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Reflections and focusing of inertial waves in a
tilted librating cube
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A fluid-filled cube rotating about an axis passing through the midpoints of opposite edges
is subjected to small librations (i.e. modulation of the mean rotation). Low viscosity
regimes, with Ekman number as small as 10−8 and equally small relative forcing
amplitude, are explored numerically. The full inertial range of forcing frequencies, from
0 to twice the mean rotation rate are considered. The response flows are dominated
by inertial wavebeams emitted from edges and/or vertices, depending on the forcing
frequency. How these reflect on the cube’s walls and focus onto edges and vertices lead
to intricate patterns. Most of the results can be reconciled using linear inviscid ray-tracing
theory with careful attention to wavebeam emissions and reflections. However, even at the
low Ekman number and relative forcing amplitude considered, other effects are discernible
which are not captured by ray tracing. These include a symmetry breaking due to viscous
effects and a progressive wave, retrograde to the mean rotation and localized in the
boundary layers of the cube, due to nonlinear effects and the librational forcing.

Key words: waves in rotating fluids, rotating flows

1. Introduction

Response flows driven by libration (small-amplitude harmonic modulation of the fast mean
rotation) in axisymmetric containers (spheres, spherical shells, cylinders, annuli) are solely
driven by viscous torques. On the other hand, in non-axisymmetric containers, the motions
of the walls are not solely tangential to the walls and the effects of the resulting pressure
torques can be dominant. These are present as topographic effects in practical situations,
but the typically irregular topography leads to challenges in their systematic investigation.
A cube rotating about an axis that is neither parallel nor orthogonal to any of its walls

† Email address for correspondence: juan.m.lopez@asu.edu

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 947 A10-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:juan.m.lopez@asu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.639&domain=pdf
https://doi.org/10.1017/jfm.2022.639


K. Wu, B.D. Welfert and J.M. Lopez

x
y

z

(a) ξ̂ = (0,0,1)

x
y

z

(b)

x
y

z

(c)ξ̂ = (1,1,1)/�3 ξ̂ = (0,1,1)/�2

Figure 1. Schematics of the cube librating about a rotation axis, ξ̂ , passing through (a) the centre of opposite
faces, considered in Boisson et al. (2012) and Wu, Welfert & Lopez (2018), (b) opposite vertices, considered
in Wu et al. (2020) and (c) the centre of opposite edges (present study).

provides a simple geometry in which pressure torques are important and yet still allows
for both efficient modelling and numerical simulations as well as precise experiments. Of
particular interest is how the reflections of inertial wavebeams in rotating containers with
some walls neither parallel nor orthogonal to the mean rotation axis introduce peculiar
consequences (Phillips 1963), such as their focusing either into interior regions (Maas
2001; Manders & Maas 2003; Maas 2005; Jouve & Ogilvie 2014; Klein et al. 2014;
Sibgatullin & Ermanyuk 2019; Boury et al. 2021) or onto edges or vertices of the container
(Greenspan 1969; Beardsley 1970; Troitskaya 2010a,b; Wu, Welfert & Lopez 2020).

In this paper, we investigate numerically the flow in a cube rapidly rotating about an
axis passing through the midpoints of two opposite edges, subjected to small-amplitude
librational forcing. In this orientation, two opposite walls of the cube are parallel to the
mean rotation axis while the other four walls are oriented obliquely at ±45◦ with respect
to the mean rotation axis. The study of this orientation completes the investigation of
the impacts of libration on the trilogy of proper rotations of the cube (see figure 1 for
schematics of the three scenarios). The first case of the trilogy, where a cube rotating
around an axis passing through the centre of two opposite faces, with all faces of the
cube either parallel or orthogonal to the axis of rotation, was studied by Maas (2003)
in the linear inviscid setting. Boisson et al. (2012) studied this case experimentally by
subjecting the cube to small amplitude librational forcing, and Wu et al. (2018) reproduced
their experimental observations using direct numerical simulations of the Navier–Stokes
equations. With none of the cube walls aligned obliquely to the mean rotation axis,
the response flows consisted of resonantly excited inertial eigenmodes of the unforced
rotating cube together with internal shear layers whose orientations are governed by the
linear inviscid dispersion relation. For certain forcing frequencies in the inertial range
(libration forcing frequencies less than twice the mean rotation of the cube), the inertial
beams retraced and the modes resonated. The second case of the trilogy was studied in
Wu et al. (2020), with the cube mean rotation axis being a diagonal passing through two
opposite vertices, such that all walls of the cube are oblique to the rotation axis. In this
case the response flows are dominated by inertial wavebeams emitted from some edges
and/or vertices of the cube, depending on the libration frequency. Due to the peculiar
reflection laws for inertial wavebeams at oblique walls, intricate patterns of intersecting
and focusing wavebeams emerged for low Ekman numbers (ratio of mean rotation period
to viscous time), which were remarkably well reproduced using a vector-based approach
for the inviscid reflection laws.
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Inertial waves in a tilted librating cube

In the two earlier studies, both the Ekman number, E, and the relative forcing amplitude,
ε, were kept equal and small, down to E = ε = 10−6 in Wu et al. (2018) and E = ε = 10−7

in Wu et al. (2020). With small E, the fast rotation provides a strong restorative force
and any small disturbances introduced into the interior of the container are constrained
to being circularly polarized inertial waves aligned with the characteristics (Greenspan
1968). Keeping the libration amplitude, ε, small results in the response flow being a
synchronous periodic flow, invariant to the spatio-temporal symmetries of the forced
system, whose velocity magnitude (relative to the mean solid-body rotation) scales linearly
with ε. For the present study, we are able to further reduce the Ekman number and the
relative forcing amplitude by one order of magnitude to E = ε = 10−8 by implementing a
new numerical scheme with improved numerical stability characteristics and a third-order
accurate temporal integration scheme. The governing equations and their symmetries,
and the numerical technique used to solve them are described in § 2. Section 3 presents
details of the forced response flow over the whole range of forcing frequencies supporting
wavebeams. It is shown to consist, as in Wu et al. (2020), of unsteady boundary layers
on the faces of the cube which meet at edges, with vortex sheets entering into the interior
from select edges depending on the forcing frequency. We use the linear inviscid theory
developed in Wu et al. (2020) to trace wavebeams from the edges from which they emerge
all the way to the edges and vertices where they focus, following multiple reflections off
faces and, possibly, edges. The theoretical predictions are compared in § 5 with the viscous
nonlinear simulations from § 3. At low forcing frequencies, the focusing renders nonlinear
and viscous effects non-negligible, even in the E = ε = 10−8 case. As noted by Busse
(2010), experimental measurements of responses to low-frequency librational forcings are
missing from the literature. Simulations and theory in the vanishing forcing frequency
regime are also scarce.

2. Governing equations and numerics

Consider a cube of side lengths L, completely filled with an incompressible fluid of
kinematic viscosity ν and rotating at a mean rate Ω that is modulated harmonically at a
frequency σ with amplitude �Ω . The system is non-dimensionalized using L as the length
scale and 1/Ω as the time scale, and described in terms of a non-dimensional Cartesian
coordinate system x = (x, y, z) ∈ [−0.5, 0.5]3 that is fixed in the cube, with the origin at
the cube centre, and the corresponding non-dimensional velocity field is u = (u, v, w).
The direction of the rotation axis is ξ̂ = (0, 1, 1)/

√
2, and the non-dimensional angular

velocity is

Ω(t) = [1 + ε cos(2ωt)] ξ̂ , (2.1)

where the non-dimensional libration frequency 2ω = σ/Ω > 0, and the relative amplitude
ε = �Ω/Ω is the corresponding Rossby number. Figure 2 shows a schematic of the
system. The non-inertial frame of reference attached to the librating cube introduces both
Coriolis and Euler body forces into the (non-dimensional) governing equations

∂u
∂t

+ (u · ∇)u + 2Ω × u + dΩ

dt
× x = −∇p + E∇2u, ∇ · u = 0, (2.2a,b)

where E = ν/ΩL2 is the Ekman number and p is the reduced pressure which incorporates
the centrifugal force. In this frame of reference, the no-slip boundary conditions are u = 0
on all six walls of the cube. The two faces of the cube at x = ±0.5 are parallel to the axis
of rotation. The four remaining faces are inclined at ±45◦ relative to the rotation axis ξ̂ .
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Ω(t) = [1 + ε cos(2ωt)]ξ̂ Plane y = z(b)(a) (c) (d )Plane x = 0 Plane y = −z

Figure 2. Schematic of the cube librating about the rotation axis, ξ̂ = (0, 1, 1)/
√

2, and three planar
cross-sections used for enstrophy density visualizations. The y = z plane is a meridional plane with its ‘top’
and ‘bottom’ corresponding to the two polar edges of the cube and the sides are diagonals of the two walls
of the cube parallel to the rotation axis. The plane x = 0 is another meridional plane, the ‘top’ and ‘bottom’
corners are the poles where the rotation axis bisects the polar edges of the cube and the side corners bisect the
two equatorial edges of the cube. The plane y = −z is the equatorial plane, orthogonal to the rotation axis; its
‘top’ and ‘bottom’ are the two equatorial edges of the cube and its sides are the other diagonals of the two walls
of the cube parallel to the rotation axis.

Four of the edges are orthogonal to ξ̂ , while the remaining eight edges are inclined at ±45◦

relative to ξ̂ .
In order to study the flow response to librational forcing in the fast mean rotation and

small forcing amplitude regimes, the Ekman number E and forcing amplitude ε should
be as small as is practical. To put this into perspective, experiments on a librating cube
typically have E ∼ 10−5 and ε ∼ 10−2 (Boisson et al. 2012), and in the related numerical
study, Wu et al. (2018) used E = ε = 10−6. In the Coriolis platform at Grenoble, the radius
is approximately 6.5 m and the maximum rotation rate is approximately 0.008 rad s−1,
so using water at room temperature results in a smallest achievable Ekman number of
approximately 3 × 10−6 (Godeferd & Moisy 2015). For the present study, we have been
able to reduce these to E = ε = 10−8 by employing a more robust and numerically
unconditionally stable spectral scheme developed by Wu, Huang & Shen (2022). At
present, how small an E can be considered is limited not by numerical issues but rather by
the available memory to process the solutions, which require greater spatial resolution as
E is further reduced.

The governing system is discretized in space using the Legendre–Galerkin spectral
approach of Shen (1994), with Legendre polynomials of degree m for the velocity
components and m − 2 for the pressure in all three directions, with m ranging from
m = 50 for the largest Ekman numbers considered to m = 350 for E = 10−8. The resulting
semi-discrete system is integrated in time using a consistent splitting scheme for the
Navier–Stokes equations, introduced in Guermond & Shen (2003), together with the
scalar auxiliary variable stabilization scheme for general dissipative systems, developed in
Huang, Shen & Yang (2020). The resulting scheme is unconditionally stable, third-order
accurate in time for both the velocity and the pressure and only requires the solution of
decoupled linear systems with constant coefficients at each time step. For all values of
the Ekman number E, the number of time steps per forcing period used ranges from 100
at high forcing half-frequencies, ω � 0.1, to as many as 6400 for 0.01 � ω � 0.09. The
solution, u and p, at an instant in time for E = 10−8 has 4 × 3 × 3513 ≈ 5 × 108 degrees
of freedom (the factor 4 accounting for the three components of velocity plus pressure, and
the factor 3 accounting for the three stages needed for the third-order temporal scheme).
This results in a file of size 4 Gb using double-precision floating point numbers.
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Inertial waves in a tilted librating cube

The governing equations and boundary conditions are invariant to R, a discrete rotation
of angle π about ξ̂ , and to S , a reflection through the ‘equatorial plane’ y = −z (this plane
is shown in the last panel of figure 2). The actions of these two symmetries on the velocity
are

R : [u, v, w](x, y, z, t) �→ [−u, w, v](−x, z, y, t), (2.3)

S : [u, v, w](x, y, z, t) �→ [u, −w, −v](x, −z, −y, t). (2.4)

Their composition, C = RS = SR, is a centrosymmetry whose action is

C : [u, v, w](x, y, z, t) �→ [−u, −v, −w](−x, −y, −z, t). (2.5)

As the system is periodically forced, with period τ = π/ω, it is invariant to the time
translation symmetry

T : [u, v, w](x, y, z, t) �→ [u, v, w](x, y, z, t + τ). (2.6)

Keeping the librational forcing amplitude ε small, the responses are symmetric limit
cycle flows synchronous with the forcing, with the Euclidean magnitude of u linearly
proportional to ε, with u → 0 as ε → 0. This scaling has been tested using a range of ε

for fixed E, with ε < E1/2 
 1. All reported results were obtained using ε = E. All of
this makes it convenient and appropriate to introduce a scaled velocity v = ε−1u, which
remains of order one as ε → 0. The Navier–Stokes equations (2.2a,b) can then be rewritten
in terms of v

∂v

∂t
+ ε(v · ∇)v + 2Ω × v + ∇q − E∇2v = 2ω sin(2ωt) ξ̂ × x, ∇ · v = 0, (2.7a,b)

where q is the corresponding scaled pressure. This formulation emphasizes that the
modulation associated with the Euler force (right-hand side term) is of order one and
drives a flow v of order one, while the nonlinear and viscous terms have small equal
factors, ε = E 
 1.

As with the studies of the other orientations of the librating cube (Wu et al. 2018, 2020),
variations in global measures over the inertial frequency range are used to provide a first
overview of the forced response flows. The forced flow inside the cube is quantified using
two global measures, the kinetic energy and the enstrophy (both associated with v)

K = 1
2 〈v, v〉 = 1

2

∫
vol

|v|2 dx and E = 〈ω, ω〉 =
∫

vol
|ω|2 dx, (2.8a,b)

where ω = ∇ × v is the vorticity, 1
2 |v|2 is the kinetic energy density and |ω|2 is the

enstrophy density. To make a connection between kinetic energy, enstrophy and the
librational forcing, we consider the energy equation. Using the following identities relating
v and ω:

(v · ∇)v = ∇
(

1
2 |v|2

)
+ ω × v,

∇2v = ∇(∇ · v) − ∇ × ω = −∇ × ω,

⎫⎬⎭ (2.9)

the Navier–Stokes equations in the librating frame of reference, (2.7a,b), can be rewritten
as

∂v

∂t
+ ∇

(
q + ε

2
|v|2

)
+ (εω + 2Ω) × v + E ∇ × ω = 2ω sin(2ωt) ξ̂ × x. (2.10)

947 A10-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.639


K. Wu, B.D. Welfert and J.M. Lopez

Multiplying (2.10) by v, using the incompressibility condition and the identity

v · (∇ × ω) = |ω|2 + ∇ · (ω × v), (2.11)

yields the energy equation

∂

∂t

(
1
2

|v|2
)

+ E |ω|2 + ∇ · s = 2ω sin(2ωt) v ·
(
ξ̂ × x

)
, (2.12)

where the right-hand side forcing term results from the Euler force associated with the
libration, and

s = qv +
(ε

2
|v|2

)
v + E(ω × v). (2.13)

The Lamb vector, ω × v, plays an important role in the transport of vorticity. Integrating
(2.12) over the volume of the cube then leads to

dK
dt

+ EE + D(v) = 2ω sin(2ωt)
∫

vol
v ·

(
ξ̂ × x

)
dx, (2.14)

where

D(v) =
∫

vol
∇ · s dx. (2.15)

The relation (2.14) expresses a power balance between global kinetic energy dissipation,
enstrophy production, work done by the non-uniform librational (Euler) forcing, with
v · (ξ̂ × x) = ξ̂ · (x × v) the (relative) axial angular momentum, and a residual term D(v).
When v has sufficient regularity, Gauss’s divergence theorem together with the no-slip
boundary conditions result in D(v) = 0. This is the case for numerical simulations with
sufficient spatial resolution obtained at finite E. In the limit E → 0, however, (2.14) has to
be understood in a distributional sense and (2.15) may not vanish, resulting in anomalous
diffusion (Onsager 1949; Duchon & Robert 2000).

3. Response to low-amplitude librations

3.1. Global responses
We begin by considering how the time-averaged kinetic energy,

K̄ = 1
τ

∫ τ

0
K dt, (3.1)

and the time-averaged enstrophy,

Ē = 1
τ

∫ τ

0
E dt, (3.2)

vary with the forcing half-frequency ω, over the range 0 < ω ≤ 1.1. In view of (2.14),
it is natural to consider scaling Ē by E. Figure 3(a,b) shows the variations of K̄ and EĒ
with ω for 10−5 � E � 10−8. These same response diagrams are reproduced in log–log
format in figure 3(c,d). Flows with E > 10−5 are not considered as the mean rotation is
too weak and the associated response flows are strongly influenced by viscous effects. At
any given ω, as E decreases, the K̄ response increases, as can be expected from reduced
viscous dissipative effects, while the EĒ response appears to converge to a non-trivial
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Inertial waves in a tilted librating cube
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Figure 3. (a,b) Variation of K̄ and E Ē with ω at E as indicated; (c,d) same as (a,b) using logarithmic scales.
(e, f ) Ratios of K̄ and Ē at consecutive E values from (c,d), estimating power-law scalings K̄ ∼ EαK and
Ē ∼ EαE . The grey area indicates forcing frequencies beyond the inertial range.

(positive) value for 0 < ω < 1. However, both the increase in K̄ and the convergence of
EĒ appear to be qualitatively different in the forcing frequency ranges (i) ω � 0.29, (ii)
0.29 � ω � 0.71 and (iii) 0.71 � ω � 1.

In the range ω � 0.29, the increase in K̄ is more pronounced and the self-similar
collapse of EĒ is faster as E → 0, compared with their behaviour at larger ω. At ω ≈
0.29, the response curves develop a singular behaviour as E → 0, with both K̄ and EĒ
experiencing sharp drops, of up to one order of magnitude for K̄, as ω is increased across
0.29. The behaviour at small ω � 0.29 is elucidated in the log–log format of the response
diagrams, which show that both K̄ and EĒ increase proportionally with ω2, up to ω ≈ 0.1
for EĒ , but only up to a cutoff ω, which decreases to 0 with E → 0, for K̄. At ω ≈ 0.71,
there is a small uptick, especially noticeable in the K̄ response at the smaller values of E.
In the upper inertial range and beyond, ω � 1, K̄ appears to converge to a limit as E → 0,
while Ē varies approximately as E−0.5.

In order to better capture how K̄ and Ē scale with E as E → 0 throughout the inertial
range, the base 10 logarithm of ratios of their values obtained at E and 10E for E = 10−k,
with 5 � k � 8 associated with the consecutive response curves in figure 3(c,d), are
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plotted against ω in figure 3(e, f ). These quantities, αK and αE , provide approximate
power-law scalings of the form K̄ ∼ EαK and Ē ∼ EαE within the given range of Ekman
numbers, [E, 10E], confirming the observations made above in the limit E → 0: for
0 < ω � 0.29, Ē ∼ E−1, whereas for ω � 1 K̄ is independent of E and Ē ∼ E−0.5. The
scalings for ω � 1 are consistent with the findings from Nosan et al. (2021), where
evanescent disturbances driven by forcing frequencies approximately equal to twice the
mean rotation (i.e. ω ≈ 1) were found to be ‘more or less independent of viscosity’
(i.e. independent of E).

Figure 3(e, f ) also reveals that, while one can expect Ē ∼ E−1 in the limit E → 0 to
hold uniformly for 0 < ω < 1 (excluding ω � 0.29 and perhaps 0.71), this asymptotic
behaviour remains far from being reached, even at E = 10−8, in the upper inertial ω-range.
Likewise, the ultimate scaling of K̄ as E → 0 is also hard to predict, particularly at low
ω, with a possible singular behaviour at ω = 0 as well. Quite remarkably, however, the
exponents αK and αE obtained from figure 3(e, f ) at the singular ω ≈ 0.29 for both K̄ and
Ē seem stable and independent of E, namely K̄ ∼ E−0.3, Ē ∼ E−1.05 (ω ≈ 0.29−) and
Ē ∼ E−0.84 (ω ≈ 0.29+).

3.2. Description of the response flows
The differences in enstrophy responses in various ω ranges noted in figure 3 correspond
to distinct spatial features in the enstrophy density |ω|2. Figure 4 shows snapshots of
E|ω|2, for E = 10−8, at the zero phase of the librational forcing for a selection of forcing
half-frequencies 0 < ω < 1. The first three columns show E|ω|2 in the two meridional
planes, y = z and x = 0, and the equatorial plane, y = −z. The fourth column shows
these planes in the cube with the three-dimensional perspective view corresponding to
the schematic in figure 2. The fifth column shows E|ω|2 at zero phase on the surface of the
cube.

In the y = z meridional plane, the enstrophy density exhibits characteristics one
could anticipate from a purely two-dimensional flow in a container of aspect ratio
1 :

√
2, with the rotation axis through the centre and pointing vertically. The linear

dispersion relation, ω2 = sin2 θ , determines the angle θ between the characteristics and
the rotation axis. At ω = 1/

√
3 ≈ 0.58, the characteristics emanating from the corners

of the rectangular cross-section retrace from diagonally opposite corners. For smaller ω,
the angle θ becomes smaller and the characteristics emanating from corners reflect off
the top and bottom (polar) edges multiple times. The enstrophy density is concentrated
along the characteristics. In contrast, for ω > 0.58, the enstrophy density is no longer
concentrated along the characteristics, but instead the characteristics delineate regions
of near constant enstrophy density. In addition, in this ω-regime, horizontal bands of
concentrated enstrophy are also present and become dominant as ω → 1. These bands
are not a two-dimensional phenomenon. From the other meridional plane, x = 0, these
bands are seen to correspond to other inertial planar wavebeams that intersect the y = z
meridional plane.

The meridional plane x = 0 has aspect ratio 1 : 1, with the axis of rotation being vertical
and passing through the centre as well as two corners, corresponding to the midpoints of
the two polar edges of the cube at y = z = ±0.5. The sides of this meridional plane make
angles ±45◦ with the rotation axis. At ω = 1/

√
2 ≈ 0.71, characteristics emanating from

the corners are oriented along the sides of the plane. For ω > 0.71, characteristics from the
equatorial corners penetrate into the interior along directions forming the angle θ with the

947 A10-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.639


Inertial waves in a tilted librating cube

ω y = z x = 0 y = −z Interior Surface

0.95

0.82

0.71

0.58

0.33

0.20

0.05

10–8 10–6 10–4 10–2 100 10–4 100 104

(a) (b)

Figure 4. Snapshots of E|ω|2 at zero phase of the librational forcing on interior planes and on the cube surface
(see figure 2 for plane orientations), for E = 10−8 and ω as indicated. Supplementary movie 1 available at
https://doi.org/10.1017/jfm.2022.639 shows animations of these over one libration period, τ = π/ω.
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K. Wu, B.D. Welfert and J.M. Lopez

rotation axis consistent with the dispersion relation; these eventually focus into the polar
corners following multiple reflections. On the other hand, for ω < 0.71, the characteristics
emanate from the polar corners and tend to focus into the equatorial corners. The intensity
of the enstrophy density increases upon each reflection off the walls, which are oblique to
the rotation axis. Perhaps unexpectedly from a two-dimensional perspective, the focusing
and intensification of the enstrophy density into the equatorial corners is not present in
this plane at very low ω. There are additional features of the enstrophy density in this
plane associated with the three-dimensionality of the flow. For example, at ω = 0.33, there
appear to be two sets of inertial wavebeams emanating from the polar corners, only one
of which corresponds to the characteristic directions in that plane. At ω = 0.58, 0.71 and
0.82, different regions of enstrophy density levels are delimited by curves that appear to be
hyperbolic. There is also a vertical line along the rotation axis between the poles, whose
intensity depends on ω.

The three-dimensional nature of the enstrophy density can be further clarified by
considering the equatorial plane, y = −z, in the third column of figure 4. In this view,
the rotation axis is orthogonal to the plane and passes through the centre. At frequencies
ω � 0.58 the dominant features are circular shapes together with a horizontal line through
the axis. The circular shapes correspond to orthogonal cuts through conical inertial
wavebeams emanating from polar vertices above and below the equatorial plane y = −z,
whose intersections with the x = 0 meridional plane produced the observed hyperbolic
curves. The horizontal line is coplanar with the vertical line observed in the x = 0
meridional plane, both of which are in the y = z meridional plane. At ω = 1/

√
3 ≈

0.58, the intersection of the four conical beams with the equatorial plane results in two
semi-circles which exactly meet at the origin (0, 0, 0). The radius of these circular sections
in the equatorial plane is approximately tan(θ)/

√
2 = ω/

√
2(1 − ω2). In particular, this

radius is approximately 0.25, 0.5, 0.71 and 1 at ω = 0.33, 0.58, 0.71 and 0.82, respectively.
At low values of ω, the conic beams have small aperture resulting in many reflections
that intersect the equatorial plane along circular arcs. At ω = 1/

√
2 ≈ 0.71, the conical

beams in the equatorial plane touch the equatorial edges (the top and bottom in the planar
view). For ω > 1/

√
2, the planar beams emanating from the polar edges, that were already

observed in the x = 0 meridional plane, intersect the equatorial plane as they reflect on the
oblique walls and focus on the equatorial edges. As ω is reduced, the intensification of the
enstrophy density associated with the successive reflections of the beams at the oblique
walls is strongly biased towards the vertices of the cube at (x, y, z) = (0.5, −0.5, 0.5)

and (−0.5, 0.5, −0.5). This bias is responsible for the lack of focusing in the x = 0
meridional plane as well as an intricate foliated pattern that radiates out from these two
vertices.

The invariance of the flow to the symmetries R and S amounts to left–right and
up–down reflection symmetries of E|ω|2 in the meridional planes y = z and x = 0, but
only centrosymmetry C in the equatorial plane y = −z. Column four of figure 4, labelled
‘interior’, shows a three-dimensional perspective view of the enstrophy density in the
meridional and equatorial planes, making it easier to reconcile the various traces of planar
and conical beams. The symmetry S about the equatorial plane can also be observed on
the surface plots of the enstrophy density, shown in column five of figure 4, between the
planes y = −0.5 (top side of cube) and z = 0.5 (right side).

The scaled enstrophy density, E|ω|2, on the surface of the cube dominates that in
the interior by orders of magnitude (note the difference in the colour scales). The
predominance of cyan shades indicates that large swathes of enstrophy density with
E|ω|2 ∼ 1 form on the surface. This is especially noticeable at ω = 0.71. At this ω,
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Inertial waves in a tilted librating cube

in accord with the dispersion relation, the wavebeams carrying enstrophy are emitted
essentially tangentially to the walls and have strong interactions with the boundary layers.

All of the description of flows so far have been of a particular snapshot in time. However,
these librationally forced flows are time periodic and, to appreciate this, supplementary
movie 1 animates the flows shown in figure 4 over a libration period τ = π/ω. The
enstrophy density response in the meridional and equatorial planes are dominated by
standing inertial wavebeams. In contrast, the enstrophy density response on the surface
shows a distinct progressive wave travelling in the retrograde direction, akin to a Rossby
wave resulting from the variable axial distance between the bounding walls (Davidson
2013, chapter 3.5). A similar retrograde wave was also observed in Wu et al. (2020). Such
a wave persists in simulations at ω > 1 (not shown).

The surface enstrophy density plots at the lower frequencies, ω � 0.05, show a focusing
of inertial beams into the vertex at (x, y, z) = (0.5, −0.5, 0.5) and its centro-symmetric
counterpart at (−0.5, 0.5, −0.5), with a distinct foliated pattern. The corresponding
interior cross-sectional plots show that this pattern penetrates into the interior of the cube,
with a shape which is almost invariant in the direction of the axis of rotation, as is to
be expected in the low-frequency regime. Supplementary movie 1 shows that this pattern
is also a progressive wave. As ω is increased, the interior cross-sections show a pattern
of lines, with focusing shifting from the two equatorial vertices to the equatorial edges
for ω � 0.29, then to the polar edges for ω � 0.71, with a more uniform response on the
surface.

4. Vertex and edgebeam analysis (VEBA)

In this section, we examine to what extent the features of the flows computed at small
Ekman number and small libration forcing amplitude, E = ε = 10−8, can be captured
from linear inviscid considerations.

The librational forcing leads to interactions between boundary layers at contiguous faces
resulting in inertial wavebeams being emitted from the vertices and edges of the cube. In
the limits of small E and small ε, these beams are well described by circularly polarized
monochromatic waves with (scaled) velocity

v = a sin ϕ + b cos ϕ, (4.1)

where ϕ = k · x − 2ωt, ω is the libration half-frequency, k is the wavevector and b =
±a × k̂, where k̂ = k/|k|. The ansatz v is a solution of the unforced nonlinear Euler
equations, i.e. (2.7a,b) with E = 0 and ω = 0 (Wu et al. 2020, Appendix A). Note that
for this v, the nonlinear term (v · ∇)v = 0, so that (4.1) is a solution of the unforced
equations (free response) for any value of the non-dimensional forcing amplitude ε.

The energy propagates in the group velocity direction,

â = a/|a| = ±(1 − ω2)−1/2
[
ξ̂ − (ξ̂ · k̂) k̂

]
, (4.2)

where ξ̂ is the unit vector in the direction of the rotation axis, with â ⊥ k̂ due to
incompressibility. The dispersion relation (Wu et al. 2020, equation (4.6)),

(ξ̂ · â)2 = 1 − ω2, (4.3)
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Vertex υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8

x −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5
y −0.5 −0.5 0.5 0.5 −0.5 −0.5 0.5 0.5
z −0.5 −0.5 0.5 0.5 0.5 0.5 −0.5 −0.5
ω-range (0, 1) (0, 1) (0, 1) (0, 1) (d, 1) (d, 1) (d, 1) (d, 1)

direction â+ â+ â− â− â± â± â± â±

φ+-range (−α, α)
[−π, α − π)

∪(π − α,π)
— —

(
α,

π

2

) (π

2
, π − α

) (
−π

2
, −α

) (
α − π, −π

2

)
φ−-range — — (−α, α)

[−π, α − π)

∪(π − α,π)

(
−π

2
, −α

) (
α − π, −π

2

) (
α,

π

2

) (π

2
,π − α

)
Table 1. Direction of beams emitted in the fluid from each of the eight vertices of the cube over the indicated
range of forcing half-frequency ω. For ω � d, α = π/2 and for ω > d, α = arcsin(

√
1 − ω2/ω), where d =

1/
√

2.

guarantees that the wave (4.1) solves the unforced inviscid problem. The relation (4.2) can
be inverted to recover the wavevector from â

k̂ = ±ω−1
[
ξ̂ − (ξ̂ · â) â

]
, (4.4)

so that ξ̂ · k̂ = ±ω (Wu et al. 2020, equation (4.2)).
The dispersion relation (4.3) restricts the half-frequency to the inertial range, 0 < ω <

1, and defines a double cone of rays with directions

â± = ± cos θ ξ̂ + sin θ
(

cos φ êx + sin φ ξ̂ × êx

)
, (4.5)

parameterized by the angle −π < φ � π, measuring the departure from the direction êx
of the projection of the beam onto the plane orthogonal to the axis of rotation. In the
present problem, ξ̂ = (0, 1, 1)/

√
2, êx = (1, 0, 0), sin θ = ω and cos θ = √

1 − ω2, with
0 < θ < π/2. The values of ± and φ depend on ω (i.e. θ ) and the location and nature of
the source of the wave, in particular whether the source is a point or a line.

Each of the eight vertices of the cube acts as a point source from which the energy may
propagate into the fluid interior along any ray, â±, over an appropriate range of angles, φ,
that depends on the forcing half-frequency, ω. This range can be identified by considering
the signs of the three components in the (x, y, z) frame of

√
2 â± = (

√
2 sin θ cos φ, ± cos θ + sin θ sin φ, ± cos θ − sin θ sin φ). (4.6)

For example, beams emanating from the polar vertex υ1, at (x, y, z) = (−0.5, −0.5, −0.5),
must have all three components positive in order to propagate inside the cube, yielding the
conditions ± = +, cos φ > 0 and | sin φ| < cot θ = √

1 − ω2/ω, i.e. |φ| < α with α =
π/2 for ω � 1/

√
2 and α = arcsin(

√
1 − ω2/ω) for ω > 1/

√
2. Thus, beams originating

at υ1 propagate in the interior in directions â+ for |φ| < α. The other three polar vertices
in the plane z = y, labelled υ2, υ3 and υ4, also emit beams in direction â+ or â− into
the interior over the whole inertial range. On the other hand, the equatorial vertices in
the plane z = −y, labelled υ5, υ6, υ7 and υ8, only emit into the interior of the cube for
ω > 1/

√
2, but in both â+ and â− directions. The directions of the emitted beams and

the corresponding range of φ of the vertex beams associated with the eight vertices are
summarized in table 1.
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Inertial waves in a tilted librating cube

Edge e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

x −0.5 −0.5 −0.5 −0.5 0.5 0.5 0.5 0.5 — — — —
y — −0.5 — 0.5 — −0.5 — 0.5 −0.5 0.5 −0.5 0.5
z −0.5 — 0.5 — −0.5 — 0.5 — −0.5 0.5 0.5 −0.5
ω-range (0, d) (0, d) (0, d) (0, d) (0, d) (0, d) (0, d) (0, d) (0, d) (0, d) (d, 1) (d, 1)

direction â+ â+ â− â− â+ â+ â− â− â+ â− â± â±
φ β −β β −β π − β π + β π + β π − β ±π

2
±π

2
π

2
−π

2

Table 2. Direction of beams emitted in the fluid from points on each of the twelve edges of the cube over the
indicated ω-range. Here, d = 1/

√
2 and β = arcsin(ω/

√
1 − ω2).

The twelve edges of the cube act as line sources. Points on an edge emit beams in
parallel directions â±(φ) that form planar vortex sheets tangent to the conic vortex sheets
emanating from the endpoints of the edge, i.e. the associated vertices. This tangentiality
condition determines the specific angle φ of the edgebeams in (4.5). The details of how this
direction is determined are provided in Appendix A. The resulting direction is consistent
with the time-reversal symmetry of the inviscid equations,

Tr : [u, v, w](x, y, z, t) �→ [−u, −w, −v](x, z, y, −t). (4.7)

Note that (4.7) is the same symmetry invoked in Wu et al. (2020) for the case with ξ̂ =
(1, 1, 1)/

√
3 to determine the direction of beams emanating from edges. In both that case

and the present case with ξ̂ = (0, 1, 1)/
√

2, the y and z components of ξ̂ are equal.
Once emitted, the beams eventually reflect on faces, edges or vertices of the cube.

A reflected beam is also circularly polarized, with (scaled) velocity

v′ = a′ sin ϕ′ + b′ cos ϕ′, (4.8)

where ϕ′ = k′ · x − 2ω′t, ω′ = ±ω and b′ = ±a′ × k̂′. The relation between incident and
reflected wavevectors, k and k′, follows criteria originally articulated by Phillips (1963)
and recently expressed in vectorial form by Wu et al. (2020), namely

k′ = k − 2s|k|n̂, (4.9)

where n̂ denotes the normal vector to the reflected surface and

s = (ρ − λ)/(1 − λ2), ρ = k̂ · n̂, λ = (ξ̂ · n̂)/(ξ̂ · k̂). (4.10a–c)

The reflection law (4.9) is in general non-Euclidean, s /= ρ. However, for reflections on
faces parallel to the axis of rotation, whose normal vector n̂ is orthogonal to ξ̂ , λ = 0, s =
ρ and the reflection obeys standard Euclidean laws. This is the case here for reflections on
the faces of the cube at x = ±0.5. Similarly, for reflections on a surface with n̂ = ±ξ̂ , the
reflection is also Euclidean, with λ = 1/ρ and s = ρ. This is the case here for reflections
on the polar edges at y = z = ±0.5 (e9 and e10 in table 2), using an averaging process to
regularize the definition of the normal vector, n̂, for reflections on edges or vertices, as
described in Wu et al. (2020).
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K. Wu, B.D. Welfert and J.M. Lopez

The direction of propagation of the reflected beam’s energy is

â′ = a′/|a′| = ±(1 − ω2)−1/2
(
ξ̂ − (ξ̂ · k̂′)k̂′

)
. (4.11)

Combining (4.4), (4.9) and (4.11), together with (4.10a–c), leads to the expression

â′ = ± [(ξ̂ · n̂)2 − ω2]â + 2(â · n̂)[ω2 n̂ − (ξ̂ · n̂)ξ̂ ]

(ξ̂ · n̂)2 − ω2 − 2(â · n̂)(n̂ · ξ̂)(ξ̂ · â)
, (4.12)

in terms of the incident vector â, with ξ̂ · â and ω obeying the dispersion relation (4.3). In
particular, the direction of â′ is independent of the orientation of â, ξ̂ or n̂. The ratio

|a′|/|a| = |k′|/|k| = |α|, (4.13)

where

α = 1 − 2λs = (1 − 2ρλ+ λ2)/(1 − λ2), (4.14)

determines the change of wavelength upon reflection (Wu et al. 2020, equations (4.21)
and (4.18)). Note that (4.14) is independent of the orientation of ξ̂ , k̂ or n̂. For Euclidean
reflections, α = 1 (λ = 0) or α = −1 (ρλ = 1), and the beam’s enstrophy density, |ω|2,
remains unchanged. Otherwise, the ratio of reflected to incident enstrophy densities is

|ω′|2/|ω|2 = |a′|2|k′|2/|a|2|k|2 = α4. (4.15)

For |α| > 1, there is a decrease in the wavelength (focusing) and an increase in the beam’s
enstrophy density upon reflection.

In the configuration currently being studied, with ξ̂ = (0, 1, 1)/
√

2, the cube’s faces at
x = ±0.5 are parallel to the rotation axis, with λ = 0, on which reflections are Euclidean.
The other four faces are inclined at ±45◦ to the rotation axis, with λ2 = 1/(2ω2) and
the reflections are not Euclidean. There are essentially two VEBA regimes for this
configuration. In one regime, ω < 1/

√
2 and |λ| > 1, the beams are emitted from the

four polar vertices in the meridional plane y = z, υi (1 � i � 4), and from any of the ten
non-polar edges, ei (1 � i � 10). These beams reflect on the faces of the cube and focus
on the equatorial edges, e11 and e12. This is illustrated in figure 5(a–d) for ω = 0.33, with
vortex sheets emanating from υ1 as well as several edges. The reflections are supercritical
on the four faces that are inclined to the rotation axis and Euclidean on the other two faces.
In the other regime, with ω > 1/

√
2 and |λ| < 1, beams are emitted from all eight vertices

υi (1 � i � 8), but only from the two equatorial edges, e11 and e12. This is illustrated in
figure 5(e–g) for ω = 0.82, with vortex sheets emanating from υ1 and equatorial edge e11.
Following subcritical reflections on the inclined faces of the cube and Euclidean reflections
on the other two faces, the beams focus on the polar edges e9 or e10. An illustration of
reflection criticality is provided in Wu et al. (2020, figure 7).

The explicit determination of the traces of the conic vortex sheet emanating from vertex
υ1, the planar vortex sheet emanating from edge e1 and their reflections in the equatorial
plane is included in Appendix B. These traces consist of arcs of circles and segments of
lines which form, at low ω, a criss-crossing pattern whose geometric characteristics are
also described in Appendix B.
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Inertial waves in a tilted librating cube

(a)

υ1

(b)

e10

(c)
e7

(d)

e8

(e)

υ1

( f )

υ5

(g)

e11

10–8 10–6 10–4 10–2 100

Figure 5. The VEBA at half-frequencies (a–d) ω = 0.33 and (e–g) ω = 0.82, showing 10−8α4, with beams
emitted with enstrophy density α4 = 10. (a) Conic vortex sheet emanating from the polar vertex υ1 reflected
onto the walls of the cavity and focusing onto equatorial edges e11 and e12; (b–d) planar vortex sheets emanating
from edges e10, e7 and e8, respectively. (e) Conic vertex sheet emanating from υ1 and focusing onto edge e10.
( f ) Conic vertex sheet emanating from υ5 focusing onto edges e9 and e10. (g) Planar vortex sheets emanating
from edge e11.

In both cases, the ratio (4.14), quantifying the change in the beam’s energy upon
reflection, tends to a limit

α∞ = 1 + 2
√

ω2(1 − ω2)

2ω2 − 1
= ω + √

1 − ω2

ω − √
1 − ω2

= −cot
(π

4
− θ

)
, (4.16)

obtained by applying a result from Wu et al. (2020, equation (C7)). Note that (4.16)
is real over the whole inertial frequency range, 0 < ω < 1, with |α∞| > 1. Also, the
asymptotic rate of increase of the wave speed, α∞, is related to the geometric rate
of focusing, γ = −1/α∞, see (B2). In contrast, the corresponding expression in Wu
et al. (2020, equation (4.25)), resulting from the substitution ω2 → 3ω2/2 in (4.16), for
libration around an axis (1, 1, 1)/

√
3 passing through opposite vertices of the cube, for

which α∞ becomes complex in the range
√

2/3 < ω < 1, with focusing towards polar
vertices. This analogy suggests that the focusing to equatorial vertices observed in the
present configuration in the low-ω regime may be a consequence of viscous effects, which
create a detuning ω2 → ω2 − ω2

0, and the complexification of (4.16) for 0 < ω < ω0.
This conjecture is supported by the sequence of interior cross-sections of E|ω|2 obtained
at small Ekman number, E = 10−8, shown in figure 4, with focusing shifting from the
equatorial vertices to the equatorial edges.
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5. Comparison of inviscid predictions and Navier–Stokes simulations

In the VEBA framework, the enstrophy density is time invariant. As such, it is more
appropriate to compare the enstrophy density from VEBA with the time-averaged
enstrophy density of the forced response from the Navier–Stokes simulations (direct
numerical simulations, DNS) at the smallest values of Ekman number and librational
forcing amplitude available, namely E = ε = 10−8. The scaled time-averaged enstrophy
density, E|ω|2, for the same forcing half-frequencies ω and planar views as in figure 4,
showing snapshots of E|ω|2 at the zero phase of the librational forcing, are shown in
figure 6. The corresponding view of the enstrophy density from VEBA are shown in
figure 7. While VEBA dictates the change in enstrophy density upon reflections, the value
of the enstrophy density of the emitted beams is arbitrary and was set to |ω|2 = 10 in
figure 7 to visually match the DNS results. The regularization of the normal direction at
the polar edges, e9 and e10, results in only Euclidean reflections in the meridional plane
y = z. As a consequence, beams emanating in this plane remain at a fixed energy level
upon reflections, and tend to fill the plane after many reflections. In order to match the
DNS, a dissipation factor of

√
1 − ω2 is introduced into the VEBA at the polar edges.

This is implemented by replacing α from (4.14) with α
√

1 − ω2 for reflections at the polar
edges. The

√
1 − ω2 factor is not needed for the other two planes visualized in the figure,

x = 0 or y = −z, because beams that solely reside in these planes focus into edges.
There is overall good agreement between the DNS and VEBA both in the interior and

the surface, particularly, the sharp maxima of enstrophy density in the DNS. For ω �
0.58, the interior enstrophy density in the DNS has regions of approximately piecewise
constant intensity. These regions are demarcated by surfaces corresponding to vortex
sheets emanating from vertices and edges which are captured by the VEBA. These were
also observed in the librating cube oriented with ξ̂ = (1, 1, 1)/

√
3, shown in figure 1(b),

but not fully appreciated at the time (Wu et al. 2020). Analogous low-regularity solutions
were studied in considerable detail in a stratified flow subjected to periodic horizontal
forcing (Grayer et al. 2021).

Another difference between DNS and VEBA is their symmetry; VEBA is an analysis of
the inviscid system and has symmetries R and S of the full Navier–Stokes system (2.7a,b),
as well as the time-reversal symmetry T (4.7). The viscous terms in the full system
(2.7a,b) are not invariant to T . This difference in symmetries becomes more pronounced
as ω → 0, particularly in the equatorial plane y = −z. Figure 8 shows snapshots at the
zero phase of the librational forcing of the enstrophy density in the equatorial plane
y = −z from DNS responses at Ekman numbers ranging from E = 10−5 to 10−8 and
decreasing forcing half-frequency, starting from ω = 0.16. The figure can be viewed as
an array with columns corresponding to fixed values of ω, with ω halved in each column
to the right, and rows corresponding to fixed E, with E reduced by one order of magnitude
in each subsequent row. For fixed ω, the patterned vortex structure emanating from the
two equatorial vertices, υ6 and υ7, and already observed at ω = 0.05 and ω = 0.20 in
figure 4, eventually develops from the faces at x = ±0.5 at sufficiently low E for all ω in
the range considered in the figure. The extent and intensity of the foliation pattern remain
similar along diagonals of the array with the foliations becoming finer with a higher motif
count varying approximately inversely proportionally with ω as E and ω decrease to 0.
At E = 10−8, the DNS at ω = 0.16 is well described by VEBA, but not for smaller ω.
The similarity in the DNS along diagonals in the array then allows one to extrapolate how
small E needs to be at smaller ω for agreement between DNS and VEBA: ω = 0.01 is four
columns to the right of the ω = 0.16 column, so the E for its DNS to be matched by VEBA
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Inertial waves in a tilted librating cube

ω y = z x = 0 y = −z Interior Surface

0.95
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0.05

10–8 10–6 10–4 10–2 100 10–4 100 104

(a) (b)

Figure 6. Scaled time-averaged enstrophy, E|ω|2, over one period of the librational forcing on interior planes
and on the cube surface (see figure 2 for plane orientations), for E = 10−8 and ω as indicated.
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ω y = z x = 0 y = −z Interior Surface

0.95

0.82

0.71

0.58

0.33
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0.05

10–8 10–6 10–4 10–2 100 10–4 100 104

(a) (b)

Figure 7. The VEBA of 10−8|ω|2 on interior planes and of 10−4|ω|2 on the cube surface (see figure 2 for
plane orientations), for ω as indicated. All beams are emitted with intensity |ω|2 = 10.
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Inertial waves in a tilted librating cube

E ω = 0.16 0.08 0.04 0.02 0.01

10−5

10−6

10−7

10−8

VEBA

10–8 10–6 10–4 10–2 100

Figure 8. Snapshots of E|ω|2 at the zero phase of the librational forcing in the equatorial plane, y = −z, for
ω and E as indicated. The bottom row shows the corresponding VEBA of 10−8|ω|2. Supplementary movie 2
animates these over one libration period, 2π/ω.

should be four rows below the E = 10−8 row, giving E = 10−12. From figure 3(d), we also
have that EĒ ∼ ω2 is independent of E in the limit ω → 0. Moving along the diagonal in
figure 8, ω varies with E0.3 (where 0.3 ≈ log2 10). As a result, |ω|2 ∼ ω2/E ∼ E−0.4.
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The foliated pattern remains intact while gaining strength as E decreases, before
eventually being sliced up by the network of planar and conic wavebeams associated
with reflections of the beams emanating from polar edges and vertices, resulting in an
increasingly denser pattern of horizontal (cyan/yellow) lines and arcs for the enstrophy
density response in the equatorial plane. However, this slicing extends in the equatorial
plane only up to some distance away from the equatorial edges, which progressively
decreases with decreasing E at fixed ω, and ultimately vanishes in VEBA. The apparent
lack of convergence of the exponent αK in the power law of K in the low-ω regime as
E is reduced down to 10−8 observed in figure 3(e) is tied to the presence of the foliation
pattern. These are manifestations of viscous effects and nonlinear wave–wave interactions
not accounted for in VEBA.

6. Flow velocity

The VEBA provides an excellent description of most features of the response flows from
the DNS at sufficiently small E over the entire inertial range, and in particular for ω �
0.29, although for DNS at ω � 0.29 there is a clear breaking of the inviscid time-reversal
symmetry (4.7). For ω ≈ 0.29, there is a large spike in the time-averaged kinetic energy
response diagram (figure 3a), which becomes more pronounced with decreasing E but
is not predicted by the linear inviscid VEBA. To further investigate the cause of this,
we now consider the velocity flow field from DNS in this ω regime. Figure 9(a) shows
snapshots at the zero librational forcing phase of coneplots of the velocity, v, for E = 10−8

and ω = 0.20 (associated with the peak time-averaged enstrophy response in figure 3b),
and ω = 0.29 and 0.30 either side of the time-averaged kinetic energy peak. The cones
represent the local velocity vectors at Legendre–Lobatto points inside the cube. Their size
and colour vary logarithmically with speed |v|, as indicated by the cones along the colour
bar. The dominant cyan colour reflects the size of order 1 of speed in the bulk. Figure 9(b)
shows a ×3 magnification about the vertex υ6 of the same three cases. The magnified view
not only allows for more densely spaced velocity cones, but the cuts through the cube also
allow clearer views of the velocity cones in the interior.

While the snapshots are informative, it is essential to view these velocity cones animated
over a complete libration period. This is available in supplementary movie 3. The velocity
in the interior is clearly circularly polarized, as assumed by the idealization in the
VEBA. The speed is slower near the rotation axis. In contrast, near the cube boundaries
the polarization tends to ‘snap’ every half-period, with a much more eccentric elliptic
polarization. For ω � 0.29 the speed is largest in the foliations around the equatorial
vertices υ6 and υ7 only, which are farthest (together with the other two equatorial vertices
υ5 and υ8) from the rotation axis. For ω = 0.30 the largest magnitudes have shifted along
the equatorial edge(s), with a much lower intensity associated with a sharp drop in the
time-averaged kinetic energy K̄ in figure 3(a), and a more uniformly circularly polarized
velocity v. As ω increases from 0.20 to 0.29 the vertex of the foliation moves from υ6
to a point on the equatorial edge, resulting in a whirlpool around the corner υ6, before it
suddenly disappears at larger ω.

The progressive waves noted from the animations of the enstrophy density in
supplementary movie 1 can also be seen in the velocity animations in supplementary
movie 3. The boundary progressive wave can now be seen to be associated with the phase
of the ‘snapping’. This is true across all frequencies. As well, the foliated pattern noted
in the enstrophy density is also present in the velocity animations at the lower ω. The ×3
zoom of the ω = 0.20 case shows this very clearly in the vicinity of the υ6 vertex.
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Inertial waves in a tilted librating cube

ω = 0.20 0.29 0.30
(a)

(b)

10–2 10–1 100 101 102

Figure 9. Snapshots of the velocity v, depicted as coneplots, at zero phase for E = 10−8 and ω as indicated.
A full view of the cube is presented in row (a), and row (b) shows ×3 magnifications near the vertex υ6
at (x, y, z) = (0.5, −0.5, 0.5) for the same cases as in (a). The cones representing the local velocity vectors
are shown at Legendre–Lobatto points inside the cube. Their size and colour vary logarithmically with |v|.
Supplementary movie 3 animates these over one libration period π/ω.

7. Conclusions

In this study, we complete the investigation of the three principal orientations of
a fluid-filled rapidly rotating cube subjected to libration – small harmonic-in-time
modulation of its rotation rate. The three principal orientations are the rotation axis passing
through the middle of two opposite faces, through two opposite vertices, and through
the middle of two opposite edges. The orientations each have one of the three types
of proper rotation symmetries of the cube. Only the first orientation has been studied
experimentally (Boisson et al. 2012). Our interests lie principally in a number of limiting
regimes. One regime is the fast rotation regime, where the mean rotation period is much
smaller than the viscous time scale in the cube. The ratio of these two time scales is
the Ekman number, E = ΩL2/ν. Another regime is the small forcing amplitude regime,
where the amplitude of the modulation of the rotation, �Ω , is small compared with
the mean rotation. The ratio ε = �Ω/Ω is the Rossby number for this class of flows.
When E and ε are both sufficiently small, the flow responses to librational forcing are
dominated by inertial oscillations when the libration frequency, σ , is less than twice
the mean rotation rate, i.e. for ω = σ/2Ω ∈ (0, 1). The three limits, E → 0, ε → 0
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and ω → 0, are singular. The E → 0 and ε → 0 limits are often invoked in unbounded
domains to arrive at a linear hyperbolic differential equation describing inertial waves,
from which a dispersion relation is obtained (Greenspan 1968). The ω → 0 limit is
invoked to arrive at the Taylor–Proudman theorem (Proudman 1916; Taylor 1917). What
happens as each of these limits is approached in a confined setting is not at all obvious,
especially when the walls of the container have components of their motion that are not
tangential. Further complications arise when any of the walls are oblique to the rotation
axis. Our results emphasize that the limits E → 0 and ε → 0 do not mean that E∇2v → 0
or ε(v · ∇)v → 0; these terms may remain O(1) due to v tending to being non-smooth
(e.g. a delta function-like distribution) in the E → 0 limit. In any case, we find that
E = ε = 10−8 is still not asymptotically small and viscous and nonlinear effects are not
negligible, particularly as ω → 0.

We are able to conclude that E = ε = 10−8 is not asymptotically small from DNS of
the fully nonlinear Navier–Stokes equations with no-slip boundary conditions. The global
measures, such as the kinetic energy and enstrophy in the cube, are far from reaching
an asymptotic limit. Furthermore, setting E = ε = 0 allows one to explore the traces of
inertial waves of a given frequency (the so-called VEBA) and compare these with the DNS
results at small but finite E and ε. As noted by Rabitti & Maas (2014): ‘Understanding the
behaviour of internal waves in fully enclosed domains constitutes one of the big challenges
in fluid dynamics. . . . Since analytical solutions for internal waves in arbitrarily shaped
domains are not available, numerical approaches or geometrical ray-tracing techniques
have been widely used in order to infer properties of the underlying wavefield and energy
distribution in the container’. The VEBA, first developed in Wu et al. (2020), is not only
a ray-tracing technique, but also a ray-emitting exercise that considers not just individual
rays, but a collection of rays making up sheets that must satisfy continuity and tangentiality
conditions. These conditions allow us to determine where beams are emitted from and their
direction into the cube. Not all edges emit wavebeams for all ω; it all depends on whether
the vertices at the ends of the edges emit into the interior or not. This realization clarifies
a long-standing question as to why some edges emit beams while others do not. While
VEBA captures an overwhelming majority of the details from the DNS, there remain
aspects of the DNS response flows that are not captured, particularly at small ω.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.639.
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Appendix A. The confluence of conical and planar vortex sheets.

Edgebeams emanate from each point of a straight edge in parallel directions â, forming
a planar vortex sheet that merges smoothly and tangentially with the conic vortex
sheets emanating from the endpoints of the straight edge. Thus, the direction individual
edgebeams are emitted in from an edge depends on whether the endpoints of the edge are
emitting into the cube. There are two scenarios, which are illustrated here for ω < 1/

√
2.
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Inertial waves in a tilted librating cube
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â

Equatorial plane

–1/�2

sin φ = r/�2 = tan θ = ω/�1 – ω2

1/�2

Figure 10. Illustration of the tangential confluence of a (green) planar vortex sheets made up of edgebeams
with either two or one (red) conic vortex sheet(s) emanating from the endpoints of the edge: (a) edgebeams
emanating from edge e9 for ω < 1/

√
2; (b) edgebeams emanating from edge e1 for ω < 1/

√
2. Other vertex

beams are shown in red. In this figure ξ̂ represents a vector parallel to the axis of rotation.

In the first scenario, both endpoints of the edge emit inside the cube, as is the case for
example with edge e12 connecting vertices υ7 and υ8 (see figure 10a). Since the conic
sheets emanating from both vertices are identical, the planar vortex sheet emanating from
the edge has a normal perpendicular to êx, with beams emitted in planes x = const., with
φ = −π/2 and

â = cos θ ξ̂ − sin θ ξ̂ × êx

=
√

1 − ω2
√

2
(0, 1, 1) − ω√

2
(0, 1, −1)

= 1√
2

(
0, −ω +

√
1 − ω2, ω +

√
1 − ω2

)
. (A1)

In the other scenario, only one of the endpoints emits vertex beams into the cube, as is the
case for edge e1 connecting vertices υ1 and υ7 (see figure 10b). The tangentiality condition
of the planar vortex sheet emanating from the edge with the conic sheet emanating from
υ1 results in beams emitted into the direction

â = cos θ ξ̂ + sin θ
(

cos φ êx + sin φ ξ̂ × êx

)
=

√
1 − ω2
√

2
(0, 1, 1) + ω

[√
1 − 2ω2

√
1 − ω2

(1, 0, 0) + ω√
2(1 − ω2)

(0, 1, −1)

]

= 1√
2(1 − ω2)

[
ω

√
2(1 − 2ω2), 1, 1 − 2ω2

]
. (A2)
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A symmetrically related planar sheet is emitted from edge e2, as shown in figure 10(b). At
ω = 1/

√
2, the trace of the conic sheet in the equatorial plane kisses the two edges e1 and

e2. For ω > 1/
√

2, the edges e1 and e2 no longer emit beams in the cube.

Appendix B. The geometry of VEBA on the equatorial plane

In order to algebraically describe the traces of the vortex sheets emanating from the vertex
υ1 and the edge e1, and of their reflections, in the plane x = −0.5 and the equatorial
plane y = z, it is convenient to introduce a (negatively oriented) frame (êx, êY , ξ̂), with
êY = êx × ξ̂ and coordinate system

(X, Y, Z) = [
x + 0.5, d(1 − y + z), d( y + z)

]
, (B1)

with its origin at vertex υ7 at (x, y, z) = (−0.5, 0.5, −0.5), where d = 1/
√

2 (see
figure 11c). In the plane X = 0, the intersections of the beam emanating from υ1, or its
kth reflections, and the equatorial plane Z = 0, occur at points Y = ζk (see figure 11a).
These intersection points converge to the origin, i.e. ζk → 0, geometrically with rate

γ := tan
(π

4
− θ

)
= 1 − t

1 + t
, where t = tan θ = ω√

1 − ω2
. (B2)

Note that |γ | < 1 over the whole inertial range, 0 < ω < 1, but γ > 0 only if 0 < ω <

1/
√

2; this is the frequency range considered here and illustrated for ω = 0.33 in figure 11.
Then

ζk = ζk−1 γ = ζ0 γ k = d(1 − t) γ k. (B3)

The quantity r = at in figure 11(b) is the radius of the (arc of) circle centred at the midpoint
between vertices υ1 and υ3, (X, Y) = (0, c0) = (0, a), and represents the trace of the conic
vortex sheet emanating from vertex υ1 in the equatorial plane Z = 0. The parameterization
of this arc,

(X, Y) = (r cos φ, d − r sin φ), 0 � φ < π/2, (B4)

describes the intersection with the equatorial plane of the edgebeam emanating from vertex
υ1 in the direction

â = Xêx + (Y − d)êY + dξ̂√
X2 + (Y − d)2 + d2

= cos θ ξ̂ + sin θ(cos φ êx − sin φ êY), (B5)

in agreement with (4.5). The corresponding wavevector k is obtained from (4.4). The
wavebeam then alternately reflects onto the walls at y = 0.5 (i.e. Y − Z = 0) and z = −0.5
(i.e. Y + Z = 0). At reflection k > 0, the unit vector normal to the reflecting wall is

n̂ = d[ξ̂ − (−1)kêY ]. (B6)

The direction of the reflected beam, â(k), can be obtained from that of the incident
beam, â(k−1), using (4.12) with ± = (−1)k and â(0) = â from (B5). This direction is best
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Inertial waves in a tilted librating cube

expressed in the form

â(k) = (−1)k cos θ ξ̂ + sin θ ê(k), (B7)

with
ê(k)(b) := sech(2ka + b) êx − tanh(2ka + b) êY , (B8)

where
a := tanh−1(t) and b := tanh−1(sin φ) ∈ [0, ∞). (B9a,b)

The beams intersect the equatorial plane Z = 0 at

Mk(b) := [Xk(b), Yk(b)] := (0, ck) + rk ê(k)(b), (B10)

where

rk := d
sinh(2k + 1)a

cosh a
and ck := d

cosh(2k + 1)a
cosh a

= rk + ζk, (B11a,b)

and are reflected on the walls Z = (−1)kY at the points

Pk(b) := d

[
sech a sinh 2ka, cosh(a − b), −(−1)k cosh(a − b)

]
cosh[(2k − 1)a + b]

. (B12)

The proofs of (B7)–(B8) and (B10)–(B12) are fairly technical and outlined in Appendix C.
For k = 0, the coordinates (B12) reduce to d[0, 1, −1], i.e. the coordinates of the vertex
υ1. Moreover, r0 = d tanh a = dt = r, c0 = d and (B10) reduces to (B4). Note also that[

rk
ck

]
=

[
cosh(2ka) sinh(2ka)

sinh(2ka) cosh(2ka)

] [
r
d

]
. (B13)

Thus, for each φ (i.e. b), the associated wavebeam emanating from P0(b) in the direction
â(0) intersects the equatorial plane at M0(b) and is reflected at P1(b) on the plane Z = Y in
direction â(1). The reflected beam intersects the equatorial plane at M1(b) before reflecting
on the plane Z = −Y at P2(b), and so on.

The parametric equations (B10) represent an arc of circle with centre (0, ck) and radius
rk (see figure 11b). The extremal points of the arc are

Mk(∞) = (0, ck − rk) = (0, ζk), (B14)

and, using (B13),

Mk(0) = [rk sech(2ka), ck − rk tanh(2ka)]

= (r, 0) + d[tanh(2ka), sech(2ka)]. (B15)

The points Mk(0), which correspond to the traces in the equatorial plane Z = 0 of the
successive reflections of the beam emanating from υ1 in the êx direction, are on a circle
of radius d centred at (r, 0); these are shown in figure 11(b) as a thick black arc. Note that
M0(0) is in the meridional plane y = z. The relations (B15) also show that

ck − Yk(0)

Xk(0)
= sinh(2ka) = Xk(0) − r

Yk(0)
=: tan φ2k, (B16)

i.e. the radial line between (r, 0) and Mk(0) forms an angle φ2k with the Y direction and is
tangent to the parametric curve (B10) at Mk(0).
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Figure 11. Geometric construction of VEBA traces for ω = 0.33: (a) in the plane x = −0.5 the conical
wavebeam emanating from υ1 towards edge e4 at an angle θ with the direction of the axis of rotation is reflected
successively onto edges e4 and e1 at a geometric rate γ ; (b) the conical vortex sheet emanating from υ1 and
its reflections intersect the equatorial plane y = z along (red) arcs of circles with centres (0, ck) on the Y axis.
The endpoints Mk(0) corresponding to the reflections of the conical wavebeam emitted in direction φ = 0+ are
themselves located on a quarter circle of radius d = 1/

√
2 centred at (r, 0) (bold black arc). The planar vortex

sheet emanating from edge e1 and its reflections intersect the equatorial plane along (red) line segments tangent
to the arcs at points Mk(a) on a circle of radius

√
d2 − r2 centred at υ7 (light black arc). Panel (c) shows the

three-dimensional orientations of the planes in (a,b).

From Appendix A, the planar edgebeam emanating from the edge e1 connecting the
vertices υ1 and υ7 is tangent to the conic vertex beam emanating from υ1, as are their
cross-sections in the equatorial plane. The trace of the edgebeam passes through the
origin, (X, Y) = (0, 0), and is tangent to the circle of radius r centred at (0, d), at a point
associated with an angle φ, such that

tanh b = sin φ = r
d

= t = tanh a, (B17)

i.e. b = a. The points

Mk(a) = d sech a [tanh(2k + 1)a, sech(2k + 1)a] , (B18)

are located on a circle, centred at (X, Y) = (0, 0), of radius

d sech a = d
√

1 − tanh2 a = d
√

1 − t2 =
√

d2 − r2; (B19)

these are shown in figure 11(b) as a thin black arc. The angle φ formed by the trace of the
kth reflection of the planar vortex sheet with the Y direction is such that

tan φ = Xk(a)

Yk(a)
= sinh(2k + 1)a =: tan φ2k+1, (B20)
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Inertial waves in a tilted librating cube

0.050.200.33
(a)

ω = 0.58

(b)

(c)

Figure 12. Comparisons between the enstrophy density of the response flows at E = ε = 10−8 (DNS) and
the trace of VEBA in the half-equatorial plane y = z (the other half is the mirror image), at ω as indicated:
(a) DNS of enstrophy density. (b) Trace of VEBA reflections of the conical vortex sheets originating from υ1
and the planar vortex sheets originating from e1 (red curves), along with two arcs of circles where the trace
of the planar sheet terminates (thin black) and where the trace of the conical sheet terminates (thick black) as
described in figure 11. The numbers of reflections shown are 1, 3, 5 and 20 with decreasing ω. (c) The VEBA
from (b) is overlayed on the DNS from (a).

i.e. φ = φ2k+1. This angle is also that formed by the line between (0, ck) and Mk(a), which
is tangent to the circle C2, and the X direction (see figure 11b). For 0 < η < π/2, the
number of reflections needed to reach φ2k+1 ∼ π/2 − η is

k ∼ sinh−1(cot η)

2 tanh−1(tan θ)
= ln[tan(η/2)]

ln[tan(π/4 − θ)]
. (B21)

For η = π/12, (B21) yields k ≈ 1, 3, 5 and 20 at the frequencies ω = 0.58, 0.33, 0.20 and
0.05 considered in figure 12. As ω → 0, θ ∼ ω and k is inversely proportional to ω. In the
DNS, there are also faint traces of the wavebeams slightly beyond the endpoints Mk(a) of
the VEBA. These are due to the viscous regularization of the normal directions at edges.

Note that the reflections of all vertex beams emanating from υ1 alternate between the
planes Z = ±Y only as long as

r + d < 1, i.e. ω <

√
2 − √

2
2

≈ 0.38. (B22)

For ω above this value, some of the conic beams emanating from υ1 eventually reflect
(according to Euclidean laws) on lateral walls at X = 1 (i.e. x = +0.5). For ω > 1/

√
3 ≈

0.58 this occurs at the very first reflection. The resulting sheet then intersects itself, as seen
in figure 5(e).
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Appendix C. Proof of (B7)–(B8) and (B10)–(B12)

We show (B7)–(B8) by induction. Assume that

â(k−1) = Xêx + Y êY + Zξ̂ , (C1)

with

[X, Y, Z] = [sin θ sech (2ka + b − 2a),

− sin θ tanh(2ka + b − 2a), (−1)k−1 cos θ ]. (C2)

Then, using (4.12) with (B6) and 2d2 = 1,

â(k) = X′êx + Y ′êY + Z′ξ̂ , (C3)

where

X′ = [2Z2 − 1]X
1 − 2(−1)kYZ

= sin θ
cos 2θ sech(2ka + b − 2a)

1 + sin 2θ tanh(2ka + b − 2a)
, (C4)

Y ′ = Y − 2(−1)kZ(1 − Z2)

1 − 2(−1)kYZ
= − sin θ

tanh(2ka + b − 2a) + sin 2θ

1 + sin 2θ tanh(2ka + b − 2a)
, (C5)

Z′ = −Z = (−1)k cos θ. (C6)

The relations (B9a,b) show that

sin 2θ = 2t
1 + t2

= 2 tanh a

1 + tanh2 a
= tanh 2a, (C7)

cos 2θ =
√

1 − sin2 2θ =
√

1 − tanh2 2a = sech 2a, (C8)

and, therefore,

[X′, Y ′, Z′] = [sin θ sech(2ka + b), − sin θ tanh(2(ka + b), (−1)k cos θ ], (C9)

using standard formulae for tanh and sech of a sum. Note that, for fixed Z and ω

(i.e. fixed θ ), [X′, Y ′] depends nonlinearly on [X, Y], but linearly in projective geometry
via homogeneous coordinates,

⎡⎣X′
Y ′
Z′

⎤⎦ ∝
⎡⎣2Z2 − 1 0 0

0 1 −2(−1)k(1 − Z2)

0 2(−1)kZ2 −1

⎤⎦ ⎡⎣X
Y
Z

⎤⎦ . (C10)
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Inertial waves in a tilted librating cube

To show (B12), it is sufficient to show that Pk+1(b) − Pk(b) is aligned with âk, given that
the coordinates of Pk+1(b) satisfy Z = (−1)k+1Y

Pk+1(b) − Pk(b)

∝
[

sech a(sinh(2k + 2)a cosh[(2k − 1)a + b] − sinh 2ka cosh[(2k + 1)a + b])
cosh(a − b)(cosh[(2k − 1)a + b] + cosh[(2k + 1)a + b])

,

cosh[(2k − 1)a + b] − cosh[(2k + 1)a + b]
cosh[(2k − 1)a + b] + cosh[(2k + 1)a + b]

, (−1)k
]

=
[

sech a[sinh(3a − b) − sinh(a + b)]
cosh(a − b) cosh(2ka + b) cosh a

, − sinh(2ka + b) sinh a
cosh(2ka + b) cosh a

, (−1)k
]

=
[

sech a[sinh(3a − b) − sinh(a + b)]
cosh(a − b) cosh(2ka + b) cosh a

, − tan θ tanh(2ka + b), (−1)k
]

=
[

sinh 2a

2 cosh(2ka + b) cosh2 a
, − tan θ tanh(2ka + b), (−1)k

]
=

[
tan θ sech(2ka + b), − tan θ tanh(2ka + b), (−1)k

]
= sec θ â(k). (C11)

Finally, Mk(b) = Pk(b) + α â(k) is obtained by setting its Z-component to 0, yielding

α = d
cosh(a − b)

cos[(2k − 1)a + b]
. (C12)

As a result,

Mk(b) = d
cos[(2k − 1)a + b]

×
[

sinh 2ka
cosh a

+ cosh(a − b) tanh a
cosh(2ka + b)

, cos(a − b)[1 − tanh a tanh(2ka + b)], 0
]

.

(C13)

The relations

sinh 2ka cosh(2ka + b) + sinh a cosh(a − b) = 1
2 sinh(4ka + b) + 1

2 sinh(2a − b)

= sinh(2k + 1)a cosh[(2k − 1)a + b], (C14)

1 − tanh a tanh(2ka + b) = cosh a cosh(2ka + b) − sinh a sinh(2ka + b)

cosh a cosh(2ka + b)

= cosh[(2k − 1)a + b]
cosh a cosh(2ka + b)

, (C15)

and
cosh(a − b)

cosh a cosh(2ka + b)

= cosh(2k + 1)a cosh(2ka + b) − sinh(2k + 1)a sinh(2ka + b)

cosh a cosh(2ka + b)

= cosh(2k + 1)a
cosh a

− sinh(2k + 1)a
cosh a

tanh(2ka + b), (C16)
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then yield

Mk(b) = d
[

sinh(2k + 1)a
cosh a

sech(2ka + b),

cosh(2k + 1)a
cosh a

− sinh(2k + 1)a
cosh a

tanh(2ka + b), 0
]

, (C17)

proving (B10)–(B11a,b).
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