
The Knowledge Engineering Review (2022), 37, e9, pp. 1–46
doi:10.1017/S0269888922000042

RESEARCH ARTICLE

A scalable species-based genetic algorithm for
reinforcement learning problems
Anirudh Seth1,2 , Alexandros Nikou2 and Marios Daoutis2

1KTH, Brinellvägen 8, Stockholm 114 28, Sweden;
E-mail: aniset@kth.se
2Ericsson, Torshamnsgatan 23, Stockholm 164 83, Sweden;
E-mails: alexandros.nikou@ericsson.com, marios.daoutis@ericsson.com

Received: 26 August 2021; Revised: 17 June 2022; Accepted: 28 June 2022

Abstract
Reinforcement Learning (RL) methods often rely on gradient estimates to learn an optimal policy for control
problems. These expensive computations result in long training times, a poor rate of convergence, and sample
inefficiency when applied to real-world problems with a large state and action space. Evolutionary Computation
(EC)-based techniques offer a gradient-free apparatus to train a deep neural network for RL problems. In this work,
we leverage the benefits of EC and propose a novel variant of genetic algorithm called SP-GA which utilizes a
species-inspired weight initialization strategy and trains a population of deep neural networks, each estimating the
Q-function for the RL problem. Efficient encoding of a neural network that utilizes less memory is also proposed
which provides an intuitive mechanism to apply Gaussian mutations and single-point crossover. The results on
Atari 2600 games outline comparable performance with gradient-based algorithms like Deep Q-Network (DQN),
Asynchronous Advantage Actor Critic (A3C), and gradient-free algorithms like Evolution Strategy (ES) and simple
Genetic Algorithm (GA) while requiring far fewer hyperparameters to train. The algorithm also improved cer-
tain Key Performance Indicators (KPIs) when applied to a Remote Electrical Tilt (RET) optimization task in the
telecommunication domain.

1. Introduction
Gardner Murphy, an influential social and personality psychologist, defined learning as something that
covers every modification in the behavior to meet the requirements of the environment (Proshansky &
Murphy, 1942). Humans and animals rely heavily on the process of trial-and-error to acquire new skills.
Experiences like learning how to walk, riding a bicycle, teaching a dog new tricks are all motivated by
performing actions that garner positive rewards (e.g., moving forward, not falling, happiness, and getting
treats). Such interactions become a significant source of knowledge about new things and uncertain
environments. Reinforcement Learning (RL) is a paradigm of Machine Learning (ML) that teaches an
agent, a learner, to make sequential decisions in a potentially complex, uncertain environment with the
fundamental goal to maximize its overall reward.

Exponential growth in computational power, custom-developed Application Specific Integrated
Circuit (ASIC) (Barr, 2007), Tensor Processing Units (TPUs)1 combined with the availability of enor-
mous training datasets has accelerated training workloads and led to an unprecedented surge of interest
in the topic of Deep Reinforcement Learning (DRL), especially in domains like telecommunications

1https://cloud.google.com/tpu.

Cite this article: A. Seth, A. Nikou and M. Daoutis. A scalable species-based genetic algorithm for reinforcement learning
problems. The Knowledge Engineering Review 37(e9): 1–46. https://doi.org/10.1017/S0269888922000042

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial
re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the reused or adapted article
and the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042
https://orcid.org/0000-0003-3762-2578
https://orcid.org/0000-0003-0401-6897
https://cloud.google.com/tpu
https://doi.org/10.1017/S0269888922000042
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888922000042&domain=pdf
https://doi.org/10.1017/S0269888922000042

2 Anirudh Seth et al.

(Nikou et al., to appear; Luong et al., 2019; Yajnanarayana et al., 2020), networking (Kavalerov et al.,
2017; Luong et al., 2019), game-playing agents (Bellemare et al., 2013; Mnih et al., 2015; Silver et al.,
2016; Brockman et al., 2016), robotic manipulations (Abbeel et al., 2006; Kalashnikov et al., 2018),
and recommender systems (Zheng et al., 2018; Munemasa et al., 2018).

1.1. Problem
Deep Q-Network (DQN) (Mnih et al., 2015) uses Neural Networks (NNs) as function approximators
to estimate the Q-function, it does so by making enhancements to the original Q-learning algorithm
by employing an experience replay buffer and a separate target network that is updated less frequently.
Actor-critic algorithms like Asynchronous Advantage Actor Critic (A3C) utilize Monte Carlo samples to
estimate the gradients and then learn the parameters of the policy using gradient descent. Revised vari-
ants of these algorithms have been published over the past few years, which have improved performance
on several complex problems and industry standard benchmarks (Lillicrap et al., 2015; van Hasselt et al.,
2016; Wang et al., 2016; Silver et al., 2017). However, all of these approaches entail expensive com-
putations, such as calculating gradients and backpropagation, to train neural networks. Training such
models take several hours, even multiple days (Mnih et al., 2016; Mania et al., 2018), to obtain satisfac-
tory results, mainly when applied to problems that have a very large state space. Some other drawbacks
of these algorithms include the sensitivity to the different hyperparameters, poor sample efficiency (Yu,
2018), and limited parallelizability.

Recent publications, notably from OpenAI (Salimans et al., 2017) and UberAI (Conti et al., 2018),
exhibited the use of Evolutionary Computation (EC) to train deep neural networks for RL problems. The
combined use of EC and RL offers several advantages. These gradient-free methods are more robust to
the issues of dense and sparse rewards and are also more tolerant to longer time horizons. The inherent
design of such algorithms makes them well suited for distributed training which has shown significant
speedup of overall training time (Salimans et al., 2017; Conti et al., 2018).

1.2. Research question
The research questions we are looking to address in the current work are:

1. How effective are gradient-free evolutionary-driven methods, such as variants of Genetic
Algorithms (GAs), in training deep neural networks for RL problems with a large state space?
How do they compare to gradient-based algorithms in terms of performance and training time?

2. To what extent can evolution-based RL algorithms be scaled? Are the gains worth the extra
number of workers?

3. How effective are evolution-based methods when applied to RL problems in different domains
like the optimization of Remote Electrical Tilt (RET) in telecommunications?

1.3. Contribution
In this work, a novel species-based GA that trains a deep neural network for RL specific problems
is proposed. The algorithm which is model-free, gradient-free only utilizes simple genetic operators
like mutation, selection, recombination, and crossover for training. A memory efficient encoding of
the neural network is presented which simplifies the application of genetic operators and also reduces
bandwidth requirement making this approach highly scalable.

1.4. Purpose
The key benefits of using EC-based techniques for training neural networks are the simplicity of
implementation, a faster rate of convergence due to distributed training, and the reduced number of
hyperparameters. Population-based methods, if implemented efficiently, are massively scalable due to

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 3

their inherent design and can achieve a significant parallel speedup. The reduced training time makes
them well suited for RL problems that require frequent retraining and for those that require multiple
policies. Since the method is gradient-free, it does not suffer from known issues of exploding, vanishing
gradients and is particularly well suited for non-differentiable domains (Cho et al., 2014; Xu et al., 2016;
Liu et al., 2018). Some additional advantages of these black-box optimization techniques include: the
improved exploration (Conti et al., 2018) due to their stochastic nature and the invariance to the scale of
rewards (sparse/dense) which is something that has to be addressed explicitly in current state-of-the-art
methods.

Our work can also be combined with existing Markov Decision Process (MDP)-based methods to
develop a hybrid approach. The use of EC-based training for neural networks can also be extended to
supervised learning tasks. Lastly, neuroevolution and its application to RL is thought to be one step
toward artificial general intelligence, which is a topic of significant interest to researchers all over the
world.

1.5. Ethics and sustainability
A recent research study (Strubell et al., 2019) highlighted that training a deep learning model can gener-
ate over 600 000 pounds of CO2 emissions. In comparison, an average Swedish person generates around
22 000 pounds2 of CO2 emissions(as of 2020) per year. These numbers, when compared, are pretty
concerning. Deep learning models for RL rely on specialized hardware like Graphics Processing Units
(GPUs) and TPUs which are not only expensive but also consume significant amount of power (Jouppi
et al., 2017). The long training times (Mnih et al., 2015; Mnih et al., 2016; van Hasselt et al., 2016)
makes the matter much worse. GPUs require an efficient cooling system and maintenance, or else it can
thermal throttle, which adversely effects its efficiency and life.

The algorithm proposed in this work does not compute gradients and does not perform back-
propagation, both of which are computationally expensive tasks. Lack of gradients means that low
precision older hardware and only Central Processing Units (CPUs)s can be used as workers during
training. Although a parallel implementation utilizes multiple workers, this is well compensated by the
significant reduction of training time as evidenced in the experiments. This approach can also benefit
researchers and organizations that do not have access to specialized hardware and cloud-based instances.

1.6. Delimitations
The work aims not to break the records on the Atari 2600 benchmarks but to serve as a proof of concept
and explore the potential of a novel approach.

The experiments rely on two open-source libraries, gym3 for the environments used for benchmarking
and rllib4 for the reference implementation of DQN, A3C, and ES. The exact replication of the results
is dependant on the specific versions of these libraries.

Due to limited resources and time constraints, the same hyperparameters are used for all Atari 2600
games and a single run is performed. Training is limited to a maximum of 25 million training frames on
16 games—some chosen at random while others were chosen from the publication Deep Neuroevolution
(Conti et al., 2018).

2. Background
2.1. Reinforcement learning
RL is inherently different from supervised tasks where labeled samples containing both inputs and
targets are available for training. For control problems that involve interaction with an entity or an

2http://www.swedishepa.se/Environmental-objectives-and-cooperation/Swedish-environmental-work/Work-areas/Climate/
How-can-I-reduce-my-carbon-footprint-/.

3https://gym.openai.com/.
4https://docs.ray.io/en/master/rllib.html.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

http://www.swedishepa.se/Environmental-objectives-and-cooperation/Swedish-environmental-work/Work-areas/Climate/How-can-I-reduce-my-carbon-footprint-/
http://www.swedishepa.se/Environmental-objectives-and-cooperation/Swedish-environmental-work/Work-areas/Climate/How-can-I-reduce-my-carbon-footprint-/
https://gym.openai.com/
https://docs.ray.io/en/master/rllib.html
https://doi.org/10.1017/S0269888922000042

4 Anirudh Seth et al.

Figure 1. Interaction of an agent with the environment at a time step t. Image credits (Sutton & Barto,
2018)

environment, obtaining samples that are both representative and correct for all situations is often
unrealistic. RL tackles this problem by allowing a goal-seeking agent to interact with an uncertain
environment. This agent is responsible for maintaining a balance between exploration and exploitation
to build a rich experience which it uses as a memory to make better decisions progressively.

A RL system can be characterized by the following elements:

• Policy: The agent interacts with an environment at discrete time steps t= 0, 1, 2, 3, The
policy is a rule that guides the agent on what actions (at) to take. It does so by creating a
mapping from states (st), a perceived representation of the environment, and possible actions.
Policies can either be deterministic, usually denoted by μ, at =μ(st), or they can be stochastic,
which are usually denoted by π , at ∼ π(· | st), representing the probability of taking an action
at a particular state.

• Rewards: are responses from the environment. They represent the immediate and intrinsic
appeal of taking a particular action in a specific state.

• Value function: is the maximal expected reward that can be accumulated over the future, start-
ing from a particular state. This takes into account the long-time desirability of the state, which
makes it different from rewards that provide an immediate response.

• Model: It represents the system dynamics of the environment. The presence of a model can
help the agent make better predictions and learn faster.

The agent interacts with the environment in a sequence of time steps. At each time step, it observes
a representation of the environment, that is, its state st ∈ S , and then decides to take action at ∈A by
following a policy. As a consequence of its action, the agent receives an immediate reward from the
environment, rt, and transitions to the next state, st+1. The agent’s objective is to learn a policy to maxi-
mize its cumulative reward over a time horizon. This fixed horizon is also known as a trajectory (τ) or
an episode.

τ = s0, a0, r1, s1, a1, r2, s2, a2, r3, . . . (1)

This interaction can be seen in Figure 1.

2.1.1. Markov decision process
The elements of an Reinforcement Learning (RL) problem, as described in Section 2.1 can be formalized
using the Markov Decision Process (MDP) framework (Puterman, 1994; Boutilier et al., 1999). Markov

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 5

Decision Process (MDP) can efficiently model the interactions between the environment and the agent
by defining a tuple 〈S , A, P , R〉, where:

• S represents the finite set of states, st ∈ S with dimensionality N , that is, |S| =N. Recall, a
state is a distinctive characteristic of the environment or the problem being modeled.

• A represents the finite set of actions, at ∈Awith dimensionality K , that is, |A| =K. Each action
at is used as a control to interact with the environment at time t. A set of available actions at a
particular state s is denoted by A(s), where A(s)⊆A.

• P : S ×A× S→ [0, 1] is the stochastic transition function, where p (s′ | s, a), also denoted as
pa

s,s′ is the probability of transitioning to state s′ by taking action a at state s. These transition
probabilities can also be stationary, that is, they are independent of time t.

p
(
s′ | s, a

)= pa
s,s′ = P

{
st+1 = s′ | st = s, at = a

}
. (2)

For this transition function to represent a proper probability distribution the following properties must
hold:

p
(
s′ | s, a

)≥ 0 and p
(
s′ | s, a

)≤ 1 (3)
∑
s′∈S

p
(
s′ | s, a

)= 1 (4)

Since MDPs are controlled Markov chains (Markov, 1906; Markov, 2006), the distribution of state at
time t+ 1 is independent of the past given the state at time t and the action performed by the agent.

P
[
st+1 = s′ | st, at, st−1, at−1, . . .

]= P[st+1 = s | st, at = a] (5)

• R : S ×A× S→R is the state reward function. It is a scalar value, r(s, a, s′), also denoted
as ra

s,s′ , which is awarded to the agent for transitioning from state s to s′ by performing an
action a.

r
(
s, a, s′

)=Ra
s,s′ =E

{
Rt+1 | st = s, at = a, st+1 = s′

}
. (6)

Alternatively, rewards can also be defined as R : S× A→R where a reward is awarded for
taking an action in a state.

r(s, a)= ts,a =E{Rt+1 | st = s, at = a} . (7)

2.1.2. Policies and optimality criteria
In the previous section, we have defined a mathematical formalism for RL problems using an MDP.
To formally determine the expected return, Gt that is, objective that the policy seeks to optimize, two
classes of MDPs are discussed:

• Finite Horizon : Given a fixed time horizon of T, the objective is to find a sequential decision
policy π , that maximizes the expected return until the end of the time horizon. If we represent
the sequence of rewards received after time t, by rt+1, rt+2, rt+3, . . ., then the cumulative reward
is simply:

Gt
.= rt+1 + rt+2 + rt+3 + · · · + rT (8)

• Infinite Horizon—Discounted rewards : Given an endless time horizon T =∞, the objective
is to find a sequential decision policy, π that maximizes the expected discounted return.

Gt
.= rt+1 + λrt+2 + λ2rt+3 + · · · =

∞∑
l=0

λlrt+l+1 (9)

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

6 Anirudh Seth et al.

where λ is a parameter, 0≤ λ< 1, which discounts the future rewards, the rewards received
after l time steps are worth λl−1 times their original value. The discounting of rewards also
ensures that the expected return converges. The following recursive relation between the
rewards of successive time steps is the key result used in several RL algorithms.

Gt
.= rt+1 + λrt+2 + λ2rt+3 + λ3rt+4 + · · ·
= rt+1 + λ

(
rt+2 + λrt+3 + λ2rt+4 + · · ·

)
= rt+1 + λGt+1 (10)

2.1.3. Value functions and Bellman equation
A stochastic policy π , is a mapping from a state s ∈ S to action a ∈A(s). It represents the probability of
taking action a in state s, π (a | s). The state-value function, or simply value function, for a state s under
a policy π is denoted as vπ (s). It is the expected reward that can be accumulated starting with state s and
following the policy π thereafter. For an infinite horizon model as described in the previous section, the
state-value function can be formalized as:

vπ (s)
.=Eπ [Gt | St = s]=Eπ

[∞∑
l=0

λlRt+l+1 | St = s

]
(11)

Similarly, state-action-value function Q : S× A→R is defined as the expected reward that can be
gathered starting with state s, taking an action a and following the policy π thereafter.

qπ (s, a)
.=Eπ [Gt | St = s, At = a]=Eπ

[∞∑
l=0

λlRt+l+1 | St = s, At = a

]
(12)

A recursive formulation of Equation (11) which relates the value function of a state (vπ (s)) to the
value function of its successor states (vπ (s′)) is a fundamental result utilized throughout RL. It is known
as the Bellman equation (Bellman, 1958):

vπ (s)
.=Eπ [Gt | St = s]

=Eπ [rt+1 + λGt+1 | St = s]

=
∑

a

π (a | s)
∑

s′

∑
r

p
(
s′, r | s, a

)[
r+ λEπ

[
Gt+1 | St+1 = s′

]]

=
∑

a

π (a | s)
∑
s′ ,r

p
(
s′, r | s, a

)[
r+ λvπ

(
s′
)]

(13)

A policy π is considered better than π ′ iff vπ (s)≥ vπ ′ (s) for all states s ∈ S . The policy which is better
than all is known as the optimal policy: π∗, its value function, denoted by v∗, can be formulated as:

v∗(s)
.=maxπ vπ (s), for all s ∈ S . (14)

The optimal state-action-value function, denoted by q∗, can be formulated as:

q∗(s, a)
.=max

π
qπ (s, a) (15)

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 7

Figure 2. Workflow for model-based learning techniques

The Bellman optimality equation declares that the value function of a state under the optimal policy
is the expected return received from the ‘best (greedy)’ action in that state.

v∗(s)= max
a∈A(s)

qπ∗ (s, a)

=max
a

Eπ∗ [Gt | St = s, At = a]

=max
a

Eπ∗ [rt+1 + λGt+1 | St = s, At = a]

=max
a

E[rt+1 + λv∗(St+1) | St = s, At = a]

=max
a

∑
s′ ,r

p
(
s′, r | s, a

)[
r+ λv∗

(
s′
)]

.

(16)

Similarly, the bellman optimality equation for q∗, can be formulated as:

q∗(s, a)=E

[
rt+1 + λmax

a′
q∗

(
St+1, a′

) | St = s, At = a
]

=
∑
s′ ,r

p
(
s′, r | s, a

)[
r+ λmax

a′
q∗

(
s′, a′

)] (17)

2.2. RL algorithms
Model-based RL algorithms rely on the availability of the transition and reward function. The critical
component of such techniques is ‘planning.’ The agent can plan and make predictions about its possible
options and use it to improve the policy (Figure 2).

A major challenge of these techniques is the unavailability of the ground truth model, resulting in a
bias where the agent performs poorly when tested in the real environment. In this work, we primarily
focus on model-free RL.

Model-free methods don’t require a model and primarily rely on ‘learning’ the value functions
directly.

2.2.1. Dynamic programming
When the model for the problem is known, dynamic programming (Bellman, 1954), a mathematical
optimization technique, can be utilized to learn the optimal policy. Generalized Policy Iteration (GPI)
is such an approach, and it uses an iterative two-step procedure to learn the optimal policy.

1. Policy evaluation: The first step evaluates the state-value function vπ using the recursive
formulation in Equation (13).

2. Policy improvement: The second step uses the value function to generate an improved policy
π ′ ≥ π using a greedy approach formulated in Equation (17).

Since the improved policy π ′ is greedy in actions to the current policy, that is, π ′(s)=
arg maxa∈A qπ (s, a)

qπ (s, π ′(s))= qπ (s, arg max
a∈A

qπ (s, a))

=max
a∈A

qπ (s, a)≥ qπ (s, π (s))= vπ (s)
(18)

this iterative process is guaranteed to converge to the optimal value (Sutton & Barto, 2018).

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

8 Anirudh Seth et al.

Figure 3. GPI iterative process for optimal policy

2.2.2. Monte Carlo techniques
Monte Carlo techniques estimate the value functions without the need of system dynamics of
the environment making it a model-free method. They rely on complete episodes to approximate
the expected return, Gt of a state. Recall, the value function, vt(s)=E[Gt|St = s]. In an episode,
s0, a0, r1, s1, a1, r2, s2, a2, r3, . . ., the occurrence of a state s is known as the visit to s. First-Visit Monte
Carlo algorithm estimates the value function as the average of the returns (Gt) following the first visits to
s whereas Every-Visit Monte Carlo algorithm estimates it as the average of the returns following every
visit to s.

The optimal policy is then evaluated using the same GPI explained previously. The schematic is
shown in Figure 3.

2.2.3. Temporal-difference methods
Temporal Difference (TD) methods are model-free. Unlike MC methods, where the agents wait until
the end of the episode for the final return to estimate the value functions, TD methods rely on an esti-
mated final return, rt+1 + λv(st+1) known as the TD target. The state-value function and state-action-value
function are estimated at every step using the below formulation:

v(st)← v(st)+ α(rt+1 + λv(st+1)− v(st)) (19)

q(st, at)← q(st, at)+ α(rt+1 + λq(St+1, at+1)− q(st, at)) (20)

where α is a hyperparameter called the learning rate, which controls the rate at which the value gets
updated at each step. This technique is called bootstrapping because the target value is updated using
the current estimate of the return (rt+1 + λv(st+1)) and not the exact return, Gt.

2.2.4. Policy gradient
The methods discussed so far estimate the state-value, state-action-value functions respectively to learn
what actions to take to maximize the overall return. Policy gradient consists of a family of methods that
learn a parameterized policy without computing these value functions. A stochastic policy, parameter-
ized with a set of parameters, θ ∈Rd, can be represented as, π (a | s, θ)= p(At = a | St = s, θ t = θ), that
is, the probability of taking an action at given state with a set of parameters θ at time t.

The parameters are learned by computing the gradient of an objective function, J(θ), a scalar quantity
that measures the performance of the policy. The goal of these methods is to maximize the performance
by updating the parameters of the policy using stochastic gradient ascent (Bottou, 1998) as

θt+1 = θt + α∇θJ(πθ)|θt
(21)

where ∇θJ(πθ) ∈Rd is an estimate whose expectation is equivalent to the gradient of the policy’s
performance, known as policy gradient.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 9

Figure 4. Architecture for actor-critic methods (Sutton & Barto, 2018)

2.2.5. Actor-critic methods
They consist of algorithms that rely on estimating the parameters of the value functions (state-value or
state-action-value function) concurrently with the policy. The two components include:

1. Actor: is responsible for the agent’s policy, that is, it is used to pick out which action to perform.
The underlying objective is to update the parameters of the policy using Equation (21) guided
by the estimates from the critic as the baseline.

2. Critic: is responsible for estimating the agent’s value functions. The objective is to update the
parameters, φ, of the state-value function, v(s; φ), or the state-action-value function, q(s, a; φ)
by computing the TD error, δt as

δt = rt+1 + λv(st+1)− v(st) (22)

Figure 4 shows the working of an actor-critic method.

2.3. Artificial neural networks
Artificial Neural Networks (ANNs), often referred to as NNs, were first proposed several decades ago
(Fitch, 1944). The formulation of these methods is heavily inspired by the human brain, a highly intricate
organ that is made up of over 100 billion neurons (Herculano-Houzel, 2009). Each neuron is a special-
ized nerve cell that transmits electrochemical signals to other neurons, gland cells, muscles, etc., which
further perform specialized tasks. With such an interconnected network of neurons, our brain is able to
carry out quite complex tasks. This mechanism is what ANNs are based on.

2.3.1. Mathematical model
A NN is a computational model that consists of an input layer, hidden layers (any number), and an output
layer. Each layer consists of several artificial neurons, the fundamental units of the network, which define
a function on the inputs. Any network that uses several hidden layers (usually more than 3) is referred

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

10 Anirudh Seth et al.

Figure 5. Activation of a single neuron in the neural network

Figure 6. Forward propagation in an artificial neural network with a single hidden layer

to as a Deep Neural Network (DNN), and the paradigm of ML that deals with DNN is known as Deep
Learning (DL) (Goodfellow et al., 2016).

In a feed-forward network, the interconnections between the nodes, that is, the neurons, do not form
a cycle. Network topologies where the connections between neurons include a directed graph over a
temporal sequence are known as Recurrent Neural Networks (RNNs). In this work, we primarily focus
on a feed-forward network which is trained by performing a forward pass, also referred as forward
propagation and a subsequent backward pass, also known as backpropagation.

Forward Propagation: When training a NN, the forward pass is the calculation phase, sometimes
referred to as the evaluation phase. The input signals are forward propagated through all the neurons
in each network layer in a sequential manner. The activation of a single neuron is shown in Figure 5,
where the input signals x1, x2 . . . xn are first multiplied by a set of weights, wi,j, and then combined with
a bias term, bj to obtain a pre-activation signal, zj. The bias is usually utilized to offset the pre-activation
signal in case of an all-zero input; at times, this can alternatively be seen as an additional weight that is
applied to an input, that is, a constant 1.

An activation function, gj is then applied to zj to obtain the final output signal of the neuron. The
process is then repeated across all neurons of each layer one by one until the final output is received.
Figure 6 shows the forward propagation in a NN with a single hidden layer of 3 neurons. The final output,
xk, is the prediction made by the NN given the input. This completes the forward pass of the network.

Backpropogation: When a neural network is created, the parameters, θ including the weights and
biases, are often initialized randomly or else sampled from a distribution. The prediction of the NN
from the forward pass is compared with the true output, computing an error, E, using a loss function.
The resultant scalar value indicates how well the parameters of the NN perform the specific task.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 11

Figure 7. Backpropagation of gradients by application of chain rule

Training a NN involves adjusting the parameters of network θ , by first computing the derivative of
the loss function and then using that information to update the parameters in the direction where the
error is reduced. This is called gradient descent. Formally, the parameters are updated as:

θ t+1
L = θ t

L − α
∂E

∂θ t
L

(23)

where α is the learning rate. The term ∂E
∂θ t

L
represents the partial derivative of the error with respect to the

parameters of a layer L. These gradients can be computed by applying chain rule (shown in Figure 7)
and involves the gradients of subsequent neurons and layers. Repeated application of chain rule can be
used to calculate these gradients at every layer, all the way from the final layer, by navigating through
the network backward, hence the name backpropogation (Rumelhart et al., 1986). This is a particular
case of Automatic Differentiation (Rall, 1981).

A cost function is another name for a loss function when applied to either the entire training data or
a smaller subset known as the batch or mini-batch. Some commonly used cost functions include mean
squared error, mean absolute error, cross-entropy, hinge loss, Kullback-Leibler divergence (Kullback &
Leibler, 1951) etc.

2.4. Activation Function and Weight Initialization
Neural Network (NN) with at least one hidden layer can serve as universal function approximators
(Cybenko, 1989). A NN without an activation function acts like a linear regressor, where the output
is a linear combination of its inputs, which restricts its overall learning capacity. An activation function
is often used to introduce nonlinearity in the network, which enables it to model much more evolved and
complex inputs like images, videos (Ma et al., 2018), audio (Purwins et al., 2019), text (Radford et al.,
2019), etc. Some of the widely used nonlinear activation functions are shown in Figure 8.

The initialization of the network parameters, primarily the weights and biases of the different layers,
plays a critical role when training a neural network. Situations where the activation output and the
gradients explode (i.e., become significantly large) or vanish (i.e., become significantly small) due to
these parameter values can significantly affect the convergence of the NN as highlighted in Sousa (2016).
Some of the widely used weight initialization strategies and their properties are summarized below:

• Normal: The values for the parameters are drawn from a normal distribution, N (
μ, σ 2

)
,

where μ is the mean, and σ 2 is the variance. The probability distribution function for normal
distribution is:

f (x)= 1

σ
√

2π
e−

1
2(

x−μ
σ)

2

(24)

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

12 Anirudh Seth et al.

Figure 8. Commonly used activation functions, f(x) and their derivatives, f ′(x) for x ∈ [− 5, 5]

• Uniform: The values for the parameters are drawn from a uniform distribution, U (a, b), where
a is the lower bound and b is the upper bound for the distribution. The probability distribution
function for continuous uniform distribution is:

f (x)=
{

1
b−a

for a≤ x≤ b,

0 for xb
(25)

• Xavier: This is also known as Glorot initialization (Glorot & Bengio, 2010) and overcomes the
problem of vanishing, exploding gradients by adjusting the variance of the weights. Xavier uni-
form initialization samples the weight matrix, W , between the layer j and j+ 1 from a uniform
distribution.

U (− a, a), where a= gain×
√

6

nj + nj+1

(26)

The parameter gain is an optional scaling factor and, n is the number of neurons of the respective
layer. Xavier normal initialization draws samples from a normal distribution.

N (
μ, σ 2

)
, where μ= 0, σ 2 = gain×

√
2

nj + nj+1

(27)

• Kaiming: This is also known as He initialization (He et al., 2015b), and is well suited for NN
with asymmetric and nonlinear activation functions, for example, ReLU, Leaky-ReLU, ELU,
etc. Kaiming uniform initialization samples the weight matrix, W , between the layer j and j+ 1
from a uniform distribution.

U (− a, a), where a = gain×
√

3

fan_mode
(28)

The parameter gain is an optional scaling factor, and fan_mode is the number of neurons of
the respective layer. fan_mode= nj+1 preserves the magnitude of the variance for the weights
during the backward pass whereas, fan_mode= nj preserves it in the forward pass. Kaiming

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 13

Figure 9. Evolutionary computation has its roots within computer science, artificial intelligence and
evolutionary biology

normal initialization draws samples from a normal distribution.

N (
μ, σ 2

)
, where μ= 0, std= gain√

fan_mode
(29)

2.5. Evolutionary computation
EC draws inspiration from nature and utilizes the same concepts to solve computational problems.
This family of algorithms has its root spread out in computer science, artificial intelligence as well
as evolutionary biology, Figure 9.

EC belongs to a class of population-based optimization techniques where a set of solutions are gen-
erated and iteratively updated through genetic operators. A new generation of solutions is produced by
stochastically eliminating ‘less fit’ solutions and introducing minor random variations in the popula-
tion. At a high level, it is simply adapting to the changes within the environment by means of small
random changes. The combined use of EC and DL has led to very auspicious results on several complex
engineering tasks and drawn great academic interest (Salimans et al., 2017; Conti et al., 2018).

EC consists of several meta-heuristic optimization algorithms, some of which are explained in the
following subsections.

2.5.1. Genetic algorithm
GAs, first developed in 1975 (Holland, 1992a), is a widely used class of evolutionary algorithms
(Mitchell, 1996) that takes inspiration from Charles Darwin’s theory of evolution (Darwin, 1859). It
is meta-heuristic-based optimization technique that follows the principle of ‘survival of the fittest’.

The key components of any GA (Mitchell, 1996) are:

• Population: is the subset of all possible solutions to a problem. Every GA starts with an ini-
tialization of a set of solutions that become the first population. Each solution, individual from
the population, is known as a chromosome which consists of several genes.

• Genotype: is the representation of the individuals of a population in the computation space.
This is done to ensure efficient processing and manipulation by the computing system.

• Phenotype: is the actual representation of the population in the space of solutions.
• Encoding and Decoding: For more straightforward problems, the genotype and the phenotype

may be the same. However, complex problems rely on a translation mechanism to encode a
phenotype to a genotype and a decoder for the reverse task.

• Fitness function: is a tool to measure the performance of an individual on a specific problem.
• Genetic operators: are tools utilized by the algorithm to produce a new set of solutions from

the existing ones.

The algorithm starts by initializing a set of solutions, the population, which is also known as a gener-
ation. At each iteration, the fitness function is used to evaluate the performance of the entire population.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

14 Anirudh Seth et al.

Figure 10. Workflow of a simple genetic algorithm

The solutions with higher fitness (Baluja & Caruana, 1995) are stochastically selected as the parents of
the current generation. Genetic operators are applied to the parents to generate the next generation. This
process is repeated until the required level of fitness is achieved. The complete workflow of a simple
GA is shown in Figure 10.

The genetic operators are fundamental components of this algorithm that guides it toward a solution.
The widely used genetic operators are summarized in the following subsections.

Selection Operators: The selection operator uses the fitness values as a measure of performance and
picks a subset of the population as the current generation’s parents. A common strategy is to assign
a probability value proportional to the fitness scores, with the goal that more fit individuals have a
higher chance of being selected. Some other strategies include random selection, tournament selection,
and roulette wheel selection, proportionate selection, steady-state selection, etc. (Haupt & Haupt, 2003).
The best performing individual from the current generation is selected and carried to the next generation
without any alterations. This strategy is known as elitism (Baluja & Caruana, 1995) and ensures that
performance does not decrease over iterations.

Crossover operator: This operator picks a pair from the solutions shortlisted by the selection operator.
The selected pair then mates and generates new solutions, which are known as the offspring. Each off-
spring is produced stochastically and contains genetic information, that is, features from either parent
which is analogous to the crossover of genes in biology.

Single-point crossover is a commonly used crossover operator. A random crossover point is picked
on the encoding of both parents. The offspring are then produced by recombination of the left partition
of one parent with the right split of the other and vice versa. The same strategy can be extended to more
than one crossover point. Figure 11 shows single-point crossover and two-point crossover between two
binary encoded parents. In situations, where the encoding is an ordered list (Larranaga et al., 1999),
the solutions generated with the methods mentioned above, may be invalid. To overcome such issues,
specialized operators like order crossover (Larranaga et al., 1996), cycle crossover (CX) (Larranaga
et al., 1999) and partially mapped crossover have been published.

Mutation operator: The mutation operator makes small arbitrary changes to an individual or its
encoded representation which promotes the algorithm to explore the search space and find new solu-
tions. As a result, the diversity within the population is improved during successive generations, and the
algorithm can avoid getting stuck at local minima. Some commonly used mutation operators include
Gaussian operators, uniform operators, bit flip operators (binary encoding), and shrink operators (Da
Ronco & Benini, 2014). These operators are applied with a relatively small probability known as the
mutation rate and have a few hyperparameters that can be tuned to specific problems.

2.5.2. Evolution strategies
Evolution Strategy (ES) is a black-box optimization technique that draws inspiration from the theory
of natural selection, a process in which individuals from a population adapt to the changes of the
environment.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 15

Figure 11. Single-point crossover (top) and two-point crossover (bottom) between two parents to
generate offsprings for the next generation

Consider a 2D function, f : R2→R, for which the gradient, ∇f : Rn→R
n, can not be computed

directly, and we wish to obtain the parameters x∗ and y∗, such that f (x∗, y∗) is the global maximum. The
ES algorithm starts with a set of solutions for the problem, which are sampled from a parameterized
distribution. An objective function then evaluates each solution and returns a single value as a fitness
metric which is then utilized to update the parameters of the distribution.

Gaussian Evolution Strategy: One of the simplest techniques is to sample from a normal distribution,
N (
μ, σ 2

)
, where μ is the mean and σ 2 is the variance. For the function defined above, one could start

withμ= (0, 0) and some constant, σ = (σx, σy). After one generation, the mean can be updated to the best
performing solution from the population. Such a naive approach is only applicable to simple problems
and also prone to getting stuck at local minima since it is greedy with respect to the best solution at each
step of the training process.

Covariance Matrix Adaptation Evolution Strategy: The simple Gaussian strategy explained above
assumes a constant variance. In some applications, it is worthwhile to explore the search space by having
a larger variance initially and fine-tuning it later on when we are close to a good solution. Covariance-
Matrix Adaptation Evolution Strategy (CMA-ES) samples the solutions from a multivariate Gaussian
distribution. It then adapts both the mean as well as the covariance matrix from the fitness metrics of
the solutions. This algorithm is widely applicable to non-convex and nonlinear optimization problems
(Hansen & Auger, 2011), especially in the continuous domain. There is no need to tune the parame-
ters for a specific application since optimizing the parameters is incorporated within the design of this
algorithm.

Natural Evolution Strategy: Simple Gaussian ES and CMA-ES both have the identical drawback of
utilizing only the best individuals from the population and discarding all the others. At times, it might
be beneficial to incorporate the information from low-scoring individuals as well, since they contain
the vital information of what not to do. Natural Evolution Strategy (NES) (Wierstra et al., 2008) utilize
the information from the entire population to estimate the gradients, which are utilized to update the
distribution from which the solutions were sampled. For an objective function, F with parameters θ
which are sampled from a parameterized distribution pψ (θ). The algorithm’s goal is to optimize the
average objectiveEθ∼pψ [F(θ)]. The parameters of the distribution are iteratively updated using stochastic
gradient ascent. The gradient of the objective is computed as follows:

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

16 Anirudh Seth et al.

Algorithm 1: Evolution strategy for RL by OpenAI (Salimans et al., 2017)

∇ψ
(
Eθ∼pψ [F(θ)]

)=∇ψ
(∫

θ

pψ (θ) · F(θ) · dθ
)

=
∫
θ

∇ψ
(
pψ (θ)

) · F(θ) · dθ

=
∫
θ

pψ (θ) · ∇ψ
(
log pψ (θ)

) · F(θ) · dθ
=Eθ∼pψ

[∇ψ(
log pψ (θ)

) · F(θ)
]

(30)

Equation: 30 uses the same log-likelihood technique as the popular reinforce algorithm (Sutton & Barto,
2018). The expectation can be computed using Monte Carlo approximations by sampling points as
shown in Equation (31).

∇ψ
(
Eθ∼pψ [F(θ)]

)=Eθ∼pψ

[∇ψ(
log pψ (θ)

) · F(θ)
]

≈ 1

λ

λ∑
k=1

[∇ψ(
log pψ (θ)

) · F(θ)
] (31)

Evolution Strategy for RL: Researchers in Salimans et al. (2017) utilized Natural Evolution
Strategy to find the optimal parameters of a neural network for RL problems. The parameters rep-
resent the weights and biases, and the objective is the stochastic return from the environment. The
parameterized distribution, pψ (θ) is assumed to be multivariate gaussian with mean ψ and a fixed
noise of σ 2I.

θ ∼N (
ψ , σ 2I

)
equivalent to θ =ψ + σε, ε ∼N (0, I) (32)

This parametrization allows to rewrite the average objective as Eθ∼pψF(θ)=Eε∼N(0,I)F(θ + σε). Given
the revised definition of the objective function, the authors derive (Salimans et al., 2017) the gradient
of the objective function in terms of θ as

∇θEε∼N(0,I)F(θ + σε)= 1

σ
Eε∼N(0,I){F(θ + σε)ε} (33)

The gradients are approximated by generating samples of noise ε during training and the parameters are
then optimized using stochastic gradient ascent as shown in Algorithm 1.

2.5.3. Neuroevolution
Neuroevolution is a form of Artificial Intelligence (AI) that combines EC with NNs. The objective is to
either learn the topology of the NN or its parameters, that is, weights and biases by utilizing algorithms
discussed in Sections 2.5.1 and 2.5.2.

An individual within the population is a NN or its parameters—weights and biases. The trivial method
of storing a NN, as a complex data structure, in the parameter space scales poorly in memory, especially
with the increasing population size, and makes the application of genetic operators a computationally
expensive task. Hence, the need for simplified encoding of the NN.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 17

Figure 12. A simplified version of direct encoding proposed in NEAT (Stanley & Miikkulainen, 2002).
Mapping of genotype, a neural network to a phenotype, its encoding

Direct encoding: In the notable work, ’Evolving neural networks through augmenting topologies’,
NEAT (Stanley & Miikkulainen, 2002), the authors propose a direct encoding wherein the connections
between each neuron are explicitly stored with all the weights and biases, as shown in Figure 12. Such an
encoding gives a very high degree of flexibility to the network topology but has a massive search space
due to a fine granularity of the encoding. This approach is not well suited for DNN, which consists of
several hidden layers, each with thousands of neurons.

Indirect encoding: This type of encoding relies on a translation function or a mechanism that maps a
neural network to its encoded representation. Unlike, direct encoding which is a quick way to encode or
decode a neural network, this type of encoding has a processing overhead and limited granularity. Some
implementations that employ an indirect encoding include Compositional Pattern Producing Networks
(CPPNs) (Stanley, 2007), HyperNEAT (Stanley et al., 2009) and Deep Neuroevolution (Conti et al.,
2018).

2.6. Related work
Computing the Q-value for complex problems with a large state-action space using traditional tabular
RL algorithms is computationally infeasible. This led to the use of function approximations like neural
networks for estimating the Q-values (Melo et al., 2008), which is memory efficient and can also be
applied to problems with continuous state and action spaces (Van Hasselt, 2013).

The first significant breakthrough in deep reinforcement learning, the combined use of deep learn-
ing and reinforcement learning, was the introduction of DQN (Mnih et al., 2015) which incorporated
two critical components in the training process, an experience replay buffer and a separate target net-
work. The replay memory stores the agent’s experience, including the states, actions and rewards over
a few episodes and the target network is a periodically updated copy of the main network which is
used to decide what actions to perform. During training, samples are drawn from the replay memory
to remove the correlations between the observations. The combined use of these two innovative tech-
niques stabilized the learning of Q-values and achieved state-of-the-art performance on many Atari 2600
benchmarks5 .

Over the past few years, several extensions to DQN have been proposed. A known problem with
Q-learning is its tendency to overestimate the targets since it relies on a single estimator for the Q-
values. A technique called Double Q-learning (Hasselt, 2010) tries to rectify this issue by utilizing a
double estimator. An extension of DQN with double estimators, was implemented in Double DQN (van

5https://github.com/openai/atari-py.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://github.com/openai/atari-py
https://doi.org/10.1017/S0269888922000042

18 Anirudh Seth et al.

Hasselt et al., 2016). When sampling from the replay buffer as proposed in DQN, all samples, that is,
transitions were given the same significance. Research on a prioritized experience replay (Schaul et al.,
2015) that offered a higher importance to more frequent transitions resulted in improved performance
and was included in most subsequent research. A Dueling network architecture (Wang et al. 2016) with
two estimators—one for Q-values and the other for state-dependent action advantage function, was pro-
posed and shown to have better generalization properties. Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2015) combines the use of deterministic policy gradient and DQN and can be operated
on a continuous action space making its application particularly useful in robotics (Dong & Zou, 2020).

The slow rate of convergence and longer duration of training prompted the need for parallelizable
algorithms. A distributed framework for RL, Gorilla (Nair et al., 2015) was proposed by researchers
at Google which consists of several actors, all learning continuously in parallel and syncing their local
gradients with a global parameter server after a few steps. This parallelized variant of DQN outperformed
its standard counterpart on several benchmarks and reduced the training time.

Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016) is a parallelized policy gradient
method that consists of several agents, independently interacting with copies of environments in parallel.
The algorithm consists of one global network with shared parameters and uses asynchronous gradient
descent for optimization. In Asynchronous Advantage Actor Critic (A3C), each agent communicates
with the global network independently. The aggregated policy from different agents, when combined
together may not be optimal. A2C (Mnih et al., 2016) is deterministic and synchronous version of A3C,
which resolves this inconsistency by using a coordinator that ensures a synchronous communication
between agents and global network.

2.6.1. Evolution-based RL
The Q-learning-based methods try to solve the Bellman optimality equation whereas, policy gradient
algorithms consist of parameterizing the policy itself to learn the probability of taking an action in a
state. Regardless, they usually entail expensive computations, such as gradient calculations and back-
propagation, which result in very lengthy (i.e., hours to even days) training in order to obtain desirable
results, especially when solving complex problems with large state spaces (Lillicrap et al., 2015; Mnih
et al., 2015; Mnih et al., 2016).

Recently we see a surge of a number of alternative approaches to solving RL problems, including the
use of EC. These methods have been quite effective in discovering high-performing policies (Whiteson,
2012). A notable contribution is the work by OpenAI on Evolution Strategy (ES) (Salimans et al., 2017)
to train deep neural networks. ES does not calculate the gradients analytically, instead approximate the
gradient of the reward function in the parameter space using minor random tweaks. This massively
scalable algorithm, trained on several thousand workers was able to solve the 3D humanoid walking
benchmark (Tassa et al., 2012) within minutes and also outperformed several established deep rein-
forcement learning algorithms on many complex robotic control tasks and Atari 2600 benchmarks.
Collaborative Evolutionary Reinforcement Learning (CERL) (Khadka et al., 2019) is another scal-
able framework that was designed to simultaneously explore different regions of the search space and
creating a portfolio of policies, the results on continuous control benchmarks highlighted improved
sample efficiency of such approaches. Another breakthrough work by researchers at UberAI, is Deep
Neuroevolution (Conti et al., 2018), a black-box optimization technique based on principles of evolu-
tionary computation. Deep Neuroevolution utilizes a simple GA to train a convolutional neural network
that approximates the Q-function.

Results from these publications highlight improved performance and significant speedup due to dis-
tributed training (Salimans et al., 2017; Conti et al., 2018). Moreover, these gradient-free approaches
can be applied to non-differentiable domains (Cho et al., 2014; Xu et al., 2016; Liu et al., 2018) and for
training models that require low precision arithmetic—binary neural networks on low precision hard-
ware. In a subsequent paper (Conti et al., 2018), the same researchers incorporated quality diversity
(QD) (Cully et al., 2015; Pugh et al., 2016) and novelty search (NS) (Lehman & Stanley, 2008) to ES,

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 19

and proposed three different algorithms, which improved performance and also directed the exploration.
Their work also highlighted the algorithm’s robustness against a local minima.

Several population-based evolutionary algorithms have been used to train neural networks or opti-
mize their architecture (Jaderberg et al., 2017) and the hyperparameters (Liu et al., 2017), but a rather
interesting approach was proposed in Genetic Policy Optimization (GPO) (Gangwani & Peng, 2018)
algorithm which utilized imitation learning as crossover and policy gradient techniques for mutations.
The algorithm had superior performance and improved sample efficiency in comparison to known pol-
icy gradient methods. Evolutionary Reinforcement Learning (ERL) (Khadka & Tumer, 2018) is another
hybrid approach that uses a population-based optimization strategy guided by policy gradients for
challenging control problems.

3. Species-based Genetic algorithm (Sp-GA)
A typical GA (Section 2.5.1) consists of a population of individuals where each individual is a potential
solution to the problem. In the context of RL, a solution may represent a policy, a neural network that
estimates the Q-function (Mnih et al., 2015) or a neural network that predicts what action to take given
the state as an input. In this work, we propose a GA wherein each individual is a neural network that
estimates the Q-function for the specific RL problem. The algorithm initializes the population of such
neural networks from a species-based initialization routine and iteratively evolves the population to
search for the best solution. We call this algorithm Sp-GA.

3.1. Species initialization
The notion of speciation was first investigated in NEAT (Stanley & Miikkulainen, 2002), which clus-
tered neural networks with similar topologies into subclasses called species. The philosophy behind
the approach is to give sufficient time for evolution to new solutions within a smaller subset before
they compete with other species. As a result, innovation, novelty, and diversity are protected within the
population.

Sp-GA extends the concept of speciation to the weight initialization strategy of a neural network.
The initialization of weights is a critical design choice that can adversely affect the network’s rate of
convergence (He et al., 2015b; Sousa, 2016). The choice of initialization sets the starting point of the
optimization process and therefore controls the effectiveness of training. The algorithm maintains a
pool of such strategies, each having unique properties and particular advantages. When the population is
initialized, a neural network is assigned a species uniformly at random, and the weights are initialized as
per the strategy for that species. Figure 13 shows the distribution of individuals, that is, neural networks
initialized from the proposed methodology wherein five weight initialization strategies were utilized.

3.2. Algorithm hyperparameters
The proposed algorithm has the following hyperparameters:

1. Population size (N): controls the number of neural networks in the population. This is an
important parameter that controls the search space to find the solution. For more straightforward
problems like CartPole from gym environment even a small value N ≈ 50 gave good results.
For more complex problems like the ones addressed in this work, a higher number is preferred.

2. Mutation Power (σ): controls the strength of mutation, that is, the perturbations applied to the
parameters of the neural network. This operator is responsible for exploration of better solutions
in the search space. In case of Gaussian operator, it is the variance of the distribution. A small
value between 0.001 ∼ 0.003 showed promising results.

3. Fraction/Number of elites (E): control the number of neural networks shortlisted as parents
of the current generation and are responsible for producing the next generation. This parameter
is responsible for preserving the best performing solution of a generation.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

20 Anirudh Seth et al.

Figure 13. Distribution of species in a population of size 200. Each species is a unique weight
initialization strategy for neural networks

4. Mutation probability (ψ): represents the probability of using the mutation operator.
Conversely, 1-ψ is the probability of using the crossover operator.

5. Number of species (S): is the number of species spawned in the population. Each species
corresponds to a weight initialization strategy of a neural network. During initialization, each
neural network is assigned a particular species uniformly at random. The choice of initialization
sets the starting point of the optimization process and therefore controls the effectiveness of
training.

The pseudocode for Sp-GA is shown in Algorithm 2. The algorithm starts with the initialization of a
population P, neural networks, with S different species. Each network is an estimator of the Q-function
for the RL problem. The next step is to evaluate the fitness of the entire population. The fitness value
of a single neural network is estimated by calculating the cumulative return for a fixed time horizon in
the simulated environment. Once the fitness values are evaluated, a fraction of neural networks E, with
the highest scores, are selected as the parents of the current generation. The parents then generate the
offspring, using genetic operators as explained in Section 3.3.2 to form the new generation. The process
is then repeated until the stopping criteria.

3.3. Distributed Sp-GA
A unique advantage of a GA is its ability to evaluate the fitness of the individuals in parallel, making it
suitable for a distributed computation. A master-worker segregates the population into smaller subsets
which are then sent to slave workers for fitness evaluation. These slave workers can work independently
in parallel and return the scalar fitness scores back to the master-worker for the subsequent steps of the
algorithm.

Such a naive approach cannot be directly applied to Sp-GA due to several reasons. A large population
size would involve sending a lot of neural networks back and forth between workers over a network. A
typical deep neural network that is stored as a complex data structure (or an object) takes a few megabytes
of memory (Conti et al., 2018) and is not trivially serializable. This would result in a high memory and
bandwidth requirement for the communication.

Distributed Sp-GA relies on an encoding mechanism that takes inspiration from Deep Neuroevolution
(Conti et al., 2018). The encoding of a neural network scales well with memory, can be serialized and
therefore utilizes low bandwidth making it ideal for distributed training. This encoding also enables an
intuitive application of genetic operators like mutation as well as crossover which was not implemented
in the previous work (Salimans et al., 2017; Conti et al., 2018).

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 21

Algorithm 2: Species-based genetic algorithm (Sp-GA)

Figure 14. Distributed framework for Sp-GA

Figure 14 shows the distributed framework implemented in Sp-GA. The pipeline can be
summarized as:

1. The master-worker first initializes the population—a set of NNs. It is responsible for encoding
these networks and creating a mapping dictionary.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

22 Anirudh Seth et al.

Figure 15. Proposed encoding of a neural network

Figure 16. Mutation of a neural network in parameter and encoded space. θ g−1
0:w represent the parameters

of the network at g− 1 generation. θ g
0:w are obtained by utilizing a gaussian operator with σg as the

mutation power and τg as the random seed

2. During training, the master sends an encoded neural network (or a subset) to the slave
workers.

3. A slave worker decodes the encoding to produce the complete neural network, evaluate its
fitness and returns a scalar value, the fitness score, back to the master-worker.

4. Once the fitness values of the entire population are available, the subsequent steps of the
Algorithm 2 are carried out by the master-worker.

3.3.1. Model encoding
An individual from the population which is a neural network, is stored as list of tuples, as shown in
Figure 15.

The first tuple consists of a randomly selected seed utilized for initializing the model parameters,
and the second entry is the identifier for the species of the network. Every subsequent tuple consists of
another seed value and the mutation power (σ) utilized by the genetic operators for training the network
parameters.

3.3.2. Genetic operators in encoded space
The Gaussian operator is the choice for mutation in this work. Given a neural network with parameters,
θ , the Gaussian operator updates all the parameters as:

θ ′ = θ + σε (34)

where ε ∼N (0, I) and where σ is the mutation power. If a parent is selected for mutation, the encoding
of the resultant network is simply the original encoding appended with a new tuple containing the seed
and the mutation power. This process is shown in Figure 16. When needed, any encoding can be decoded
to the actual network by iteratively setting the seed and applying the Gaussian mutations.

The proposed encoding is also well suited for the application of single-point crossover as described
in Section 2.5.1. A random point on the encoded representation of the parents is chosen as the crossover
point. A new offspring is produced by merging the left and right partitions (and vice versa) of either

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 23

Table 1. Some key libraries used for the experiments

Library Version
torch 1.7.1
atari-py 0.2.6
gym 0.18.0
numpy 1.19.5
ray 1.2.0

Figure 17. Crossover of two neural networks in encoded space

parent. The resulting list represents a valid encoding of a neural network. Figure 17 shows this intu-
itive application of crossover. This approach can also be applied to neural networks with different
architectures and took inspiration from the crossover of chromosomes in genetics.

4. Implementation
4.1. Hardware and Software
The entire code was written in Python version 3.8.7. The critical libraries utilized for the implementation
are summarized in Table 1.

The development was done within a dockerized environment, and training was performed on a
Kubernetes cluster. The quota allocated to this project was limited to 50 CPUs and a memory of 200GB.
No GPU was utilized in any experiment. Reference implementations for DQN, A3C, and ES were
obtained from rllib package in the ray library.

4.2. Models
Two deep neural networks are implemented from scratch for the conducted experiments.

4.2.1. Model 1
Model 1 is used as the neural network for all Atari 2600 games. This includes Experiments 1, 2, 3, and 4.
The architecture of the model is identical to DQN (Mnih et al., 2016). The model takes the preprocessed
training frame of size 84× 84× 4 as the input and outputs the Q-value for all possible actions for that
game. There are three layers of convolution. The first convolution layer has 32 filters of size 8× 8, which
are applied with a stride of 4 and ReLU activation function. The second convolution layer has 64 filters
of size 4× 4, which are applied with a stride of 2 and ReLU activation. The last convolution layer has 64
filters of size 3× 3, which are applied with a stride of 1 and ReLU activation. The penultimate layer is
fully connected with an output of 512 neurons. The final output layer is a fully connected layer with the
output neurons equivalent to the possible actions in the game. The architecture of the model is shown
in Figure 18. The model consists of over 1.7M trainable parameters and has a size of about 6.75MB.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

24 Anirudh Seth et al.

Figure 18. Neural network used for Atari 2600 games

Figure 19. Neural network used for RET environment

4.2.2. Model 2
Model 2 is used as the neural network for the Remote Electrical Tilt (RET) simulator by Ericsson, that
is, Experiment 5. It is a feed-forward network with four fully connected layers of size 100, 50, 20, and
3 respectively. The architecture of the model is shown in Figure 19. This model has over 7500 trainable
parameters and a size of about 0.06MB.

4.3. Dataset
Gym (Brockman et al., 2016) by OpenAI is a widely used open-source library with various environments
to train and test you RL agents. Each environment is provided with the classical agent–action–
environment loop, as shown in Figure 20.

The library has a wide variety of datasets ranging from classical control problems to complex 2D and
3D robotic manipulation tasks. It also exposes its registry and API as wrappers to adapt your custom
environments, data, and models. This work relies on two such datasets—Atari 2600 games and a RET
simulator developed by researchers at Ericsson as a gym wrapped environment.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 25

Figure 20. The classical RL training loop

Figure 21. Game frames from 4 Atari 2600 games—beamrider, frostbite, qbert, spaceinvader

Figure 22. Original game frame (left) and preprocessed frame (right) using the first three steps

4.3.1. Atari 2600 games
Atari 2600 games, which are implemented in the Arcade Learning Environment (Bellemare et al., 2013)
are available on Gym. These problems are widely used for benchmarking the performance of RL algo-
rithms (Hasselt, 2010; Mnih et al., 2016; Wang et al. 2016; Salimans et al., 2017; Conti et al., 2018).
Each game consists of a range of actions, and game scores as rewards. The state of each game is the
pixel data from an image. This is also known as a game frame. Figures 21 and 22 show examples from
the game frames from four Atari 2600 games.

Gym has a collection of over 50 games. Each game is implemented as an environment in the library.
The agent is provided with the current state and a list of possible actions. Once an action is selected by
the agent, it is given a reward (positive or negative) by the model and the next state of the environment.
The interaction is repeated until the environment returns a flag indicating the termination of the game.
The technical specifications of all the games utilized in this work are available in Appendix A.1.

Data Preprocessing: Most games, have an image frame of size 210× 160× 3 pixels which puts a heavy
workload when training a NN, especially with several hidden layers. To reduce the dimensionality of
inputs, some basic preprocessing steps are applied as suggested by researchers in the implementation of
DQN (Mnih et al., 2015).

1. The game frame is first converted to a grayscale.
2. The grayscale image is down sampled to the size 84× 84.
3. The pixel values of the image are normalized between [0,1].
4. A training frame of size 84× 84× 4 is then produced by stacking 4 game frames together.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

26 Anirudh Seth et al.

Figure 23. Antennae downtilt, θt,c for cell c at time t. Source Vannella et al. (2021)

4.3.2. Remote electric tilt simulator by Ericsson
A use case of RL in telecommunications is RET optimization. For a better consumer experience and
improved (), networks rely on making some adjustments to their configurations remotely. Antenna down-
tilt is the angle of inclination between the horizontal plan the radiating beam of the antenna which
is shown in Figure 23. RET optimization is a technique to adjust the downtilt as mentioned above to
improve certain Key Performance Indicators (KPIs) defined by the network. This framework is well
suited for applying RL, and prior work using DQN has shown safe and reliable policies (Vannella et al.,
2021).

The state of the environment comprises factors like congestion, overlapping, interference, overshoot-
ing and Reference Signal Receive Power (RSRP)6. The actions include uptilt by 1 degree, downtilt by 1
degree and no tilt. After training, the simulated environment provides the overall improvement on four
metrics, the Reward KPI, good traffic, bad traffic, and RRC congestion7. The details about metrics are
proprietary, however, a positive value for each metric is an indicator of a good policy.

4.4. Evaluation metrics
The metrics used for evaluating the results from the experiments are summarized below:
Speedup: In parallel processing, this notion was established by Amdahl’s argument (Amdahl, 1967) as
the ratio of the time taken by the best sequential algorithm (fastest) (T∗S) to the time taken by a parallel
algorithm (Tp) for any computational problem. If the best sequential algorithm is not available or well
defined, a common practice is to use the time taken by the parallel algorithm with 1 processor (T1) as
its surrogate.

Sp = T∗S
Tp

≈ T1

Tp

, p is the number of processors. (35)

Linear speedup, also referred to as ideal speedup, is obtained when Sp = p suggesting that the algorithm
is perfectly scalable, which is infeasible to achieve in reality.
Efficiency: In parallel processing, it is the ratio of the speedup achieved by the parallel implementation
of the algorithm, Sp to the number of processors utilized, p.

E= Sp

p
= T∗S

pTp

≈ T1

pTp

(36)

A typical value lies in the range of 0 and 1. Algorithms running on a single processor and parallel
algorithms with a linear speedup have an efficiency of 1.
Cumulative reward: The goal of any RL policy is to optimize the expected return. Given a fixed time
horizon of T, the objective is to find a sequential decision policy π , that maximizes the expected return

6https://en.wikipedia.org/wiki/RSRP.
7https://en.wikipedia.org/wiki/Radio_Resource_Control.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/RSRP
https://en.wikipedia.org/wiki/Radio_Resource_Control
https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 27

Table 2. Hyperparameters used to train Sp-GA on Atari 2600
games

Hyperparameter Value
Population size 200
Mutation power 0.002
Fraction of elites 10%
Mutation probability, ψ 0.75
No. of species 5

until the end of the time horizon. If we represent the sequence of rewards received after time t, by
rt+1, rt+2, rt+3, . . ., then the cumulative reward is simply:

Gt
.= rt+1 + rt+2 + rt+3 + · · · + rT (37)

Sample Efficiency: For any RL algorithm, sample efficiency is a measure of its efficiency in utilizing
the experience gained by the agent, that is, the amount of experience on an average that an algorithm
needs to generate in an environment in order to reach a certain level of performance. An algorithm can
be termed sample efficient if it uses each sample from its experience optimally to generate a policy that
achieves a high performance.

4.5. Experiments
Experiment 1: Comparison to gradient-based methods
In this experiment, the performance of Sp-GA is compared with two gradient-based RL methods, DQN
(Mnih et al., 2015), a sequential algorithm and A3C (Mnih et al., 2016), a distributed algorithm. The
metrics used for evaluation are cumulative rewards and training time.

Each algorithm was trained on 6 Atari 2600 games—beamrider, assault, spaceinvader, qbert, frost-
bite, and amidar for a maximum of 5 million training frames. The hyperparameters for DQN and A3C
were obtained from the benchmarked results of rllib library8 and for Sp-GA, they are mentioned in
Table 2. The same architecture (Model 1) and preprocessing was utilized. The training started with a
random number (maximum upto 30) of no-op action similar to prior work (Mnih et al., 2015). A single
episode for DQN, A3C, and iteration for Sp-GA was capped at a maximum of 10K training frames.

Experiment 2: Comparison to gradient-free methods
In this experiment, the performance of Sp-GA is compared with two gradient-free techniques that also
use EC-based methods for training, a simple GA (Conti et al., 2018), and ES (Salimans et al., 2017).
The metrics used for evaluation are cumulative rewards.

Each algorithm was trained on 16 Atari 2600 games (list available in Appendix A.1) for a maximum
of 25 million training frames. The hyperparameters for ES were obtained from the benchmarked results
of rllib library. GA was implemented as a special case of Sp-GA without crossover and species-based
initialization. All other parameters for GA and Sp-GA were kept the same which are mentioned in
Table 2. The same architecture (Model 1) and preprocessing was utilized across algorithms. A single
episode for ES and iteration for GA, Sp-GA was capped at a maximum of 10K training frames.

Experiment 3: Scalability Assessment of Sp-GA
In this experiment, the scalability of distributed Sp-GA is assessed by evaluating the speedup and
efficiency. The efficacy of encoding is also tested by comparing memory utilization.

This experiment was conducted on a single Atari 2600 game—spaceinvader. Sp-GA was trained for
a maximum of 500 000 training frames on clusters with different number of workers. A single iteration

8https://github.com/ray-project/rl-experiments.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://github.com/ray-project/rl-experiments
https://doi.org/10.1017/S0269888922000042

28 Anirudh Seth et al.

Table 3. Hyperparameters used to train Sp-GA on RET
environment

Hyperparameter Value
Population size 10
Mutation power 0.002
Fraction of elites 100%
Mutation probability, ψ 0.75
No. of species 5

step was capped at a maximum of 1000 training frames. The population size was reduced to 100; all
other hyperparameters were kept the same as mentioned in Table 2.

Experiment 4: Comparison of sample efficiency
In this experiment, the sample efficiency of Sp-GA, A3C, DQN, ES, and GA are compared. The algo-
rithm that consistently obtains higher rewards with the increasing size of training frames is considered
as more sample efficient. The results are computed on 3 Atari 2600 games chosen at random.

This experiment was conducted on 3 Atari 2600 games—frostbite, qbert and spaceinvader. The same
training pipelines from Experiments 1 and 2 were used. The average rewards from all the algorithms
were logged during training up to 5 million frames.

Experiment 5: Performance evaluation on RET optimization
The performance of Sp-GA is evaluated on the RET simulator provided by the host organization (Section
4.3.2) and compared to DQN. The evaluation metrics are provided by the simulator.

This experiment was conducted on RET simulator provided by the host organization. The imple-
mentation and hyperparameters for DQN were preconfigured and are mentioned in Appendix 3. Both
algorithms were trained for a fixed number of iterations of 1500. The model architecture was kept the
same (Model 2). The hyperparameters used by Sp-GA are summarized in Table 3

5. Results
Experiment 1 : Comparison to gradient-based methods
Table 4 summarizes the cumulative rewards achieved by Sp-GA, DQN, and A3C. Sp-GA trains a popu-
lation of 200 neural networks, whereas DQN and A3C train a single neural network on the same amount
of training frames. The cumulative reward of the elite model from Sp-GA is compared to the maximum
episodic reward from the gradient-based methods for a fair comparison. Sp-GA outperforms DQN on all
the games and A3C on 5 out of 6 games. The cumulative rewards on these benchmarks are not directly
comparable to the results in Mnih et al. (2016), Salimans et al. (2017), Conti et al. (2018) due to training
size being limited to 5M frames, but they support their findings that gradient-free methods can perform
surprisingly well on RL tasks.

Figure 25 shows the maximum episodic reward for DQN and A3C at each iteration for 5 million
training frames. Figure 24 shows the elite model’s cumulative reward and the entire population’s average
cumulative reward for each generation of Sp-GA. Two milestones have been highlighted in the figure—
5 million training frames and 25 million training frames. With continued training, the performance of
Sp-GA continues to improve in most of the games. The rate of improvement is lower for assault and
beamrider, but it is still greater than DQN and A3C by a good margin. The decision of using the same
hyperparameters across games might have contributed to this discrepancy. A fair comparison of all the
algorithms in terms of training time is difficult due to the different number of CPUs utilized. However,

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 29

Table 4. Cumulative rewards achieved by DQN, A3C and Sp-GA on 6 Atari 2600 games

Sp-GA A3C DQN

Workers 32 CPU 8 CPU 1 CPU
Training time 0.9 hours 3.45 hours 9 hours

Elite model’s Population Max episodic Mean episodic Max episodic Mean episodic
Game reward average reward reward reward reward

beamrider 948.0 643.38 708 395.64 660 336.16
assault 817.0 497.92 483 314.16 672 359.1
spaceinvaders 925.0 471.86 555 188.05 585 216.8
qbert 900.0 264.67 1150 226.75 650 270.25
frostbite 2390.0 277.21 240 98.59 180 71.19
amidar 165.0 45.81 141 40.45 144 46.2

Figure 24. Elite model’s score and population average achieved by Sp-GA on Atari 2600 games for
two milestones (5 million, 25 million training frames)

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

30 Anirudh Seth et al.

Figure 25. Maximum episodic reward for DQN, A3C on Atari 2600 games for 5 million training frames.
The transparent lines represent the actual value, and the solid ones represent the smoothed values

the distributed Sp-GA, which is trained on a cluster of 32 CPUs is atleast 10 times faster than DQN and
4 times faster than A3C and trains 200 neural networks all at once.

These results corroborate the findings in Conti et al. (2018) that EC-based methods like GAs can
provide comparable performance to gradient-based algorithms while reducing the overall training time
by a significant amount.

Experiment 2 : Comparison to gradient-free methods
Table 5 summarizes the cumulative rewards achieved by Sp-GA, a simple GA, and ES on 16 Atari 2600
games, each trained for about 25 Million training frames which are equivalent to 100 million game
frames. The simple GA is a special case of Sp-GA with a single species and no crossover operator. Since
the library implementation of ES only provides the average episodic reward, we compare them to the
population’s average cumulative reward from Sp-GA and simple GA. The best performing algorithm for
each game is highlighted in bold. Clearly, GA-based methods outperformed ES on 10 out of 16 games.
Surprisingly, all of the algorithms scored a 0 on venture which is similar to the findings in Bellemare
et al. (2013). This specific game is known to require long-term planning. Our proposed algorithm and

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 31

Table 5. Comparing the performance of Sp-GA with a simple genetic algorithm (GA)
and evolution strategies (ES)

Game Sp-GA GA ES

Elite’s Population Elite’s Population Episode
reward average reward average average

assault 920.0 656.62 1340.0 672.53 NA∗
asterix 1600.0 1009.45 1400.0 922.14 545.0
atlantis 64 700.0 23 770.15 61 100.0 21 893.53 40 312.50
zaxxon 7200.0 1030.35 7000.0 1438.31 1410.0
frostbite 3600.0 1122.34 2590.0 413.98 253.0
seaquest 700.0 380.60 760.0 285.57 473.33
beamRider 852.0 652.24 1092.0 668.44 650.0
asteroids 3220.0 1372.59 3220.0 1499.30 2029.0
amidar 220.0 81.05 247.0 95.41 NA∗
skiing –8965.0 –9013.79 –8083.0 –11 519.20 NA∗
qbert 1075.0 363.43 1325.0 403.48 755.0
kangaroo 2000.0 980.10 2000.0 639.80 600.0
gravitar 850.0 211.20 700.0 190.80 388.89
spaceinvaders 1725.0 505.82 1280.0 424.68 417.0
venture 0.0 0.0 0.0 0.0 0.0
enduro 91.0 22.20 65.0 23.15 0.0
∗Configuration for these Atari games are not implemented in the library.

ES doesn’t involve a discount term when evaluation the cumulative reward which might have resulted in
poor performance. Among GA-based methods, the elite models from Sp-GA outperformed simple GA
on 9 out of 15 games (better model for each game is highlighted in green). The decision to use the same
hyperparameters for all the games (and a single run being used) could have resulted in these results. The
generational rewards for each game for all the algorithms are available in Appendix A.2. The library
implementation of ES was twice as fast when compared to Sp-GA and simple GA which suggests some
improvements might be needed in our implementation.

This experiment demonstrates how different variants of GAs can be adapted to train neural networks
for RL problems while still maintaining comparable performance to other gradient-free algorithms
(Salimans et al., 2017; Conti et al., 2018).

Experiment 3 : Scalability assessment of Sp-GA
Figure 26 shows the average time per generation and total training time, which includes the time it took
for communication among the workers, as a function of the number of processors. The total time, as
well as the average generation time, is seen decreasing up to 32 CPUs. When the number of CPUs
was increased to 40, the time taken rather increases. Possible reasons for this might be, the commu-
nication time between the workers posing a bottleneck, or congestion between the workers since these
experiments are sent as jobs to clusters.

Figure 27 shows the parallel speedup of Sp-GA as a function of the number of CPUs. The speedup
increases as the number of processors utilized are increased. Since the training time for 40 CPUs was
higher than 32 CPUs, the speedup did not increase. Figure 28 shows the efficiency of the Sp-GA as a
function of processors used. The algorithm is only optimal on a single CPU. With the increasing number
of processors, the efficiency is decreasing which can be attributed to the additional communication time
and CPUs remaining ideal post the fitness calculation.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

32 Anirudh Seth et al.

Table 6. The number of generations, top elite’s species and average size of encoding
after training Sp-GA for 25M frames

Avg. size of No of Elite’s
Game encoding (in bytes) generations species
assault 271.96 19 xavier_normal
asterix 319.60 25 normal
atlantis 314.47 24 kaiming_uniform
zaxxon 348.94 30 xavier_normal
frostbite 453.89 46 xavier_uniform
seaquest 330.51 26 normal
beamrider 247.92 16 kaiming_uniform
asteroid 375.60 31 normal
amidar 481.19 49 xavier_uniform
skiing 623.96 58 uniform
qbert 553.99 58 kaiming_uniform
kangaroo 386.63 49 normal
gravitar 511.48 47 normal
spaceinvaders 425.67 39 normal
venture 215.08 16 uniform
enduro 220.70 14 xavier_normal

Figure 26. Total training time (including time for communication between workers) and average time
per generation as a function of the number of CPU’s.

Figure 18 shows the architecture of the model utilized for Experiments 1, 2, 3, and 4. Each neural
network has a size of 6.73 MB. This becomes a significant memory and bandwidth bottleneck especially
when the size of the population is increased. Table 6 shows the average size of an encoding of a neural
network after training on 25M frames. The maximum size of an encoding which is ∼600 bytes is still
10 000 folds less than the original size. This shows the efficiency of the encoding implemented for
this work.

The results in this experiment demonstrate that GAs if implemented efficiently, are well suited for a
distributed training framework that results in a reduction of overall training time.

Experiment 4 : Comparison of sample efficiency
Figure 29 compares the performance of Sp-GA, simple GA, DQN, A3C, and ES on 3 Atari 2600 games
till 5M training frames which is equivalent to 20M games frames as experienced by the agent. For DQN,

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 33

Figure 27. Parallel speedup as a function of number of processors

Figure 28. Efficiency as a function of number of processors

A3C and ES, the average episodic rewards (smoothed) and for Sp-GA and simple GA the population
average rewards are reported for comparative analysis.

For the games frostbite and spaceinvader, Sp-GA is relatively more sample efficient in comparison to
other methods, especially after experiencing about 1.5M training frames. For a fixed sample size of 5M
frames, Sp-GA outperform all other algorithms in 2 out 3 games. DQN proved to be the most efficient for
qbert. It must be noted that a simple GA had impressive results and was a close second in all games. This
strengthens the fact the gradient-free methods can be sample efficient in comparison to gradient-based
methods in some situations.

These results suggest that EC-based methods can be sample efficient in comparison to gradient-based
methods despite training multiple neural networks on the same amount of experience.

Experiment 5 : Performance evaluation on RET optimization
Figure 30 shows the reward for DQN and the elite model of Sp-GA at each iteration during training.
This reward is a function of proprietary metrics. The performance of Sp-GA is better than DQN during
the initial stages of the training, however, DQN seems to perform better later on. The results of this
experiment were reported from a single run which might have resulted in a bias. In Sp-GA, each worker
creates a copy of the environment it trains on; in this experiment, the memory requirements of the envi-
ronment and the interaction time became a bottleneck. To compensate for it, the size of the population
was reduced significantly, which might have resulted in a slight worse performance.

It is interesting to see that although DQN outperformed Sp-GA overall, there was a good improvement
in all the metrics and KPIs of the environment. The experiment was conducted for a fixed amount of
training steps, and not for a fixed duration of training time. It is possible that if Sp-GA was let to train
for the same duration as DQN (which was significantly more), we would have seen better results. This
can be investigated in future work.The results are reported in Table 7. The plots for all the metrics for
both algorithms are available in Appendix A.1

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

34 Anirudh Seth et al.

Figure 29. Comparison of sample efficiency on Atari 2600 games

These results suggest that GAs are also effective when applied to RL problems in different domains,
including complex optimization tasks in telecommunication.

6. Discussion
The findings from this research outline the success of GAs and other Evolutionary Computation (EC)-
based techniques as a scalable alternative to gradient-based algorithms for complex RL problems. Not

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 35

Table 7. Average improvement of some KPI’s provided by the environment
with respect to a set baseline. A positive value is an indicator of a good
policy

Metric Average Improvement (last 10
episodes)

DQN (%) Sp-GA (%)
Reward KPI 11.52 8.08
Good traffic 26.01 17.98
Bad traffic 21.88 20.27
RRC congestion rate 3.04 3.57

Figure 30. Reward KPI from the RET environment at each episode of training for DQN and Sp-GA.
The red line highlights zero improvement

only did Sp-GA outperform DQN and A3C on several established benchmarks, it also reduced the overall
training time by a big margin. A big advantage of the proposed method is its ability to constantly explore
and learn from its experience irrespective of the density of rewards.

The proposed model encoding proved to be highly efficient and yielded significant improvements
in memory utilization and overall training time. The intuitive application of genetic operators in the
encoding space did not hinder the parallel implementation of the algorithm. Sp-GA and simple GA
even outperformed ES, another EC-based method, on multiple benchmarks.

The speedup of the parallel implementation increased consistently upto 32 CPUs. Increasing the
number to 40 somehow resulted in worse performance. Apart from the communication time being a
bottleneck, a possible explanation could be a bug in the libraries used in the implementation. The topol-
ogy of the workers and the communication patterns play an important role in the efficiency of any parallel
algorithm especially in ML (Neglia et al., 2019). The work relied on ray for the set up of clusters and
communication and this might have been a limiting factor.

It is well known that RL algorithms are sample inefficient when compared to supervised techniques
(Yu, 2018), Sp-GA was sample efficient in a few cases, requiring fewer training samples to provide
improved results. The successful implementation of Sp-GA for RET optimization and improvement in
KPIs highlights that such gradient-free methods can also be applied to RL problems from other domains.

From these experiments, it can be concluded that repeated sampling around the region of good solu-
tions can help discover better solutions without the need for estimating gradients. This hypothesis was
also found out to be true by authors in Conti et al. (2018), Salimans et al. (2017). Although the results
from our benchmarks are not directly comparable to the findings in Salimans et al. (2017), Conti et al.
(2018), it was anticipated since the training was limited to only 25M frames on a subset of games due
to computational constraints.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

36 Anirudh Seth et al.

6.1. Opportunities for improvement
For a few benchmarks, the performance did not improve as much as the others. The could be attributed
to the decision of using the same parameters for all the experiments. Tuning these parameters for each
benchmark by doing a grid search should result in an improved performance.

There were a few situations where introducing random perturbations had unexpected effects, this
was seen in the game venture where all of the gradient-free algorithms scored 0. In the experiments,
a constant amount of mutation was applied to all the networks; it would be interesting to see what
would happen if this mutation is annealed, similar to annealing of a learning rate. Another possible
improvement could be adapting the mutation inversely to the fitness of a solution, that is, making
small perturbations to good solutions, whereas big perturbations to low-scoring ones. Utilizing the same
parameters across experiments seems to have limited the performance in the experiments.

An unexpected result from the experiments was a simple GA without crossover outperforming Sp-
GA on a few benchmarks. Crossover, which is well-known strategy to improve the performance of GA
(Holland, 1992b) did not work as expected. A possible explanation for this might be its application in the
space of encoding. Applying crossover, in such a way is a novel contribution which needs to investigated
further as a part of future work.

7. Conclusions
In this work, we were successfully able to apply an evolutionary-based technique to train deep neural
networks for several RL tasks from different domains. We have also demonstrated how different variants
of GAs can be scaled and operators be applied in the encoding space.

The results from the experiments confirmed the findings from Salimans et al. (2017), Conti et al.
(2018), that simple algorithms can perform surprisingly well on quite complex tasks. The final
conclusions and insights to the research questions are summarized below:

1. EC-based RL algorithms like Sp-GA and simple GA can be applied to complex problems with
a large state space. It is possible to outperform gradient-based as well gradient-free methods in
terms of overall rewards and training time.

2. The scalability of the algorithm relies heavily on the efficacy of the model encoding. The
proposed encoding worked pretty well which improved the parallel speedup and reduced the
memory requirement significantly. A bottleneck, when the communication time between work-
ers shadowed the evaluation time was observed when a large number of processors were
utilized.

3. The improvements in sample efficiency were not significant and requires further investigation.
A fair comparison of all the algorithms is difficult since the training procedures are inherently
different. Gradient-based methods train a single NN where as population-based methods train
multiple NN on the same amount of experience. Each NN from the population only gets to
train on a fraction of the experience. Surprisingly, even with this issue, Sp-GA improves sample
efficiency in a few benchmarks.

4. The algorithm is also successful in other domains. It must be noted, EC-based methods work on
copies of environments in parallel. If these environments are very big, the algorithm cannot be
scaled to its true potential. The concept of shared environments can be investigated to overcome
this issue.

8. Future work
Future efforts will be devoted toward an investigative study on the effect of genetic operators in the
encoding space. Our work was limited to Gaussian operator for mutation and single-point crossover.
A plethora of strategies that improve the performance of GAs are available (Holland, 1992a) which
can directly be applied to Sp-GA. Also, the training can be extended to the complete set of Atari 2600

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 37

benchmarks on 1B training frames for benchmarking the results against (Salimans et al., 2017; Conti
et al., 2018).

The performance of Deep Neural Networks (DNNs) can be improved by utilizing techniques like
dropout (Srivastava et al., 2014), LSTM and GRU (Hochreiter & Schmidhuber, 1997; Cho et al., 2014),
residual networks (He et al., 2015a), and scheduled annealing of parameters (Robbins & Monro, 1951).
Such techniques can also be applied to the proposed algorithm. Lastly, a hybrid approach combing both
evolutionary and MDP-based methods can be investigated.

References
Abbeel, P., Coates, A., Quigley, M. & Ng, A. 2006. An application of reinforcement learning to aerobatic helicopter flight.

In Advances in Neural Information Processing Systems, 1–8.
Amdahl, G. M. 1967. Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings

of the April 18–20,1967, Spring Joint Computer Conference. AFIPS’67 (Spring). Atlantic City, New Jersey. Association for
Computing Machinery, 483–485. ISBN:9781450378956. doi: 10.1145/1465482.1465560.

Baluja, S. & Caruana, R. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of ICML’95. Morgan
Kaufmann Publishers, 38–46.

Barr, K. 2007. ASIC Design in the Silicon Sandbox: A Complete Guide to Building Mixed-Signal Integrated Circuits. McGraw-Hill
Education. ISBN:9780071481618. https://www.accessengineeringlibrary.com/content/book/9780071481618.

Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. 2013. The arcade learning environment: an evaluation platform for
general agents. Journal of Artificial Intelligence Research 47(1), 253–279. ISSN:1076-9757. doi: 10.1613/jair.3912.

Bellman, R. 1958. Dynamic programming and stochastic control processes. Information and Control 1(3), 228–239.
ISSN:0019-9958. https://doi.org/10.1016/S0019-9958(58)80003-0. https://www.sciencedirect.com/science/article/pii/S0019
995858800030.

Bellman, R. E. 1954. The Theory of Dynamic Programming. RAND Corporation.
Bottou, L. 1998. Online Learning and Stochastic Approximations.
Boutilier, C., Dean, T. & Hanks, S. 1999. Decision-theoretic planning: Structural assumptions and computational leverage. The

Journal of Artificial Intelligence Research (JAIR) 11. doi: 10.1613/jair.575.
Brockman, B., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. & Zaremba, W. 2016. OpenAI Gym.

arXiv:1606.01540 [cs.LG].
Cho, K., et al. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. arXiv:1409.1259 [cs.CL].
Conti, E., Madhavan, V., Such F. P., Lehman, J., Stanley, K. O. & Clune, J. 2018. Improving Exploration in Evolution Strategies

for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada (pp. 5032–5043).

Cully, A., et al. 2015. Robots that can adapt like animals. Nature 521, 503–507. doi: 10.1038/nature14422.
Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2,

303–314.
Da Ronco, C. C. & Benini, E. 2014. A simplex-crossover-based multi-objective evolutionary algorithm. In Kim, H. K. et al. (eds),

583–598. doi: 10.1007/978-94-007-6818-5_41.
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. or the Preservation of Favored Races in the Struggle

for Life. Murray.
Dong, Y. & Zou, X. 2020. Mobile robot path planning based on improved DDPG reinforcement learning algo-

rithm. In 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), 52–56.
doi: 10.1109/ICSESS49938.2020.9237641.

Fitch, F. B. 1944. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin
of mathematical biophysics, vol. 5 (1943), pp. 115–133. Journal of Symbolic Logic 9(2), 49–50. doi: 10.2307/2268029.

Gangwani, T. & Peng, J. 2018. Policy Optimization by Genetic Distillation. arXiv:1711.01012 [stat.ML].
Glorot, X. & Bengio, Y. 2010. Understanding the difficulty of training deep feedforwardneural networks. Journal of Machine

Learning Research-Proceedings Track 9, 249–256.
Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org.
Hansen, N. & Auger, A. 2011. CMA-ES: evolution strategies and covariance matrix adaptation. In Proceedings of the 13th Annual

Conference Companion on Genetic and Evolutionary Computation. GECCO’11, Dublin, Ireland. Association for Computing
Machinery, 991–1010. ISBN:9781450306904. doi: 10.1145/2001858.2002123.

Hasselt, H. 2010. Double Q-learning. In Advances in Neural Information Processing Systems, Lafferty, J., et al., 23. Curran
Associates, Inc. https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Haupt, S. & Haupt, R. 2003. Genetic algorithms and their applications in Environmental Sciences. 3rd Conference on Artificial
Intelligence Applications to the Environmental Science. vol. 23. pp. 49–62.

He, K., et al. 2015a. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV].
He, K., et al. 2015b. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In IEEE

International Conference on Computer Vision (ICCV2015), 1502. doi: 10.1109/ICCV.2015.123.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1145/1465482.1465560
https://www.accessengineeringlibrary.com/content/book/9780071481618
https://doi.org/10.1613/jair.3912
https://doi.org/10.1016/S0019-9958(58)80003-0
https://www.sciencedirect.com/science/article/pii/S0019995858800030
https://www.sciencedirect.com/science/article/pii/S0019995858800030
https://doi.org/10.1613/jair.575
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1409.1259
https://doi.org/10.1038/nature14422
https://doi.org/10.1007/978-94-007-6818-5_41
https://doi.org/10.1109/ICSESS49938.2020.9237641
https://doi.org/10.2307/2268029
https://arxiv.org/abs/1711.01012
http://www.deeplearningbook.org
https://doi.org/10.1145/2001858.2002123
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1017/S0269888922000042

38 Anirudh Seth et al.

Herculano-Houzel, S. 2009. The human brain in numbers: a linearly scaled-up primate brain. eng. In Frontiers in Human
Neuroscience 3.PMC2776484[pmcid], 31–31. ISSN:16625161. doi: 10.3389/neuro.09.031.2009.

Hochreiter, S. & Schmidhuber, J. 1997. Long short-term memory. Neural Computation 9(8), 1735–1780. ISSN:0899-7667.
doi: 10.1162/neco.1997.9.8.1735.

Holland, J. H. 1992a. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence. The MIT Press. ISBN:9780262275552. doi: 10.7551/mitpress/1090.001.0001.

Holland, J. H. 1992b. Genetic algorithms. Scientific American 267(1). Full publication date: July 1992, 66–73.
http://www.jstor.org/stable/24939139.

Jaderberg, M., et al. 2017. Population Based Training of Neural Networks. arXiv:1711.09846 [cs.LG].
Jouppi, N., et al. 2017. In-datacenter performance analysis of a tensor processing unit. ACM SIGARCH Computer Architecture

News 45, 1–12. doi: 10.1145/3140659.3080246.
Kalashnikov, D., et al. 2018. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation.

arXiv:1806.10293 [cs.LG].
Kavalerov, M., Likhacheva, Y. & Shilova, Y. 2017. A reinforcement learning approach to network routing based on adaptive

learning rates and route memory. In SoutheastCon 2017, 1–6. doi: 10.1109/SECON.2017.7925316.
Khadka, S., Majumdar, S., et al. 2019. Collaborative evolutionary reinforcement learning. In Proceedings of the 36th International

Conference on Machine Learning, Chaudhuri, K. & Salakhutdinov, R. (eds), 97. Proceedings of Machine Learning Research.
PMLR, 3341–3350. https://proceedings.mlr.press/v97/khadka19a.html.

Khadka, S. & Tumer, K. 2018. Evolution-Guided Policy Gradient in Reinforcement Learning. arXiv:1805.07917 [cs.LG].
Kullback, S. & Leibler, R. A. 1951. On information and sufficiency. Annals of Mathematical Statistics 22(1), 79–86.
Larranaga, P., et al. 1996. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 26(4), 487–493. doi: 10.1109/3468.508827.
Larranaga, P., et al. 1999. Genetic algorithms for the travelling salesman problem: a review of representations and operators.

Artificial Intelligence Review 13, 129–170. doi: 10.1023/A:1006529012972.
Lehman, J. & Stanley, K. 2008. Exploiting open-endedness to solve problems through the search for novelty. In ALIFE.
Lillicrap, T., et al. 2015. Continuous control with deep reinforcement learning. CoRR.
Liu, H., et al. 2017. Hierarchical representations for efficient architecture search. arXiv e-prints, arXiv:1711.00436 [cs.LG].
Liu, H., et al. 2018. Hierarchical Representations for Efficient Architecture Search. arXiv:1711.00436 [cs.LG].
Luong, N. C., et al. (2019). Applications of deep reinforcement learning in communications and networking: a survey. IEEE

Communications Surveys Tutorials 21(4), 3133–3174. doi: 10.1109/COMST.2019.2916583.
Ma, S., et al. 2020. Image and video compression with neural networks: a review. IEEE Transactions on Circuits and Systems for

Video Technology 30(6), 1683–1698. ISSN:15582205. doi: 10.1109/tcsvt.2019.2910119.
Mania, H., Guy, A. & Recht, B. 2018. Simple random search provides a competitive approach to reinforcement learning.

arXiv:1803.07055 [cs.LG].
Markov, A. A. 1906. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. In Izvestiya Fiziko-

matematicheskogo obschestva pri Kazanskom universitete 15, 135156, 18.
Markov, A. A. 2006. An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in

chains. Science in Context 19(4), 591–600. doi: 10.1017/S0269889706001074.
Melo, F. S., Meyn, S. P. & Ribeiro, M. I. 2008. An analysis of reinforcement learning with function approximation. In Proceedings

of the 25th International Conference on Machine Learning. ICML’08. Helsinki, Finland. Association for Computing
Machinery, 664–671. ISBN:9781605582054. doi: 10.1145/1390156.1390240.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press. ISBN:0262133164.
Mnih, V., Badia, A. P., et al. 2016. Asynchronous methods for deep reinforcement learning. In Proceedings of The 33rd

International Conference on Machine Learning, Balcan, M. F. & Weinberger, K. Q. (eds), 48. Proceedings of Machine
Learning Research. New York, New York, USA, PMLR, 1928–1937. http://proceedings.mlr.press/v48/mniha16.html.

Mnih, V., Kavukcuoglu, K., et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 529–33.
doi: 10.1038/nature14236.

Munemasa, I., et al. 2018. Deep reinforcement learning for recommender systems. In 2018 International Conference on
Information and Communications Technology (ICOIACT), 226–233. doi: 10.1109/ICOIACT.2018.8350761.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershelvam, V., Suleyman, M., Beattie, C.,
Petersen, S. & Legg, S., 2015. Massively parallel methods for deep reinforcement learning. arXiv:1507.04296.

Neglia, G., et al. 2019. The role of network topology for distributed machine learning. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, 2350–2358. doi: 10.1109/INFOCOM.2019.8737602.

Nikou, A., et al. to appear. Symbolic reinforcement laming for safe RAN control. In International Conference of Autonomous
Agents and Multi Agent Systems (AAMAS).

Proshansky, H. & Murphy, G. 1942. The effects of reward and punishment on perception. The Journal of Psychology:
Interdisciplinary and Applied 13, 295–305. doi: 10.1080/00223980.1942.9917097.

Pugh, J., Soros, L. & Stanley, K. 2016. Quality diversity: a new frontier for evolutionary computation. Frontiers in Robotics and
AI 3. doi: 10.3389/frobt.2016.00040.

Purwins, H., et al. 2019. Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing 13(2),
206–219. ISSN:1941-0484. doi: 10.1109/jstsp.2019.2908700.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st edition. John Wiley & Sons,
Inc. ISBN:0471619779.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.7551/mitpress/1090.001.0001
http://www.jstor.org/stable/24939139
https://arxiv.org/abs/1711.09846
https://doi.org/10.1145/3140659.3080246
https://arxiv.org/abs/1806.10293
https://doi.org/10.1109/SECON.2017.7925316
https://proceedings.mlr.press/v97/khadka19a.html
https://arxiv.org/abs/1805.07917
https://doi.org/10.1109/3468.508827
https://doi.org/10.1023/A:1006529012972
https://arxiv.org/abs/1711.00436
https://arxiv.org/abs/1711.00436
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/tcsvt.2019.2910119
https://arxiv.org/abs/1803.07055
https://doi.org/10.1017/S0269889706001074
https://doi.org/10.1145/1390156.1390240
http://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICOIACT.2018.8350761
https://arxiv.org/abs/1507.04296
https://doi.org/10.1109/INFOCOM.2019.8737602
https://doi.org/10.1080/00223980.1942.9917097
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1109/jstsp.2019.2908700
https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 39

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2019). Language models are unsupervised multitask learners.
In OpenAI blog 1(8), 9.

Rall, L. B. 1981. Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science.
Robbins, H. & Monro, S. 1951. A stochastic approximation method. The Annals of Mathematical Statistics 22(3), 400–407.

doi: 10.1214/aoms/1177729586.
Rumelhart, D., Hinton, G. & Mcclelland, J. 1986. A general framework for parallel distributed processing. In Parallel Distributed

Processing: Explorations in the Microstructure of Cognition 1.
Salimans, T., et al. 2017. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv:1703.03864 [stat.ML].
Schaul, T., Quan, J., Antonoglou, I. & Silver, D., 2015. Prioritized experience replay. arXiv preprint arXiv:1511.05952.
Silver, D., Huang, A., et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489.

doi: 10.1038/nature16961.
Silver, D., Hubert, T., et al. 2017. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.

arXiv:1712.01815 [cs.AI].
Sousa, C., 2016. An overview on weight initialization methods for feedforward neural networks.

doi: 10.1109/IJCNN.2016.7727180.
Srivastava, N., et al. 2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research 15(56), 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html.
Stanley, K. 2007. Compositional pattern producing networks: a novel abstraction of development. In Genetic Programming and

Evolvable Machines 8, 131–162. doi: 10.1007/s10710-007-9028-8.
Stanley, K., D’Ambrosio, D. & Gauci, J. 2009. A hypercube-based encoding for evolving large-scale neural networks. Artificial

Life 15, 185–212. doi: 10.1162/artl.2009.15.2.15202.
Stanley, K. O. & Miikkulainen, R. 2002. Evolving neural networks through augmenting topologies. Evolutionary Computation

10(2), 99–127. ISSN:1063-6560. doi: 10.1162/106365602320169811.
Strubell, E., Ganesh, A. & Mccallum, A. 2019. Energy and policy considerations for deep learning in NLP, 3645–3650.

doi: 10.18653/v1/P19-1355.
Such, F. P., et al. 2018. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks

for Reinforcement Learning. arXiv:1712.06567 [cs.NE].
Sutton, R. S. & Barto, A. G. 2018. Reinforcement Learning: An Introduction. A Bradford Book. ISBN:0262039249.
Tassa, Y., Erez, T. & Todorov, E. 2012. Synthesis and stabilization of complex behaviors through online trajectory optimization,

4906–4913. ISBN:978-1-4673-1737-5. doi: 10.1109/IROS.2012.6386025.
Van Hasselt, H. 2013. Reinforcement Learning in Continuous State and Action Spaces. doi: 10.1007/978-3-642-27645-3_7.
van Hasselt, H., Guez, A. & Silver, D. 2016. Deep reinforcement learning with double Q-learning. In Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona. AAAI Press, 2094–2100.
Vannella, F., et al. 2021. Remote Electrical Tilt Optimization via Safe Reinforcement Learning. arXiv:2010.0584 2 [cs.LG].
Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. & Freitas, N. 2016. Dueling network architectures for deep reinforcement

learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume
48. ICML’16. New York, NY, USA. JMLR.org, 1995–2003.

Whiteson, S. 2012. Evolutionary computation for reinforcement learning. In Reinforcement Learning: State of the Art.
doi: 10.1007/978-3-642-27645-3_10.

Wierstra, D., et al. 2008. Natural evolution strategies. In 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), 3381–3387. doi: 10.1109/CEC.2008.4631255.

Xu, K., et al. 2016. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. arXiv:1502.03044 [cs.LG].
Yajnanarayana, V., Ryden, H. & Hevizi, L. 2020. 5G handover using reinforcement learning. In 2020 IEEE 3rd 5G World Forum

(5GWF). doi: 10.1109/5gwf49715.2020.9221072.
Yu, Y. 2018. Towards sample efficient reinforcement learning. In Proceedings of the 27th International Joint Conference on

Artificial Intelligence. IJCAI’18. Stockholm, Sweden. AAAI Press, 5739–5743. ISBN:9780999241127.
Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X. & Li, Z. 2018. DRN: a deep reinforcement learning framework

for news recommendation. In WWW’18: Proceedings of the 2018 World Wide Web Conference, 167–176.

APPENDIX A Supplementary Information
Appendix A. Additional Technical Information

This section contains some additional technical information about the work. Table A.1 contains
the technical specifications of the Atari 2600 games utilized in the work. Table A.2 provides the
hyperparameter used for training DQN on RET simulator. Table A.3 gives the technical details of
Experiment 4.

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1214/aoms/1177729586
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1511.05952
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://doi.org/10.1109/IJCNN.2016.7727180
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://doi.org/10.18653/v1/P19-1355
https://arxiv.org/abs/1712.06567
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1007/978-3-642-27645-3_7
https://arxiv.org/abs/2010.0584
https://doi.org/10.1007/978-3-642-27645-3_10
https://doi.org/10.1109/CEC.2008.4631255
https://arxiv.org/abs/1502.03044
https://doi.org/10.1109/5gwf49715.2020.9221072
https://doi.org/10.1017/S0269888922000042

40 Anirudh Seth et al.

Table A.1. Specification of Atari 2600 games used for the experiments

Size per frame Number of actions Reward
Game (state space) (action space) range
amidar (250, 160, 3) 10 (−∞,∞)
assault (250, 160, 3) 7 (−∞,∞)
asterix (210, 160, 3) 9 (−∞,∞)
asteroid (210, 160, 3) 14 (−∞,∞)
atlantis (210, 160, 3) 4 (−∞,∞)
enduro (210, 160, 3) 9 (−∞,∞)
frostbite (210, 160, 3) 18 (−∞,∞)
gravitar (210, 160, 3) 18 (−∞,∞)
kangaroo (210, 160, 3) 18 (−∞,∞)
seaquest (210, 160, 3) 18 (−∞,∞)
skiing (250, 160, 3) 3 (−∞,∞)
venture (210, 160, 3) 18 (−∞,∞)
zaxxon (210, 160, 3) 18 (−∞,∞)
beamrider (210, 160, 3) 9 (−∞,∞)
qbert (210, 160, 3) 6 (−∞,∞)
spaceinvaders (210, 160, 3) 6 (−∞,∞)

Table A.2. Hyperparameters used to train DQN on RET
environment

Parameter Value
ε 1
ε decay 0.997
Learning rate α 0.001
Episodes 1500
Memory size 50
Batch size 5

Table A.3. Total training time (including communication between workers)
and average time taken per generation as a function of number of CPU’s

Num of Avg. generation Total time
processors time (in min) (in min) Speedup Efficiency
1 23.65 94.61 1 1
2 12.48 49.93 1.89 0.95
4 6.49 25.96 3.64 0.91
8 3.42 13.68 6.92 0.87
10 2.88 11.53 8.21 0.82
16 1.95 7.83 12.08 0.76
20 1.69 6.78 13.95 0.7
32 1.51 6.06 15.61 0.49
40 1.58 6.33 14.95 0.37

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 41

Appendix A. Additional Results
This section presents some additional results from the experiments.

Figure A.1. Metrics returned by RET environment at each episode during training for Sp-GA

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

42 Anirudh Seth et al.

Figure A.2. Metrics returned by RET environment at each episode during training for DQN

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 43

Figure A.3. Elite model’s score and population average achieved by GA on Atari 2600 games

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

44 Anirudh Seth et al.

Figure A.4. Elite model’s score and population average achieved by Sp-GA on Atari 2600 games

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

The Knowledge Engineering Review 45

Figure A.5. Average episodic reward achieved by ES on Atari 2600 games

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

46 Anirudh Seth et al.

Figure A.6. Maximum and average episodic reward achieved by DQN on Atari 2600 games

Figure A.7. Maximum and average episodic reward achieved by A3C on Atari 2600 games

https://doi.org/10.1017/S0269888922000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888922000042

	Introduction
	Problem
	Research question
	Contribution
	Purpose
	Ethics and sustainability
	Delimitations
	Background
	Reinforcement learning
	Markov decision process
	Policies and optimality criteria
	Value functions and Bellman equation
	RL algorithms
	Dynamic programming
	Monte Carlo techniques
	Temporal-difference methods
	Policy gradient
	Actor-critic methods
	Artificial neural networks
	Mathematical model
	Activation Function and Weight Initialization
	Evolutionary computation
	Genetic algorithm
	Evolution strategies
	Neuroevolution
	Related work
	Evolution-based RL
	Species-based Genetic algorithm (Sp-GA)
	Species initialization
	Algorithm hyperparameters
	Distributed Sp-GA
	Model encoding
	Genetic operators in encoded space
	Implementation
	Hardware and Software
	Models
	Model 1
	Model 2
	Dataset
	Atari 2600 games
	Remote electric tilt simulator by Ericsson
	Evaluation metrics
	Experiments
	Experiment 1: Comparison to gradient-based methods
	Experiment 2: Comparison to gradient-free methods
	Experiment 3: Scalability Assessment of Sp-GA
	Experiment 4: Comparison of sample efficiency
	Experiment 5: Performance evaluation on RET optimization
	Results
	Experiment 1 : Comparison to gradient-based methods
	Experiment 2 : Comparison to gradient-free methods
	Experiment 3 : Scalability assessment of Sp-GA
	Experiment 4 : Comparison of sample efficiency
	Experiment 5 : Performance evaluation on RET optimization
	Discussion
	Opportunities for improvement
	Conclusions
	Future work

