 1, d1(1) = 1, d2(2, 0) = d2(0, 1) = 1, and the recurrence
relation

dn+1(i1, . . . , in+1) = 1(i1 ≥ 1)dn(i1 − 1, i2, . . . , in)

+ 1(i2 ≥ 1)(i1 + 1)dn(i1 + 1, i2 − 1, i3, . . . , in)

+ 1(i3 ≥ 1)(i2 + 1)dn(i1, i2 + 1, i3 − 1, i4, . . . , in)

+ · · · + 1(in+1 ≥ 1)(in + 1)dn(i1, . . . , in−1, in + 1). (4.7)

Recursion (4.7) generates partitions of the set {1, . . . , n} and can be taken as another argument
for the validity of (4.6).

Consider a sequence xj , j ∈ N, of nonnegative numbers satisfying
∑∞
j=1 xj /j ! < ∞, and

let

Gn := 1

n!
∑

i1+2i2+···+nin=n
dn(i1, . . . , in)x

i1
1 · · · xinn (n ∈ N0).

By Theorem 13.1 of [1],

exp

( ∞∑
j=1

xj z
j

j !
)

=
∞∑
j=0

Gjz
j (|z| ≤ 1).

We need a related result to compute the power series with general coefficient

Fn :=
∑

i1+2i2+···+nin=n

(
i1 + · · · + in

i1, . . . , in

)(
x1

1!
)i1

· · ·
(
xn

n!
)in

(n ∈ N0).

Note that Gn ≤ Fn.
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Lemma 4.2. Let (an) be sequence of nonnegative numbers with
∑∞
n=1 an < 1. Define Fn, for

n ∈ N0, by F0 = 1 and

Fn :=
∑

i1+2i2+···+nin=n

(
i1 + · · · + in

i1, . . . , in

)
a
i1
1 · · · ainn (n ∈ N).

Then,

∞∑
n=0

Fn =
(

1 −
∞∑
n=1

an

)−1

. (4.8)

Proof. For any k ∈ N and n ∈ N0, define

F (k)n :=
∑

i1+2i2+···+kik=n

(
i1 + · · · + ik

i1, . . . , ik

)
a
i1
1 · · · aikk ,

with F (k)0 := 1. Note that

F (k)n = Fn (n ≤ k). (4.9)

We claim that

akF
(k)
n−k+1 + · · · + a1F

(k)
n = F

(k)
n+1 (n ∈ N0), (4.10)

with F (k)i := 0 for i < 0. For k = 1, we have F (1)n = an1 , implying (4.10). The general case
can be proved by induction on k, in a straightforward calculation. By letting

F (k,m) :=
m∑
n=0

F (k)n (m ∈ N0) and F (k) :=
∞∑
n=0

F (k)n

and summing (4.10) over n ∈ {0, . . . , m}, we obtain

(ak + · · · + a1)F
(k,m) ≥ F (k,m) − 1,

meaning that F (k,m) ≤ (1 − a1 − · · · − ak)
−1. Letting m → ∞ gives

F (k) ≤ (1 − a1 − · · · − ak)
−1 < ∞.

Therefore, we can sum (4.10) over all n ∈ N0 to obtain

F (k) = (1 − a1 − · · · − ak)
−1 < ∞.

By (4.9),
k∑
n=0

Fn =
k∑
n=0

F (k)n ≤ (1 − a1 − · · · − ak)
−1,

meaning that

∞∑
n=0

Fn ≤
(

1 −
∞∑
n=1

an

)−1

. (4.11)
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On the other hand, Fn ≥ F
(k)
n for any n ≥ k, implying that

∞∑
n=0

Fn ≥
∞∑
n=0

F (k)n = F (k) = (1 − a1 − · · · − ak)
−1.

Together with (4.11), this implies the assertion.

If
∑∞
n=1 an < ∞ then (4.8) applies with an replaced by anzn and Fn by Fnzn for all n ≥ 0

and all sufficiently small z > 0. Now, setting a1 = · · · = ap = 1 and an = 0 for n > p, and
appealing to (4.10), yields the pth-order Fibonacci sequence (up to a shift of the index). Then
Lemma 4.2 is a classical result in combinatorics (see, e.g. [9, p. 270]). If

∑∞
n=1 an ≤ 1 then

the generating function version of (4.8) is standard in renewal theory.

Proof of Theorem 4.1. For any a and b such that 0 ≤ a < b, let C(a, b) denote the set
of all ϕ ∈ N containing a descending chain (xn) such that limn→∞ |xn+1 − xn| ≥ a and
b ≥ |x1| ≥ |x2 − x1|. We will show that there exists an ε0 > 0 such that P(N ∈ C(a, b)) = 0
whenever b − a ≤ ε0. For such a and b, we then also have P(N ∈ C1(a, b)) = 0, where
C1(a, b) is the set of all ϕ ∈ N containing a descending chain (xn) such that b ≥ |x1| ≥
a + 1

2 (b − a) ≥ |x2 − x1| and limn→∞ |xn+1 − xn| ≥ a. Stationarity then implies that even
P(N ∈ C2(a, b)) = 0, where C2(a, b) is the set of all ϕ ∈ N containing a descending chain
(xn) such that a+ 1

2 (b− a) ≥ |x2 − x1| and limn→∞ |xn+1 − xn| ≥ a. This is clearly enough
to conclude that N a.s. has no descending chain.

To prove that P(N ∈ C(a, b)) = 0 for sufficiently small b − a, we start by noting that

1(ϕ ∈ C(a, b)) ≤
∫

1(a ≤ |x| ≤ b)1(Txϕ \ {0} ∈ C(a, |x|))ϕ(dx) (ϕ ∈ N). (4.12)

Using this, assumption (4.1), and the refined Campbell theorem (3.1), gives

P(N ∈ C(a, b)) ≤ E

[∫
1(a ≤ |x1| ≤ b)1(Tx1N \ {0} ∈ C(a, |x1|))N(dx1)

]

= E

[∫∫
1(a ≤ |x1| ≤ b)1(N ∪ ϕ1 ∈ C(a, |x1|))µ(N, ξ)Q0(dϕ1) dx1

]
.

(4.13)

Using (4.12), (3.1), and (4.1) again gives

P(N ∈ C(a, b)) ≤ E

[∫∫∫∫
1(a ≤ |x2| ≤ |x1| ≤ b)1(N ∪ ϕ2 ∪ Tx2ϕ1 ∈ C(a, |x2|))

× e2(0,−x2)Q0(dϕ2)Q0(dϕ1) dx2dx1

]

+ E

[∫∫∫
1(a ≤ |x2| ≤ |x1| ≤ b)1((N ∪ Tx2ϕ1) \ {0} ∈ C(a, |x2|))

× e1(−x2)ϕ1(dx2)Q0(dϕ1) dx1

]
. (4.14)

https://doi.org/10.1239/aap/1127483738 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483738


Descending chains SGSA • 621

Iterating further yields

P(N ∈ C(a, b))
≤ E

[∫
· · ·

∫
1(a ≤ |x3| ≤ |x2| ≤ |x1| ≤ b)1(N ∪ ϕ3 ∪ Tx3(ϕ2 ∪ Tx2ϕ1) ∈ C(a, |x3|))

× e3(0,−x3,−x2 − x3)Q0(dϕ3)Q0(dϕ2)Q0(dϕ1) dx3dx2dx1

]

+ E

[∫
· · ·

∫
1(a ≤ |x3| ≤ |x2| ≤ |x1| ≤ b)1(N ∪ Tx3(ϕ2 ∪ Tx2ϕ1) \ {0} ∈ C(a, |x3|))

× e2(−x3,−x2 − x3)(ϕ2 ∪ Tx1ϕ1)(dx3)Q0(dϕ2)Q0(dϕ1) dx2dx1

]

+ E

[∫
· · ·

∫
1(a ≤ |x3| ≤ |x2| ≤ |x1| ≤ b)1(N ∪ ϕ2 ∪ Tx3(Tx2ϕ1 \ {0}) ∈ C(a, |x3|))

× e2(0,−x2 − x3) dx3ϕ1(dx2)Q0(dϕ2)Q0(dϕ1) dx1

]

+ E

[∫
· · ·

∫
1(a ≤ |x3| ≤ |x2| ≤ |x1| ≤ b)

× 1((N ∪ Tx3(Tx2ϕ1 \ {0})) \ {0} ∈ C(a, |x3|))
× e1(−x2 − x3)(Tx2ϕ1 \ {0})(dx3)ϕ1(dx2)Q0(dϕ1) dx1

]
, (4.15)

where we have also used the joint stationarity of N and ξ . Replacing the second indicator
function on the right-hand side of (4.13) by 1 gives

P(N ∈ C(a, b)) ≤ κd(b − a)c1,

where we have used (4.2) for n = 1. Similarly, from (4.14) we find that

P(N ∈ C(a, b)) ≤ κ2
d (b − a)2

2
(c2 + c1b1),

where we have used both (4.3) and (4.2). From (4.15), we obtain (via a change of variables)

P(N ∈ C(a, b)) ≤ κ3
d (b − a)3

3! (c3 + 3c2b1 + c1b2).

In general, we have

P(N ∈ C(a, b)) ≤ κnd (b − a)n

n!
∑

i1+2i2+···+nin=n
dn(i1, . . . , in)ci1+···+inb

i2
1 · · · binn−1, (4.16)

for some coefficients dn(i1, . . . , in) ∈ N0. A careful check of the above recursion shows that
the latter coefficients satisfy equation (4.7) and, hence, are given by (4.6). By assumption (4.4)
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and Stirling’s formula, there exists a c > 0 such that cn ≤ cnn! for all n ∈ N. Using this in
(4.16) yields

P(N ∈ C(a, b)) ≤ κnd (b − a)n
∑

i1+2i2+···+nin=n

(
i1 + · · · + in

i1, . . . , in

)
ci1+···+inf i21 · · · f inn−1

=
∑

i1+2i2+···+nin=n

(
i1 + · · · + in

i1, . . . , in

)

× (cκd(a − b))i1(cκ2
d (a − b)2f1)

i2 · · · (cκnd (a − b)nfn−1)
in , (4.17)

where fi := bi/(i + 1)!, i = 1, . . . , n − 1. By assumption (4.5) and Stirling’s formula, the
series

∑∞
n=1 fnz

n converges for all sufficiently small z > 0. Hence, we can apply Lemma 4.2
to conclude that the right-hand side of (4.17) is the nth summand of a convergent series for
sufficiently small b − a.

We have shown that P(N ∈ C(a, b)) = 0 whenever b − a ≤ ε0, where ε0 > 0 depends
on c and the sequence (bn) but not on a and b. As we have seen above, this implies that N is
descending chain free.

Remark 4.1. Our proof shows that a stationary point process N satisfying assumption (4.1)
has the property (3.4). Lemma 3.1 then implies that N is nonlattice.

5. Absence of percolation in the lilypond model

In this section, we fix a stationary point process N �= ∅ with finite intensity and as-
sume that N is descending chain free. We consider the a.s. uniquely defined lilypond model
{(x, R(N, x)) : x ∈ N} based on N . Recall that if the union set⋃

x∈N
BR(N,x)(x)

contains an unbounded connected component, then the lilypond model percolates.

Theorem 5.1. If the point process N is a.s. descending chain free and nonlattice, then there is
a.s. no percolation in the lilypond model defined by N .

From now on we assume that the hypotheses of Theorem 5.1 are satisfied.

Lemma 5.1. Each point of N a.s. has exactly one smaller grain-neighbour.

Proof. Assume that ϕ ∈ N has no descending chain. We can and do assume that the lilypond
model {(x, R(x)) : x ∈ ϕ}, based on ϕ, has been generated by the matching procedure in the
proof of Proposition 2.1. If x ∈ ϕ has more than one smaller grain-neighbour then, for two
different grain-neighbours y and z of x, one of the following statements must hold:

(i) R(x) = R(y) = R(z) and, thus, 2R(x) = |x − y| = |x − z|;
(ii) R(x) = R(y) and R(z) < R(x), so 1

2 |x − y| = R(x) = |x − z| − R(z); or

(iii) R(y) < R(x) and R(z) < R(x), so R(x) = |x − y| − R(y) = |x − z| − R(z).

In the first case, we have |x−y| = |x−z|. In the other two cases, we are using Corollary 2.1.
In case (ii), there must also exist an n ∈ N such that z ∈ ϕn and x /∈ ϕn. By construction,
R(z) is a finite linear combination of the distances |w − w′|, for w,w′ ∈ ϕn, with rational
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coefficients. In case (iii), there must exist an n ∈ N such that y, z ∈ ϕn and x /∈ ϕn with R(y)
and R(z) linear functions (with rational coefficients) of the distances |w −w′|, for w,w′ ∈ ϕn.
If ϕ is nonlattice, none of these three cases is possible.

Exactly as in [5], we now conclude the following result.

Lemma 5.2. Each cluster of N a.s. contains at most one doublet.

Proof of Theorem 5.1. To show that there are no infinite clusters containing a doublet,
consider the set of all doublets pertaining to infinite clusters. From each such doublet, choose
one point according to some deterministic, shift-invariant rule. This choice yields a stationary
point process M with a finite intensity λM . Let i ∈ N. To each x ∈ M attach a finite point
process�i(x) containing exactly i points of the cluster C(N, x), again using some deterministic
and shift-invariant rule. Then, for all i ∈ N, {(x, �i(x)) : x ∈ M} is a marked point process
that is jointly stationary with N . Furthermore, by Lemma 5.2, �i(x) ∩ �i(y) = ∅ for all
different points x, y ∈ M . In an abuse of notation, we write �i(x) ≡ �i(N, x) and note that
�i(N, x) = �i(N − x, 0)+ x. Let PM0 denote the Palm probability measure associated with
M . Using the refined Campbell theorem (3.2), we conclude that, for all measurable B ⊆ R

d ,

E[N(B)] ≥ E

[∑
x∈M

�i(B, x)

]

= E

[∑
x∈M

�i(N − x, 0, B − x)

]

= λM

∫
EM0 [�i(B − x, 0)]dx

= λM EM0

[∫∫
1(y + x ∈ B)�i(dy, 0) dx

]
= |B|dλM EM0 [�i(Rd , 0)] = |B|d iλM,

where, recall, EM0 denotes expectation with respect to PM0 . Hence,

λN ≥ iλM (i ∈ N). (5.1)

This is possible only if λM = 0, i.e. P(M = ∅) = 1.
It remains to prove that there are no infinite clusters without a doublet. However, by

Lemma 5.1, such an infinite cluster would contain a descending chain, contradicting our
assumptions on N .

By Lemma 2.2, each finite cluster contains a doublet. This proves the following corollary.

Corollary 5.1. Each cluster of N a.s. is finite and contains exactly one doublet.

6. Mutual-nearest-neighbour matching

Let N0 := {ϕ ∈ N : 0 ∈ ϕ} and N0 := N ∩ N0. Following [16] we call an N0-measurable
mapping π : N0 → R

d a point map if π(ϕ) ∈ ϕ for each ϕ ∈ N0. Such a point map is bijective
if, for every ϕ ∈ N0, x �→ π(ϕ − x)+ x is a bijection of ϕ. In this case,

PN0 (N − π(N) ∈ ·) = PN0 (N ∈ ·),
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as proved in [11] and Theorem 9.4.1 of [16]. A bijective point map can therefore be used
to shift the typical point of N to another point of N without biasing the Palm distribution.
Thorisson ([4], [16]) has asked whether there exists a point map π satisfying

PN0 (π(N) �= 0) = 1. (6.1)

For a Poisson process N , the above question has been resolved in [4] and [8]. The general
case was treated in [6]. Below we use mutual-nearest-neighbour matching (see [4] and [8]) to
give a straightforward construction of a bijective point map satisfying (6.1); in the absence of
descending chains this matching is successful.

Let N′ denote the set of all ϕ ∈ N such that |x −y| �= |y − z| whenever x, y, and z are three
different points of ϕ; all nonlattice sets ϕ belong to N′. Pick ϕ ∈ N′. Let Sϕ ⊆ ϕ denote the
set of all those points of ϕ that are not members of a pair of mutually nearest neighbours, and
inductively define

Sn+1ϕ := S(Snϕ) (n ∈ N0),

with S0ϕ := ϕ. Set

S∞ϕ :=
∞⋂
n=1

Snϕ and N∞ := {ϕ ∈ N′ : S∞ϕ = ∅},

and define a point map π as follows. If ϕ ∈ N0 \N∞ then set π(ϕ) := 0, while if ϕ ∈ N0 ∩N∞
then π(ϕ) ∈ ϕ \ {0} is the uniquely determined point satisfying {0, π(ϕ)} ∈ Snϕ \ Sn+1ϕ for
some (uniquely determined) n ∈ N0. (Any point of Snϕ has a uniquely determined nearest
neighbour.) It is convenient to call π the mutual-nearest-neighbour map.

Theorem 6.1. Let N be a stationary, descending-chain-free point process on R
d with finite

positive intensity, and assume that P(N ∈ N′) = 1. Then the mutual-nearest-neighbour map
π is a bijective point map satisfying (6.1).

Proof. The set N′ is shift invariant. Furthermore, the mappings Sn (n ∈ N0 ∪ {∞}) are shift
covariant, in the sense that

Sn(ϕ − x) = Snϕ − x (x ∈ R
d , ϕ ∈ N′).

In particular, N∞ is a shift-invariant set. Let ϕ ∈ N0 and define the mapping hϕ : ϕ → ϕ by
hϕ(x) := π(ϕ \ {x})+ x. By definition and the above shift invariance, hϕ ◦ hϕ is the identity
on ϕ. Hence, hϕ is a bijection.

It remains to show that

PN0 (N ∈ N∞) = P(N ∈ N∞) = 1. (6.2)

Let ϕ ∈ N′ and set ψ := S∞ϕ. As in the proof of Proposition 2.1, it follows that ψ cannot
contain any pairs of mutually nearest neighbours (in ψ). Assume now that, in addition, ψ
contains infinitely many points. Then, as in the proof of Proposition 2.1, it follows that ψ (and,
hence, ϕ) must have a descending chain. Define S∞ϕ := ϕ whenever ϕ /∈ N′. Then S∞N
is a stationary point process. The event {S∞N �= ∅} is therefore a.s. contained in the event
that S∞N contains infinitely many points. Since P(N /∈ N′) = 0, it follows that the event
{S∞N �= ∅} is a.s. contained in the event that N contains a descending chain. This shows that
(6.2) holds.
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7. Examples

7.1. Cox processes

A Cox process N is a Poisson process with a random intensity measure ξ (see, e.g. [2]).
Formally, N is defined by requiring that the conditional distribution of N given ξ is that of
an inhomogeneous Poisson process with intensity measure ξ . Then N and ξ have the same
intensity measure, i.e. E[N(·)] = E[ξ(·)]. Now assume, in addition, that

ξ(B) =
∫
B

ξx dx (B ∈ B(Rd)) (7.1)

for some stationary, nonnegative random field {ξx : x ∈ R
d}. Then we may assume that N and

{ξx} are jointly stationary. The intensity of N is given by λN = E[ξ0], which must be assumed
finite and positive.

Theorem 7.1. Let N be a Cox process directed by the stationary random measure ξ , as in
(7.1), and assume that

lim sup
n→∞

n
√

E[ξn0 ]
n

< ∞.

Then N is descending chain free.

Proof. Using the fundamental properties of a Poisson process, it is easy to prove that (4.1)
holds with µ(N, ξ) = ξ0 and Q0({∅}) = 1. By recursive use of the Hölder inequality and
stationarity of {ξx}, we have

E[ξx1 · · · ξxn ] ≤ E[ξn0 ] (n ∈ N).

Hence, (4.2) holds with cn := E[ξn0 ]. The assertion is now implied by Theorem 4.1.

7.2. Poisson cluster processes

Here, we assume that
N =

⋃
x∈Nc

(Nx + x).

is a Poisson cluster process (see, e.g. [2]) based on a Poisson process Nc of parents or cluster
centres with finite intensity λc and a family {Nx : x ∈ Nc} of point processes on R

d that are
conditionally independent, given Nc. The conditional distribution of Nx given Nc is assumed
to be the same for all x ∈ Nc and is denoted by Q. Then N is a stationary point process. We
further assume that the mean number λ′

c of cluster points,

λ′
c :=

∫
(cardψ)Q(dψ),

is positive and finite, implying that the clusters are a.s. finite sets. Then N is a stationary point
process with intensity

λN = λcλ
′
c.

We can write Q in the form

Q = p0δ∅ +
∞∑
n=1

pn�n,
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where {pn, n = N0} is the cluster size distribution and the�n are probability measures concen-
trated on {ϕ ∈ N : ϕ(Rd) = n}. For any m ∈ N, we write m[n] := m(m− 1) · · · (m− n+ 1)
for n ≤ m.

Theorem 7.2. Let N be a Poisson cluster process as described above, and assume that∫∫
1((x2 − x1, . . . , xk+1 − x1) ∈ ·)ϕ(k+1)(d(x1, . . . , xk+1))�n(dϕ)

≤ Mkn[k+1]
∫

· · ·
∫

1((x1, . . . , xk) ∈ ·) dx1 · · · dxk (n ≥ k + 1) (7.2)

for someM > 0. Assume, moreover, that the cluster size distribution {pn, n ∈ N0} has a finite
exponential moment, i.e.

∞∑
n=1

pnz
n < ∞ for some z > 1. (7.3)

Then N is descending chain free.

Proof. It is well known (see, e.g. [2]) that (4.1) is satisfied by

Q0(·) := 1

λ′
c

∫ [∑
x∈ψ

1(Txψ \ {0} ∈ ·)
]

Q(dψ)

and µ ≡ λN . A straightforward computation shows that (4.3) holds with

bn = Mn

λ′
c

∞∑
m=n+1

pmm
[n+1].

To check (4.5), we take q ∈ (0, 1) and compute

∞∑
n=1

∞∑
m=n+1

bnq
n

n! ≤ 1

λ′
c

∞∑
m=2

mpm

m−1∑
n=0

(
m− 1

n

)
qnMn

= 1

λ′
c

∞∑
m=2

mpm(1 + qM)m−1.

Taking q sufficiently small that 1+qM < z, where z is as in assumption (7.3), the above series
converges and (4.5) follows. The assertion is now implied by Theorem 4.1.

We can always assume (see [2]) that

�n(·) = P({Xn,1, . . . ,Xn,n} ∈ ·) (n ∈ N)

for some symmetrically distributed random vectors Xn,1, . . . ,Xn,n. Since, for n ≥ k,∫∫
1((x1, . . . , xk) ∈ ·)ϕ(k)(d(x1, . . . , xk))�n(dϕ) = n[k] P((Xn,1, . . . ,Xn,k) ∈ ·),

(7.2) is a reasonable weak assumption. A Neyman–Scott process (see [2]), for instance, has
this property, if the individual cluster points have a bounded density.
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7.3. Gibbs processes

The last class of point processes we discuss consists of Gibbsian point processes. A
mathematical (rather than a physicist’s) definition requires the existence of a measurable
function e : R

d × N → [0,∞) satisfying

E

[∑
x∈N

f (x, N \ {x})
]

= E

[∫
e(x, N)f (x, N) dx

]
, (7.4)

for all measurable functions f : R
d × N → [0,∞) (see, e.g. [15]). Theorem 4.1 specializes as

follows.

Theorem 7.3. Let N be a Gibbs process as described above, and assume that e(x, ϕ) =
µ(Txϕ) for some measurable function µ : N → [0,∞). Assume, moreover, that there exists a
c > 0 such that

E[e(x1, N)e(x2, N ∪ {x1}) . . . e(xn,N ∪ {x1, . . . , xn−1})] ≤ cnn!
for any n ∈ N and any x1, . . . , xn ∈ R

d . Then N is descending chain free.

An interesting class of Gibbsian point processes with bounded µ can be defined in terms of
a pair potential with a hard-core radius r0 > 0. In this case,

µ(ϕ) =
∏
y∈ϕ

θ(|y|) (ϕ ∈ N), (7.5)

where θ : R → [0,∞) is measurable and satisfies θ(r) = 0 for all r ≤ r0. The pair
potential U(r) := − ln θ(r) satisfies U(r) = −∞ for r ≤ r0 and is further assumed to
satisfy |U(r)| ≤ U0(|r|) for all r ≥ r0, where U0 : [r0,∞) → [0,∞) is nonincreasing and
satisfies

∫ ∞
r0
rd−1U0(r) dr < ∞ and limr→∞ rdU0(r) = 0. By an existence result of [13], we

can now actually assume that N is a stationary Gibbs process with µ given by (7.5). It follows
immediately, from a fundamental local absolute continuity property of Gibbs processes (see,
e.g. [13] and [15]), that P(N ∈ Nh) = 1, where Nh denotes the set of all those ϕ ∈ N whose
points are at least a distance r0 apart from each other. It has been shown in [10] (in the case
d = 2) that the absolute value of

∑
y∈ϕ U(|y|) is bounded in ϕ ∈ Nh by a constant that only

depends on the function U0. By (7.4), the intensity of N can be written as

λN = E[µ(N)].
Hence, we indeed have λN < ∞. Since

µ(ϕ) = exp

(
−

∑
y∈ϕ

U(|y|)
)
> 0 (ϕ ∈ Nh),

we have λN > 0. Therefore, we may assume (after conditioning) that P(N �= ∅) = 1.
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