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1. Introduction

The theory of "-representations of Banach ""-algebras on Hilbert space is
one of the most useful and most successful parts of the theory of Banach alge-
bras. However, there are only scattered results concerning the representations
of general Banach algebras on Banach spaces. It may be that a comprehensive
representation theory is impossible. Nevertheless, for some special algebras
interesting and worthwhile results can be proved. This is true for &(Y), the
algebra of all bounded operators on a Banach space Y, and for &( Y), the sub-
algebra of 38(Y) consisting of operators with finite dimensional range. The
representations of 3S(Y) are studied in a recent paper by H. Porta and E.
Berkson (6), and in another recent paper (8), P. Chernoff determines the
structure of the representations of ̂ (Y) (and also of some more general algebras
of operators). In both these papers, ^(Y), which is the socle of the algebras
under consideration, plays an important role in the theory. This suggests the
possibility that a more general representation theory can be formulated in the
case of a normed algebra with a nontrivial socle. This we attempt to do in this
paper.

Let 7i be a continuous representation of a normed algebra A into 38(X),
X a Banach space. We have several main concerns in this paper. First, when
does there exist minimal closed ^-invariant subspaces of X, and when they do
exist, does n restricted to such a subspace have some reasonable characterisa-
tion? Second, under what conditions does a minimal closed 7c-invariant sub-
space of X have a closed 7i-invariant complement in XI Third, is it possible to
determine the structure of n in some reasonable way ?

The first two of these questions are treated in Section 3. The answers to
both questions involve a special property of the minimal idempotents of the
algebra A. This property is the topic of Section 2. The third question is
considered in Section 4. In that section, following a pattern established by
P. Chernoff in (8), we determine the structure of n restricted to certain closed
7r-invariant subspaces of X. The subrepresentations of n of this kind are then
summed to n in some special cases. There is a final very brief section concerning
applications.

At this point we introduce our notation and conventions. All vector spaces
t This research was supported in part by NSF Grant GP-28250 A #2
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in this paper are complex. Throughout this paper A is a semisimple normed
algebra and X is a Banach space. We denote the norm on both spaces (and also
some others) by ||. ||. We assume throughout that n is a continuous representa-
tion of A into 3fi(X). Minimal idempotents of A are important in our considera-
tions. Information concerning minimal idempotents, minimal left or right ideals,
and the socle can be found in (18). If e is a minimal idempotent (abbreviated
m.i.) of A, then in our case, eAe = {Xe: X complex}. We denote the socle of an
algebra B by SB.

We have already denned @(X) and 3P{X). We let j f (X) denote the algebra
of compact operators on X, and let 3>(X) denote the set of all operators in 3S{X)
with range of dimension less than or equal to one. The dual space of X is X*
and the adjoint of an operator Te3$(X) is T*. We denote the range of an
operator T by 0l(T). If x e X and feX*, let (/1 x) be the operator denned on
Xby (f\ x)(y) = f(y)x, yeX. If x e X and / e X*, we often use the notation

A nonzero algebra of operators B is irreducible on X if there are no non-
trivial closed 5-invariant subspaces of X. B is strictly irreducible if there are
no non-trivial ^-invariant subspaces of X. A representation n: A^3S(X) is
irreducible (strictly irreducible) if n(A) is irreducible (strictly irreducible) on X.

If B is a collection of operators on X and Y is a subset of X, then

BY = span {Ty: TeB,yeY}.

Similarly, when B and C are subsets of A, then

BC = span {be: beB,ceC}.
If Y is a subset of a topological space W, then cl (Y) denotes the closure of Y
in W.

2. Minimal idempotents that are full in an algebra
Let e be a m.i. of A. Then

eAe = {Xe: X complex}.

We define a complex valued bilinear form (. , .) on AexeA by (ae, eb) = X,
where ebae — Xe. With respect to this bilinear form the two normed spaces
Ae and eA are in normed duality (see (18, Definition (2.4.8))).

Now we introduce a property that plays a central role in the study of certain
representations of A. If e is a m.i. of A, this property is that eA determines the
norm on Ae via the bilinear form ( . , . ) . In order to formulate this property
precisely, let

Definition 2.1. The m.i. e is full in A if there exists K>0 such that
KWlaeWi ^ ||<K>|| for all a'eA.

Note that for any m.i. e of A,

\(ae,eb)\\\e\\ = \\ebae\\^\\eb\\\\ae\\.
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Therefore e is full in A if and only if the two norms ||. || t and ||. || are equivalent
on Ae.

It is not difficult to find examples of algebras that contain m.i.'s that are not
full in the algebra; see Example 2.9. However, there are many interesting
examples of algebras in which every m.i. of the algebra is full. We give a number
of examples in this section. Before providing specific examples, we prove a
basic proposition.

Proposition 2.2. Let A be a subalgebra of &(X) with the properties
(i) A is irreducible on X,
(ii) 2>(X)nA is closed in ®(X), and

(iii) &(X)nA # {0}.

Then there exists a minimal algebra norm \\. ||' on A (i.e., if \.\ is any algebra
norm on A there exists J> 0 such that J \ a | ^ || a ||' for all as A). Furthermore,
every m.i. of A is full in (A, ||. ||').

Proof. By (5, Theorem 2), there is a closed total subspace Y of X* such that

®(X)nA = {(f\x): xeXJeY).

Also, for all Te A, T*(Y)<= Y, and {T*: TeA} acts strictly irreducibly on Y.
If T eA, let

II T | | '= sup {|| TV || : / 6 y , | | / | | g l } .

It is easily verified that ||. ||' is an algebra norm on A, and a direct application of
(18, Theorem (2.4.17)) proves that ||. ||' is a minimal norm on A.

Now let E be a m.i. of A. By (4, Lemma 1), E = (f \ x) for some xe X and
fe Y such that/(x) = 1. If T, S e A, then

(TE, ES)E = ESTE = <Tx, S*/>£,
ES = (S*f | x), and TE = (f\ Tx).

Let / = sup {| g(x) |: g e Y, \\ g \\ ^ 1.} Then

|| ES | | ' = sup {|| (ES)*0 ||: geY, \\g\\<\}

= sup {| £(*) I IIS*/II: geY,\\g\\^\}

J | | S / I | .
Also,

|| TE II'= sup {|| (T£)*flf ||: g e Y, || g || ^ 1}

Finally,
sup {| (TE,ES) |: || ES ||' ^ 1}

= sup{|<Tx, S*/>|: J||S*/II
1 | < r x , 5 > | : geY,
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Corollary 2.3. Assume that A is a subalgebra of &8(X) and that the minimal
left and right ideals of A are complete subspaces of A. Assume further

) : xeXJeY)

where Y is a closed norm determining subspace of X*. Then every m.i. of A is
full in A.

Proof. Let |. | denote the operator norm on 3S(X), and let ||. ||' be the
minimal algebra norm on A defined in the proposition. Since ||. ||' is minimal
on A, there exists K>0 such that K\\ T\\ ^ \\T ||' for all Te A. By hypothesis
Y is norm determining for X, so there exists />0 such that

sup{ | / (x) | : / e y , | | / | | g l } ^ J | | x | |
for all x e X. Recalling the definition of ||. ||', we have

|| T II' = sup {|| T*f || : / e r, | | / | | g l }

= sup {| <2X/> |: xeXJe Y, || x || g 1, || / || £ 1}
£J\T\.

Thus j q T || ^ || T ||' ^ J\ T | for all Te A, and |. | and ||. ||' are equivalent
norms on A.

Now let E = ( / | x) be a m.i. of A. Then AE and EA are complete sub-
spaces of {A, |. |) and of {A, \\. ||). Since the spaces {AE, \\. ||), (AE, |. |),
(/s.4, ||. ||) and (EA, \. |) are all Banach spaces, the norm inequality above and
the Open Mapping Theorem imply that ||. || and |. | are equivalent on AE and
EA. But E is full in (A, ||. ||') by the proposition, and ||. ||' is equivalent to |. |
on A. Therefore E is full in (A, ||. ||).

Of course, Corollary 2.3 can be proved directly without using Proposition 2.2.
Now we give some examples.

Example 2.4. Let A be a subalgebra of 0S(X) such that ^(X) (=A. Assume
that the minimal left and right ideals of A are complete subspaces of A (this
certainly holds if A is a Banach algebra). Then it follows directly from
Corollary 2.3 that every m.i. of A is full in A. In particular, if A is any algebra of
operators equipped with the operator norm such that !F{X)<=.A, then A has
this property.

Example 2.5. Assume that X is the dual space of a Banach space Z, and let
Y be the canonical image of Z in Z** (e.g. X = /x and Y = c0). Let &(X, Y)
denote the algebra of operators on X generated (algebraically) by

{(f\x):xeX,feY}.

Assume that A is any subalgebra of 3S(X), equipped with the operator norm,
such that AnSf(X) = &(X, Y). Then by Corollary 2.3, every m.i. of A is full
in A.

Example 2.6. Let A be an annihilator Banach algebra as defined by F. F.
Bonsall and A. W. Goldie in (7). If e is a m.i. of A, then by (7, Theorem 5),
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e is contained in a minimal closed ideal M of A. Then as shown in (7, Theorem
10), there is an isomorphism of M on to an algebra of bounded operators B on
a Banach space X such that $r(X)<=:B. It follows, as noted in Example 2.4,
that e is full in M, and hence in A.

As noted in (7), the dual Banach algebras introduced by I. Kaplansky are
examples of annihilator algebras. Specific examples of dual (and hence,
annihilator) algebras are //*-algebras (14, Corollary, p. 697), and L"(G), where
G is a compact topological group and 1 :§ p< oo (14, Theorem 15).

Example 2.7. Let A be a 5*-algebra. By (15, Theorem 2.1), the closure of
SA in A is a dual algebra. Then Example 2.6 implies that every m.i. of A is
full in A.

Example 2.8. Assume that e is a m.i. of A such that Ae is finite dimensional.
Then clearly e is full in A. If A is a CC algebra as defined by I. Kaplansky in
(14), then every minimal left ideal of A is finite dimensional (14, Lemma 4).

Now we give an example of a primitive Banach algebra of operators with the
property that no m.i. of the algebra is full in the algebra.

Example 2.9. Let A be the algebra of all Fredholm integral operators on
C[0, 1]. If Te A, then Tacts on a function/e C[0, 1] according to the formula

(T/)(x) = P K(x, t)f(t)dt,
Jo

where K(x, t) is a continuous complex valued function on [0, 1] x[0_ ]] Let

|| T || = sup
Then A is a Banach algebra in the norm ||. ||.

In what follows we use the notation

<f,
and

;g> = P
Jo

- J :o
Ifh,ke C[0, 1], let (h | k) be the operator in A defined by

(h | k)(f)(x) = <fe,/>fc(x), / € C[0, 1].
Note that

II ih I fc) II = II M L II M o o -
Now fix h, k e C[0, 1] and assume that <A, £> = 1. Then E = (h | &) is a m.i.
of 4̂. If /f(;t, 0 is continuous on [0, 1] x [0, 1], and S is the Fredholm integral
operator determined by K(x, t), then let

= P K{t, x)f(t)dt,fe C[0, 1].
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If S, TeA,we have
ES = (S'h | k), TE = (h\ Tk),

and

(TE, ES)E = ESTE = (S'h \ k)(h \ Tk)

= <r/c, s'hyE.

Then || ES || = || S'h IL || k |L, so that

| (TE, ES) | = | <Tfc, S'fc> | ̂  II S'/J |L || Tk

If E were full in ^4, there would exist J>0 such that

|| TE || :g J sup {| (T£,£S) |: || ES || =

for all 2"e A. Then there would exist M>0 such that

for all Te A. But since {Tk: TeA} = C[0, 1], this is a contradiction. There-
fore E is not full in A.

We close this section with several remarks concerning the case when A is a
primitive algebra.

Remark 2.10. Let A be a primitive algebra with the property that every
minimal left ideal and every minimal right ideal of A are complete subspaces of
A. Let e and /be m.i.'s of A and assume that e is full in A. We show that /
must also be full in A. Suppose fAe = {0}. Then (Af)(Ae) = {0} and {0} is a
primitive ideal by hypothesis. Therefore by (18, Theorem (2.2.9) (iv)), either
Af = {0} or Ae = {0}, a contradiction. Thus we can choose u e A such that
fue # 0. The map bf-*bfue is a continuous isomorphism of Af onto Ae. By
the Open Mapping Theorem there exists ^T>0 such that ^T|| bfue || ^ || bf\\
for all b e A. Similarly, there exists v e A such that fa ->evfa is a bicontinuous
isomorphism of /4 onto eA, and there exists/>0 such that/ | | evfa \\ ^ ||/a ||
for all aeA. Also, there exists M>0 such that for all be A,

|| fee || ̂ M sup {| (fee, ea) \: || eo || ̂  1}.

Then for all b e A,

\\bf\\^K\\bfue\\

= KM sup {| (fe/ue, eu/a) |: || evfa || ̂  1}

g XMJ sup {| bfue, evfa) |: || fa \\ ̂  1}.
Note that

| (bfue, evfa) \\\e\\ = \\ ev(fabf)ue ||
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Thus for all be A,

|| ft/1| g fi sup {| (ft/, fa) |: || M l g 1}, for some Q>0.

Remark 2.11. Let A be primitive. Let e be a m.i. of A. Define an algebra
norm ||. ||' on A by

| |a | | ' = sup{||efta||: || eb || g 1}.

Note that || a ||' g || a ||, a 6 A. Then

| |ae | | ' = sup{||eftae||: || eft || £ 1}

= || e\\ sup {| (ae, eb) |: || eft || £ 1}

g || e|| sup {| (ae, eft) |: || eft | | ' £ 1}.

Therefore e is full in {A, \\.\\').

3. Representations of algebras with minimal left ideals

Throughout this section n is a continuous representation of A into SS{X).
We use the notation

Zn = {xeX: n(SA)x = {0}}.

If Y is a ^-invariant subspace of X, we denote the restriction of n to 7 by
n | y (i.e. 7i | y is the representation of A on Y defined by (n \ Y)(a)y = n{a)y
for ae A,y e Y).

In this section we prove our main results concerning representations of
algebras with minimal left ideals. We begin with two lemmas.

Lemma 3.1. Let e be a m.i. of A. Fix JCX 6 3t(n{e)), x1 # 0, and set

X, = cl (n(A)Xl).
Then

(1) if XtnZn = {0}, then n(A) acts irreducibly on Xu and

(2) if the minimal left ideal Ae is a complete subspace of A, and ife is full in A,
then Xx is bicontinuously isomorphic to Ae, n(A) acts strictly irreducibly
on Xu and n \ X1 is equivalent to the left regular representation of A on
Ae.

Proof. First we verify that n(A) acts strictly irreducibly on n(A)xl. Assume
yu y2 en(A)x1 and yx # 0. Then there exist ake A such that yk = ji(ak)xlt

k = 1, 2. Since ate # 0, Aate = Ae. Therefore there exists be A such that
bate = a2e. Then 7i(6)j'1 = n^nia^x^ = 7t(a2)*i = y2-

Assume that W is a closed 7r-invariant subspace of X such that W^X±.
Then since n(A) acts strictly irreducibly on n(A)xl, either Wn(Ti(A)x1) = {0}
or n(A)x1cW. In the latter case, W = X^. Assume Wn(n(A)xl) = {0}.
Denote by <xt> the span of xt in X. Then for all aeA, n(ea)X1cz(x1y.
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Therefore n(AeA)Wc Wr\{n{A)xl) = {0}. I f / i s any m.i. of A, then either
fe AeA otfAe = {0}. Thus n(J)W = {0} in either case. Therefore

n(SA)W={0},

so that WcZn. Then assuming that XtnZK = {0}, we have W = {0}. This
proves (1).

Now assume that Ae is complete and e is full in A. Consider the continuous
map of Ae onto n{A)xl defined by ae-*n(ae)xl = niafx^ Since e is full in A,
there exists J> 0 such that for any element ae e Ae, there exists eb e eA such
that || eb \\ ^ J and ebae = || ae \\e. If ae e Ae and eb is chosen as above, then

|| ae |1 || Xl || = || n{ebae)xl ||

£ || 7i || || eb || || n(a)Xl ||

This proves that the map ae-*;:^)*! is a bicontinuous isomorphism of Ae on
to ^(^Xi. Since Ae is complete, A\ = cl (n(A)x1) = n(A)xl. Denote the map
ae-*n(a)x1 by V. If b e A, let y{b) be the operator defined on Ae by left multi-
plication by b. Then b-*y{b) is the left regular representation of A on /4e. We
have

(V-1n(b)V)ae= V-1n(b)n(a)x1

= V-1n(ba)x1

= bae

= (y(b))ac.

Therefore the restriction of n to Xt is equivalent to the left regular representation
of A on Ae. This proves (2).

Lemma 3.2. Let e be a full m.i. of A. Fix xt 6 M(n(e)), ̂ j ^ 0, and let
X, = cl (n(A)Xl).

Then there exists a closed n-invariant subspace X2 such that X1nX2 = {0},
Xi + X2 is closed in X, and n(SA)Xcz Xx + X2.

Proof. Choose M a closed complement of the span of xt in 3%(n{e)). Let

where P — \aeA: eAa = {0}}. Suppose that there exists {an}<=A and
{wn}^X2 such that || n(an)xl || = 1, n ^ 1, and

There exists K> 0 such that

X|| ane || ^
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Also, since e is full in A, there exists J>0 and {bn}<=A such that [| ebn || g J
and (ane, ebn)e = ebttane = || ane ||e, n ^ 1. Therefore

Note that for any b e A, n(eb)X2<=M. Thus

for n ^ 1, and || Jct +Mn ||->0. This contradicts the choice of M. It follows that
there exists 6 > 0 such that || J i + j 2 II ^ e whenever yt e Xu \\ yt || = l,y2e X2.
Also, both Xt and X2 are closed in X by definition. These facts imply by a
standard argument that Xl + X2 is closed in Xand that XlnX2 = {0}.

Now assume that a, be A and xe X. Then n(e)n(a)x = I*! + x2 for some
scalar A and some vector x2 e M. Then n(bea)x = 271(6)*! + n(be)x2 e Xl + X2.
Therefore n(AeA)X<zXl + X2. Also, from the definition of X2 we have
n(P)Xcz X2. I f / i s a m.i. of /t a n d / £ P , then ^ e ^ / # {0}. Then

Af= (AeA)f<=AeA.

Thus e i t h e r / e P o r / e y4e/4. It follows that SA<=AeA+ P. These arguments
prove that 7r(S/1)A'ciXy + X2.

Let £n be the collection of all closed rc-invariant subspaces of X that are not
included in Zn. The set fn is partially ordered by inclusion.

Now we prove the main result of this section.

Theorem 3.3. Let A be a semisimple normed algebra with the property that
every m.i. of A is full in A. Let n : A—>3S(X) be a continuous representation of A
such that cl ( T : ^ ) * ) = X. Then:

(1) If Y is a closed n-invariant subspace of X and Yr\Zn = {0}, then there
exists a minimal subspace X1 e £n such that Xx <= Y. When the minimal left ideals
of A are complete subspaces of A, the same conclusion holds whenever Yetn.

(2) If the minimal left ideals of A are complete subspaces of A, and ifXx is a
minimal subspace in Sn, then X1 is bicontinuously isomorphic to some minimal left
ideal Ae of A, and n \ Xx is equivalent to the left regular representation of A on Ae.

(3) If the minimal left ideals of A are complete, then X is the topological
sum of the collection of subspaces in £K which are minimal in /„ .

(4) Every minimal subspace in £n has a closed n-invariant complement in X.

Proof. Assume that Y is a closed 7t-invariant subspace of X such that
Y<£.Zn. Then there exist xe Y and a m.i. e of A such that n(e)x # 0. Let
Xi = n(e)x e Y. Then n(A)x1 c Y, and setting Xt = cl (n(A)xl), (1) follows
directly from Lemma 3.1.

Assume now that the hypothesis in (2) is satisfied and that A\ is a minimal
subspace in /„. By the previous argument and Lemma 3.1, Xl = n{Ae)xx for
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some m.i. e of A and some jct e Xt. Then (2) follows from Lemma 3.1.
If every minimal left ideal of A is complete, then by Lemma 3.1 every non-

zero subspace of X of the form n(Ae)x where e is a m.i. of A, x e X, is a closed
minimal 7t-invariant subspace of X. If y e n(SA)X, then

y = nCflie^Xi +... +n(anen)xn

where for each k, 1 ̂  k ^ n, ek is a m.i. of A, ak e A, and xk e X. Thus
y e 7i(/4e_)x_ + ... + n(Aen)xn. Therefore n(SA)X is included in the sum of the
collection of subspaces in £n which are minimal in fn. This proves (3).

(4) is a direct consequence of Lemma 3.2.
If e is a m.i. of A and e is not full in A, then the conclusions of Theorem 3.3

need not hold. We illustrate this with two examples.

Example 3.4. Let A be a normed algebra, and assume that e is a m.i. of A
such that e is not full in A. Also, assume Ae is a complete subspace of A.
Norm Ae with the norm

II «« Hi = sup{|(ae,e&)|: ||e&||_Sl}.
Since e is not full in A, then the two norms ||. || and ||. \\t are not equivalent on
Ae. Let Xt be the completion of (Ae, II - Hi). Let y denote the left regular
representation of A on Ae, i.e.

y(a)(be) = abe, be e Ae.
Then if a e A, be e Ae, we have

|| y(a)be ||x = sup {| (abe, ec) |: || ec || g 1}

_,.|-»pJfl^Yl-tf):M,0
^ || a || sup {| (be, eca)\: || eca || g 1}

= II a II II be || t.
Thus a^y(a) extends to a continuous representation of A into ^(A^). This
extended representation is not equivalent to y, in contrast to the conclusion of
Theorem 3.3(2). (Note: y is strictly irreducible on Ae, while the extension of y
is not strictly irreducible on Xt).

Example 3.5. Let X be a Banach space and assume that Xl and X2 are
closed subspaces of X with the properties

(i) JST_nZ2 = {0},
(ii) Xx + X2 is not closed in X, and

(iii) Xt + X2 is dense in X.
If X is a separable Hilbert space, it is shown in (11, pp. 28-29) that there exist
subspaces Xx and X2 with these properties. Let

•5F_
and let
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Note that the subspaces X1 and X2 are invariant for both ^ and ^2. Let A
be the closed subalgebra of @{X) generated by J ^ and &2. Then Xx and X2

are invariant for A.
If x, ye X1 and x ^ 0, there exists/e A'* such that/(Z2) = {0} and/0) = 1.

Then (f \ x) e J ^ and (/1 j>)(;c) = y. Thus J ^ acts strictly irreducibly on Xu

and similarly, S?2 acts strictly irreducibly on X2. Let
Pfc = {Te A: T(Xk) = 0}, k = 1, 2.

Then Pk is primitive for A: = 1,2, and by (iii), Plr\P2 = {0}. Thus A is semi-
simple.

Now we verify that Xt has no closed ^-invariant complement in X. For
suppose X = A',©!' where 7 is a closed ^4-invariant subspace of X. If
x2 e A ,̂ then x2 = xx +7 for some xte Xlt ye Y. Choose Te 3F x such that
Txx = Xi and Tx2 = 0. Then 0 = xt + Ty, so that xt = Ty = 0. Therefore
x2 = y- This proves that X2 c: y. Now there exists K> 0 such that

whenever x e l j e F. But then this same inequality holds whenever xe Xt,
yeX2. This contradicts (ii). Now let E = (f\x)e&r

1 where f(x) = 1.
Then E is a minimal idempotent of 4̂ and the map TE^Tx maps AE on to A .̂
However, Ar

1 has no closed ^-invariant complement.

4. The structure of representations
Letrc: A-+3fl{X) be a continuous representation of A. Let ebe a m.i. of ̂ 4,

and let / be the minimal closed ideal cl (AeA). We denote by nj the restriction
of n to Xx = cl (n(I)X). In the first part of this section we describe the repre-
sentations 7i7. Later in the section we show how in some cases n can be written
as a sum of the representations {uj-. I a minimal closed ideal of A).

Before describing the general form of nj, we consider the case where n(e)
has finite dimensional range. In this case, assuming that e is full in A, the
structure of 7t7 is especially simple. The key result is the following proposition.
This proposition is essentially contained in P. Chernoff's paper (8) in the case
where A is an algebra of operators on a Banach space Y such that JF{Y)aA.

Proposition 4.1. Assume that e is a m.i. of A which is full in A, that Ae is
complete, and that ffl(n{e)) is finite dimensional. Let {xu ..., xn} be a basis for

Then n{AeA)X is a closed subspace of X and is the finite direct sum of the
closed subspaces n(A)xk, 1 g k ^ n.

Proof. Assume that nQj^Xi + ... +n(bn)xn = 0, and suppose that
n(bj)Xj # 0

for some/ We may assume j = 1. Choose ae A such that eabYe = e. Then

n(eab1e)x1+n(eab2e)x2 + ...+n(eabne)xn = 0,
so that
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for some scalars Xk. This is a contradiction. Thus the subspaces n(A)xk are
algebraically independent.

Next we prove that n(AeA)X = n(A)x1 + ... + n(A)xn. For if a, be A and
x e X, then n{eb)x = Xtxt + ... + Xnxn for some scalars Xk. Then

%(aeb~)x e n(A)xl +...+ n(A)xn

which proves the assertion.
By Lemma 3.1 each of the subspaces n(A)xk is closed. Let

W=cl (n(A)xl +... + n(A)xn).

By Lemma 3.2 and its proof there exist continuous projections Pk on the Banach
space W such that Pk maps W on to n(A)xk, 1 5£ k g n, and Pk{n(A)xj) = {0}
if k #y . Fix weW and choose {wm} in the subspace 7104)*!+ ... +n(A)xn

such that wm->w. Then for each m, wm = /\(M;
m) + ... +Pn(wm), so that letting

m-*oo, we have \v = P1(w)+ ... +Pn(w). This proves that

W = Tt(A)xl + ...+n(A)xn = n(AeA)X.

Let e be a m.i. of A, and let ^4e(n) be the linear space of «-tuples

{(a^e, ..., ane): akeA}

(algebraic operations are performed coordinatewise) and with norm

Let v(n) be the representation of A defined on AeM by

y^iaXa^, ..., ane) = {aaxe, ..., aane).

Corollary 4.2. Assume the hypotheses of Proposition 4.1 hold. Let I be the
minimal closed ideal cl (AeA). Then Uj is equivalent to y(n) on Ae^"\

Proof. Let {xu ..., xn} be a basis for &(n(e)). Then by Proposition 4.1,
cl (n(I)X) = n{AeA)X = n(A)xl®...@n(A)xn.

Define
V(aie, ..., ane) = 7t(a1)x1 + ... + n(an)xn.

An elementary computation verifies that n{ = Vy^V'1.

Corollary 4.3. Let A be an algebra such that every minimal left ideal of A is
complete and every m.i. of A is full in A. Let n be a continuous representation of A
on X such that ^(5^) <= 3f(X). If I is a minimal closed ideal of A that contains a
m.i. e such that n(e) # 0, then nt is equivalent to y(n) on Ae(n) for some integer n.

Proof. The projection n(e) is a compact operator and therefore must have
finite dimensional range. Thus the result follows from the previous corollary.

Now we consider the representations %l in the general case. Our treatment
essentially follows Chernoff's description of the representations of
(8, Section 2).
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Let e be a m.i. of A, and let n be a continuous representation of A into
®(X) with 7t(e) # 0. Set M = @(n(e)). Define »V AexM^-X by

W0(ae, m) = 7t(a)w, a e A, me M.
Wo is a bilinear map of Ae x M into X. Then Wo extends to a linear map
PF: Ae®M-+X such that W(ae®m) = W0(ae, w) = 7i(a)/w.

Let y denote the left regular representation of A on y4e.
(1) W(y(b)®l) = n{b)Won ^e®M for all 6 e ^ .

To prove (1), let ae®m be an elementary tensor in Ae®M. Then

W(y(b)®l)(ae®m) = W(bae®m)

= n{b)n(ae)m

(2) W is one-to-one on Ae®M.

For suppose that t = ale®ml+...+ane®mn where {^e, ..., ane) is
linearly independent in Ae and ^ ( 0 = 0. By the Density Theorem for Irreduc-
ible Modules (13, p. 28), for each j , 1 ^ j ^ n, there exists bj e 4 such that
bjOj-e = e and b}ake = 0, if k / 7.' (Note: in applying the Density Theorem,
Ae is a strictly irreducible left /4-module and the centraliser T of Ae is the collec-
tion of linear operators that act on Ae by right multiplication by elements of the
form ebe, b e A. Thus in our case, T is isomorphic to the complex numbers.)
Then

0 = n(bjW(t) = W(y(bj)®l)(t)
= W(e®m) = TO,-, 1 ̂  j ^ n.

Therefore t = 0.
Define a function ||. ||, on Ae®M by || / 1 | , = || W(t) ||. By (2), ||. ||. is a

norm on Ae®M. Let ^etg^Mbe the completion of Ae®M with respect to the
norm ||. ||B.

(3) W extends to an isometry V of Ae®nM onto Xt = cl (n(AeA)X).
To prove (3), first note that by definition || W{t) \\ = || t ||n for all f e ^e® Af.

Thus ^extends uniquely to an isometry V: Ae®nM-+X. Also,
SHY) = cl {®(W%

and ^ ( ^ ) = 7i(̂ )Af. Therefore

n(AeA)X = 7t(/4)7i(eA)X = n{A)M = @(W).
Thus ^?(F) = Xi.

Consider the representation y® 1 acting on Ae®M. IfaeA and t e Ae®M,
we have

= \\n(a)W(t)\\ by(l)

g || 7i || || a ||

= II n || || a ||
E.M.S.—19/2—N
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Thus y®l is a continuous representation of A on (Ae®M, | | . | |J. Let p be
the unique extension of y®\ to a continuous representation of A on Ae®nM.

Now we have all the ingredients for a characterisation (up to equivalence)
of the representation nt where / is the minimal closed ideal cl (AeA).

Theorem 4.4. The representation nt on Xx = cl (n(I)X) is equivalent to the
representation p on Ae®nM.

Proof. By (3), W extends to an isometry V of Ae®nM onto Xt. By (1),
W(y(b)® 1) = n(b)W on Ae®M for all be A. It follows that Vp(b) = n{b)V
on Ae®JA for all b e A. This proves the result.

If e is a m.i. of A and M is a normed linear space, it is not difficult to con-
struct a representation of /4 having essentially the same form as the representa-
tion p defined above. Let y be the left regular representation of A on Ae. Let
||. || j be any norm on Ae®M such that, for some K>0,

Uy(b)®l)t\\1^K\\b\\\\t\\1

for all b e A and all / e Ae®M. For example, ||. || t might be the greatest
crossnorm on Ae®M (see (9, p. 373)). Then define T to be the unique extension
of y® 1 to X, where Xis the completion of (Ae®M, ||. || x). The representation T
has the same form as the representation p. Also, we note that if M is a Banach
space, and if there exist P>0, Q>0 such that

P\\m\\^\\e®m\\1^Q\\m\\
for all me M, then M{%(e)) in X is {e®m\ meM) which of course is iso-
morphic to M.

Corollary 4.2 and Theorem 4.4 determine the structure of %t when / is a
minimal closed ideal of A which contains a m.i. and n is a continuous representa-
tion of A such that n{T) ̂  {0}. In some cases the representation n can be
written as an unconditional sum of the representations

{itj: I a minimal closed ideal of ,4}.
We describe the summation process in what follows.

If Y is a normed linear space, A is an index set, and {yx: A 6 A} is a collection
of vectors in Y, we write y = ~Lyk if the net of finite sums

{SF = -LXeFyx: FcA, F finite}
converges to y in Y. Also, if J<= A, let

i?[J] = {aeA: Ja = {0}}.
Now assume that n has the property that cl (n(SA)X) = X. Let / be a

minimal closed ideal of A. Let Xt = cl (n(I)X) and X2 = cl

Proposition 4.5. If either
(1) A = LP (G), 1 ^ p<<x>, G a compact topologicalgroup, or
(2) A is a dual B*-algebra, then X = X1@X2.
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Proof. First assume (1). Then / is finite dimensional by (14, Lemma 4).
Then by (2, Lemma 6.1), / has an identity w. Clearly, 7I(M)^! = xx for all
xte Xu and n(u)x2 = 0 for all x2e X2. If xx e A\ and x2€ X2, then

II x, || = || 7i(u)(x1+x2) || 5S || n(u) || || x, + x2 ||.
Thus X± + X2 is closed, and since n(SA)X<=X1 + X2, we have X = Xl@X2.

Suppose now that A is a dual i?*-algebra. If au ..., an are in St, by (3,
Lemma 2.3) there exists an idempotent e e St such that e = e* and eak = ak,
l g i t g n . Then \\e\\ = 1. Thus if b e /?[/] and xu ..., xn,ye X, then

g || n || || (n(at)Xl + ...+n(an)xn) + n(
It follows from this inequality that X = ^ © A V

Assume that .4 satisfies either (1) or (2) of Proposition 4.5 and that
X = cl (n(SA)X).

Let {Ix: l e A } be the collection of all the minimal closed ideals of A. By
Proposition 4.5 for each A e A there exists a continuous projection Px on A'with
range cl (n(Ix)X) and null space cl (n(R[Ix~])X). For each xe X, let xA = Px(x).
Also, let 7tA denote the representation n \ M(P^) = nt .

Now if A is either a dual 2?*-algebra or L2(G), G a compact topological group,
then for any closed ideal J of A, we have y4 = 7 © J R [ J ] . In particular, for each
X 6 A, y4 = 7A©/?[/^]. Let gA be the continuous projection on A with range Ix

and null space i?[ /J . If aev4, letaA = 2A(°)- It follows from (1, Theorem 3.5)
that a = Y.ax for all a e A.

We use the notation and information established above in the next two
propositions.

Proposition 4.6. Assume that A is a B*-algebra. Let n be a continuous
representation of A into 3S(X) such that cl (n(SA)X) = X. Then for all xe X
and all as A,

x = ~Lxx and n(a)x = Y.nx(a)xx.

Proof. Let B = cl (SA). Then by (15, Theorem 2.1) B is a dual £*-algebra.
Since B has a bounded approximate identity, Cohen's Factorisation Theorem
(12, Theorem 32.22) implies that

{n(b)y: b e B, y e X} = cl (n(B)X) = X.
If x € X, then JC = n(b)y for some b e B, y e X. Furthermore, b = T.bx. Then
x = Z7i(2>A)_v, and xx = -P^x) = I ^ A ) ^ - Therefore x = l,xx, and if a e A,

n(a)x = Zn(a)xx = I.nx(a)xx.

Proposition 4.7. Let G be a compact topological group. Let nbea continuous
representation ofL1(G) into 3$(X) such that n is essential (i.e. cl (n(Ll (Gj)X) = X).
Then for all x e n(L2(G))X and allfe L\G),

x = ExA and n(f)x = Znx(f)xx.
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Proof. Note that n is continuous on L2{G) with respect to the L2-norm.
L2(G) is an //*-algebra (see (16, p. 100)). Assume that x = n(g)y where
g e L2{G), yeX. Then g = lLgx, so that x = I,n(gx)y = Zxx. Then

n(f)x = ZTT.C/X
whenever/e L (G).

5. Some applications
Throughout this section n is a continuous representation of A into ^ (Z ) .

In the case when A = <%(Y) for some Banach space Y, we also assume that n
maps the identity in £fi{ Y) on to the identity in SB{X). The aim of this section is
to apply Theorem 3.3 in the case where the representation space A'is certain of
the classical Banach spaces.

Proposition 5.1. Assume that every minimal left ideal of A is complete and
that every m.i. of A is full in A. Also, assume that cl (n(SA)X) = X. If X = lp,
1 ^ p < oo, or X = c0, then any minimal left ideal of A not contained in ker (n)
is either finite dimensional or bicontinuously isomorphic to X. If X = C(K),
K a compact Hausdorff space, then any minimal left ideal of A not contained in
ker (n) is either finite dimensional or non-reflexive.

Proof. Let e be a m.i. if A such that n{e) / 0. Choose jq e X such that
n(e)xl = x1 j= 0. Then by Theorem 3.3 Ae is bicontinuously isomorphic to
7t(/4)x1 and T I ^ ) ^ is a closed complemented subspace of X. Therefore the
first conclusion of the proposition follows from (17, Theorem 1), and the second
from (10, Corollaire du Proposition 5).

Corollary 5.2. Assume that Y is infinite dimensional and that A is a sub-
algebra of &(Y) such that ^(Y)<=A. Assume that n is continuous with respect
to the operator norm and cl (n(^( Y))X) = X. If X = lp, 1 g p<oo, or
X = c0, then Y is bicontinuously isomorphic to X. If X = C(K), then Y is non-
reflexive.

Proof. Consider A as normed with the operator norm. Then Proposition
5.1 applies to A. Since every minimal left ideal of A is bicontinuously iso-
morphic to Y, the corollary follows.

In some cases the hypothesis that X = cl (n(SA)X) can be replaced by
special hypotheses on A. This is true in the next result which is a generalisation
of (6, Corollary 6.15). Also, Proposition 5.4 can be applied in an obvious way
to replace the hypothesis that X = cl (n(SA)X) in part of Corollary 5.2.
Proposition 5.4 is a slight modification of a result communicated to us by the
referee.

Corollary 5.3. Assume that A = 38{Y) where Y is an infinite dimensional
Banach space with a symmetric basis. Let n be a continuous representation of A
into SS{X) where X = lp, 1 ^ p<oo, or X = c0. Then Y is bicontinuously
isomorphic to X.
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Proof. It follows from (6, Corollary 6.13) that c\(n(2F(Y))X) = X. Then
Corollary 5.2 implies the result.

Proposition 5.4. Assume that Y is a Banach space with the approximation
property. Let A be a closed subalgebra of 83(Y) such that J?'(Y)<=A. Let n
be a continuous representation of A on a reflexive Banach space X. Then
Z = cl (n(^(Y))X) is complemented in X.

Proof. Since Y is bicontinuously isomorphic to a closed subspace of X,
Y is reflexive. Also, by hypothesis, Y has the approximation property. It
follows that there exists a bounded net {Fx}cztF{Y) which converges to the
identity operator on Y in the strong operator topology (see A. Grothendieck,
Memoirs of the Amer. Math. Soc, Number 16, Corollaire 2, p. 181). Now for
any y e Y, g e Y*, we have Fa(g | y)-*{g \ y) in the operator norm, so that
n(Fx)n(g \ y)-*n(g | y) in norm in 33{X). It follows that n(F^)-*I pointwise on
n(SA)X, and since {n(Fx)} is bounded, 7i(Fa)-»/ pointwise on Z. By hypothesis
X is reflexive, and therefore closed balls in <%(X) are compact in the weak
operator topology. Thus {n(FJ} has a cluster point Ps 3§{X). Then P(X)cZ
and P = I on Z. Thus P is a bounded projection of X onto Z.
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