
BULL. AUSTRAL. MATH. SOC. 6 0 J 8 5 , 62M05
VOL. 26 ( 1 9 8 2 ) , 143-155.

STOCHASTIC MODELLING IN CSIRO:
TWO EXAMPLES*

I.W. SAUNDERS

Communicated by James M. Hill

Two examples of stochastic models arising from CSIRO consulting

work are described. The first concerns the interaction of

different strains of myxomatosis in a rabbit population. The

effect of different infection rates in a simple epidemic model is

investigated and the implications for rabbit control discussed.

The second example is concerned with sampling iron ore from a

moving belt. A stochastic model for flow rate and quality of ore

is constructed and used to compare different sampling schemes.

1. Introduction

The Division of Mathematics and Statistics of CSIRO (Commonwealth

Scientific and Industrial Research Organization of Australia) has a twofold

role: to provide mathematical and statistical support to other scientists

within the Organisation and also to carry out theoretical research aimed at

widening the range of statistical and mathematical tools available. The

wide variety of interests of the scientists in CSIRO implies that a wide

variety of methods, mathematical, statistical or otherwise, will be

required in analysing their data. The methods used depend on the nature of

the problem. Precise measurements on well understood physical systems can
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* This paper is based on an invited lecture given at the Australian
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February 7-11, 1982. Other papers delivered at this Conference appear in
Volumes 25 and 26.
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often be explained using what might be called "applied mathematical"

models - perhaps differential or integral equations - with any randomness

effectively ignored. On the other hand, when living things or natural

phenomena such as weather are involved, the random component will become

more significant. Then the design of experiments to accommodate such

random variation becomes important and analysis of variance techniques will

often be appropriate. A third class of problems consists of those where

the available data are so imprecise or incomplete that straightforward

application of statistical methods is impossible or unproductive.

It is the final class that I shall be concerned with here. When

detailed data are not available, some form of modelling is essential to an

understanding of the situation. When randomness is likely to be a

predominant feature, this must be incorporated. Thus we are led to

consider stochastic models. I shall describe two problems that have arisen

from my consulting work in which, for different reasons, complete data

could not be obtained. In each case, we shall see that stochastic

modelling enables us to derive useful information despite the lack of data.

2. Competition between strains of myxomatosis

A project for which CSIRO is well known is the use of myxomatosis for

the control of rabbit populations. The control programme has had

considerable success in reducing the vast population of rabbits and

preserving pasture for livestock. In recent years however the use of

myxomatosis has become less effective for a number of reasons. Among these

is the appearance, through mutation, of new and less virulent strains of

the disease. These are endemic in a number of regions. A rabbit infected

by such an attenuated strain is likely to survive. If he does he will have

acquired immunity, not only to reinfection by the attenuated strain, but

also to subsequent infection by more virulent strains. Thus if a virulent

strain is introduced, the population of rabbits susceptible to it will have

been much reduced. This will slow the spread of the control strain since

the immune rabbits can neither contract the disease themselves, nor pass it

on to other susceptible rabbits.

In populations where an attenuated strain is endemic, little can be

done. However such strains can also be introduced by natural means into

previously susceptible populations. If this occurs in a population into
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which a virulent strain is to be introduced as a control measure, the two

strains will effectively be competing for the susceptible rabbits. The

question of interest is thus what features of the transmission processes of

the two strains will determine the outcome of the competition. An answer

to this will enable us to assess the usefulness of a particular strain of

myxomatosis as a means of rabbit control.

Clearly there are many problems to be solved here. We need to

consider the mechanism of disease transmission, the nature of the

interaction between the two strains, the relative infectivities of the

strains and the effectiveness of the method of introduction of the

virulent strain. Here we shall concentrate mainly on the effect of

relative infectivity and consider a much simplified model which, while it

does not include the full complexity of the real situation, allows us to

draw useful conclusions.

Since we shall be considering only the process of infection, we shall

use an extension of the so-called simple epidemic model {of. Bailey [/]) in

which individuals, once infected, remain infectious forever. Our results

therefore will apply to the initial stages of an outbreak, before deaths

and recoveries have reached a significant level. We shall also suppose

that the time scale of the outbreak is short enough that we can neglect

births and deaths of susceptibles and assume a constant population size.

We suppose therefore that we have a population of n individuals and

that at time t , I (t) of them are infectious with disease type 1 and

I At) of them with disease type 2 , leaving n - I At) - I At)

susceptibles. The rate of spread of a disease will depend on the rate of

occurrence of "infective contacts" between infectives and susceptibles and

if the members of the population mix uniformly this rate will be

proportional to the product of the numbers of infectives and susceptibles.

We therefore assume that the rate of type k infections is a,lAt)S(t)

for some a, , where S(t) denotes the number of susceptibles.

When a type k infection occurs, S(t) is reduced by one and A,(*)

is increased by one. We can thus define a Markov process modelling this

situation through its infinitesimal transition probabilities:
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, I2(t+dt) = i2

I2(t+dt) = ,j'2

o(dt) ,

= a2I2(t)S(t)dt

Prob(two or more infections in t, t+dt) = o(dt) .

This process is rather intractible as it stands as a result of the

nonlinear transition rates. We therefore seek a method of converting it

into a linear process. Note that, since we are principally interested in

the relative behaviour of the two epidemics, the time scale used is of

secondary importance. A random change of timescale will therefore leave

the conclusions unaltered. Define

r6

Z(t) = S(u)du ,
>0(2.1)

T = sup(t : S{t) > 0) ,

so that T is the duration of the process.

Since S(t) is positive for t < T , we see that Z(t) is increasing

on (0, T) and so has an inverse Z"1(t) defined on (o, Z(T)) . Note

also that

Define a new process on the Z timescale by

(2.2) Jk(z) = Jk(z"
1(s)) for 2 < Z(r) .

Then the infinitesimal transition probabilities of the J process are

given by

?rob{Jk{z+dz) = Jk(z)+1 | Jk(z)) = akJk{z)s{z~
X{z)) ^— dz + oidz)

= a,JAz)dz + o{dz) .

These are the transitions of independent linear birth processes and so the

relative behaviour of the two diseases is the same as that of two such
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processes stopped at z = Z{T) that is, when ^(s) + J2(s) = n . The

properties of birth processes are well known, and those of the competing

processes can now be deduced.

For a large population size n , we can use asymptotic results. A

standard result is that, as z -*• °° ,

-akz
(2.3) Jkiz)e •* Jk(O)W with probability one,

where W, is a random variable with an Erlangian distribution, that is,

the sum of independent exponential random variables. The expected value of

W, is 1 and so we see that the expected number of infectives satisfy

C 1/a i (• I/a i (• 1/a > f I/a
(2.it) [^(t) ^/[ffJCt) 2j = [^(0) ^/[^(O) 2

where the right hand side is independent of t .

In fact from (2.3) we have

r I/ai <• I/ai f I/a 1/a i r 1/a I/a
(2.5) [̂ (a) ^/[^(a) 2j - [̂ (0) \ y[J{0) \ 2

with probability one, and in large populations, approximate equality will

a l/a2
hold. The random variable W /W can be shown to have median close

to 1 , provided a., and a are not too different. Thus the relative

behaviour of the means in (2.U) does reflect the typical behaviour of the

processes. Clearly then the disease with the larger infection parameter is

at a considerable advantage. For example, if a = 2a and initially 1%

of the population was infected with disease 1 , then 1% would need to be

infected with type 2 to give ultimate equality in expectation. In the

context of rabbit control it is clear that a strain to be used for control

will need to have a high infectivlty. Otherwise it will be necessary to

infect a large proportion of the population artificially in order to

achieve a useful result.

It may be in some situations that the infection rate is similar for

the two strains. Then it will be of interest to consider how competing

epidemics with equal infection rates behave. The asymptotic conclusion
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follows from the above results: the ratio of numbers of infectives

satisfies

iAt)+IAt) 1 1 2 2

with probability one. In this case however we can go further and identify

the limiting random variable. I {0)W and IAO)W are independent gamma

random variables with common scale parameter 1 . Thus the ratio has a

beta distribution with parameters J (0) and IAO) and so when the

infection rates are equal the proportion of the infectives that are of type

1 has an approximate beta distribution. We can in fact obtain an

expression for the exact distribution of the numbers of infectives. Let

I.{m) denote the number of type k infectives when the total number of

infectives is m . Then [i {m), I {m)j forms a bivariate Markov chain.

This is true for arbitrary values of a and a but the situation is

particularly simple in the case of equal infection rates, for then the

Markov chain is a simple Polya urn scheme (see, for example, [2]). The

distribution of ^TA"1) is therefore

(2.6) Prob(T1(m) = J1(0)+j) =

r 71
where £ denotes £(i+l) ... (i+j) . This is a Polya-Eggenberger

distribution and the limiting beta distribution can be deduced directly

from (2.5). The speed of the convergence to the limiting distribution can

be seen in Figure 1 where the distributions of [i (m)-IA0))/m are

compared for m = 1, 6, 11, ..., 31 when 1(0) = 10 , IAO) = 5 •

The most interesting feature of this result is that the distribution

of the ultimate proportion of a particular type is concentrated around the

proportion of that type among the initial infectives. The early

introduction of the control strain will thus be at a premium.

We see that a fairly simple stochastic model has led to conclusions

that may be useful in guiding both the use of myxomatosis as a control and
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the directions of future study in this field.

Further mathematical detail may be found in [3] and [5] and a more

detailed model of the transmission of myxomatosis is described in [4].

3. Sampling schemes for on-stream iron ore analysis

The CSIRO Division of Mineral Physics has recently been involved in

the development of an on-stream analyser to measure the quality of iron ore

sampled from a moving conveyor belt. This analyser can produce immediate

estimates of average quality, which gives it an advantage over slower

standard methods. If, for example, the ore being transported should prove

to be of a lower quality than is required, immediate corrective action can

be taken, thus avoiding penalties for failing to meet an agreed level of

quality.

The method of analysis used by the new analyser requires that material

be supplied to it at a constant rate, independent of the flow rate of the

mail belt. This differs from standard sampling schemes which produce

samples at a rate proportional to the flow rate of the belt. Thus it is

necessary to investigate how the results obtained from the analyser will

match up, in terms of accuracy and efficiency, with those from standard

methods.

Once again, little detailed information is available; commercial ore

transporters are not designed to provide the data that would be required

for a complete study. Instead we must construct a model reflecting the

important features of the process and use it to draw general conclusions.

We can get some idea of the sort of results we are likely to obtain by

analogy with survey sampling from a stratified population. Suppose that

population is divided into K "strata" and individuals in stratum i have

an average value m. for some quantity y which is of interest. Then the

population mean of y will be YN.m./N where N. is the population of

stratum i and N is the total population size. Suppose a sample of the

population is taken, consisting of n- individuals from stratum i. ,
Lr

i = 1, . . . , K . Let y. denote the sample mean of y for the individuals

from stratum i . An unbiased estimate of the population mean will be
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TN.y./N . The sample mean is Yn.y./n which will equal this unbiased
t~^ 1r I, Is *tf

estimate provided n• a N• . If the sample proportions in each stratum are

not equal to the population proportions, then a weighted mean must be used.

It can be shown that taking sample proportions equal to the population

proportions also gives the most efficient estimator in terms of minimising

the variance for a given sample size.

For on-stream sampling the quantity of interest is the quality, or

percentage metal content, of the ore. This may be correlated with the flow

rate and so its mean may vary as the flow rate changes. By analogy with

the sampling scheme described above, we can consider the ore to consist of

"strata" corresponding to particular flow rates. The "population size" of

a stratum will be the mass of ore transported at the corresponding flow

rate and the "sample size" will be the total mass of samples taken at that

flow rate. Thus the above result suggests that the sampling scheme giving

greatest efficiency will be the standard practice of taking samples at a

rate proportional to the rate of flow of ore. Conversely, this suggests

that constant rate sampling will be relatively inefficient. In order to

discover how far these results do carry over to the on-stream sampling

problem, and how serious the inefficiency is likely to be, we set up a

model for the quality and flow rate of the ore and use it to compare the

different sampling schemes.

We first define some notation:

(i) w{t) : the belt flow rate at time At ;

(ii) g(t) : the quality of the ore passing the sampling point

at time t ;

(iii) T : the total duration of the process;

(iv) t , t , ..., t : the sampling times;

(v) At. : t. - t. , the length of the ith sampling
If t*X I

interval;

(vi) W. : the mass of ore passing the sampling point during
If

the ith sampling interval;

(vii) M. : the mass of iron contained in W. .
v ^
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We shall compare two different sampling schemes.

I. Time based sampling: samples are taken at fixed time intervals

and the mass of a sample is proportional to the current belt flow rate.

This gives a sampling rate proportional to the flow rate.

II. Single increment constant rate sampling: the samples are stored

in a hopper from which ore is taken at a constant rate to be analysed. A

new sample is taken whenever the level in the hopper reaches a "low" mark.

The mass of a sample is again proportional to the current flow rate on the

belt. The length of the sampling interval is thus At. = Cw(t.) for some

constant C .

Since we know little about the actual behaviour of the quality g(t)

and the flow rate w{t) we endeavour to keep our assumptions simple and

reasonably realistic. They are chosen to agree with the small amount of

data that is available. We shall suppose that g{t) varies sufficiently

smoothly that its general trend during a single sampling interval can be

adequately approximated by a straight line while its short term variations

can be considered completely random. This leads us to model g{t) by a

Wiener process (or Brownian motiort) within each sampling interval. For

w(t) we shall assume only that its variations are slow on the time scale

of the sampling intervals. We take terms such as w'(t)A£ to be

negligible compared with w{t) . We assume further that the values of

git.], W\t.) and W\t.] are all known exactly. Sampling variation will
1s Is Is

of course occur in practice, but will affect both of the sampling schemes.

Our interest is really centred on the total mass of iron £ M. in the

ore transported. The mean quality £ M./Y, ̂ • c a n *>e immediately found

from this, and since T W. is the same for both sampling schemes, we shall

compare the schemes on their estimates of £ M. .

Define

This is the natural estimate of M. using the trapezium rule approximation

to the integral of the flow rate of iron g(t)w{t) . It is not difficult
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to show that, conditional on the observed values of g, w and W ,

M. - M. has a normal distribution with mean approximately zero and

variance

2
where 0 is a constant and

V. = ffi&t. .^ ^ ^

2
Since O does not depend on the sampling scheme, our comparison will be

based on V = £ V. .

In order to compare the values of V resulting from the two schemes,

we exploit the slow variation we have assumed for w and approximate V

by an integral. Let V and V denote the values of V for scheme I

and scheme II respectively. Then

V - T ffi&t
1 <- %

[T? r 2
^ (bt)d w(u)ddu ,

J0

while

V = I fat.

c* C 2 f

To obtain a fair comparison, we must ensure that the two schemes are

taking the same number of samples. Again we use an integral approximation.

Let n and n denote the number of samples taken using scheme I and

scheme II respectively.
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Then

and

n

n = T/M

2

1

C'1

'0

Thus if n = n then we have

The difference in the V values of the two schemes is

p !T h i
V - V = (At) w(w) (w(w) -
1 2 J0

The integrand is positive when w{u) < tAIC and negative otherwise.

Hence, after a little manipulation, we see that

(T
V- V < 2{ht)5{w{u)-1-{C/kt))du/C2

> n'0

= 0

since n = n .

Equality can hold only if w{u) = CAt for all u in which case the

two schemes coincide.

Thus we see that, unless the flow rate of ore is constant, scheme II

is less efficient than scheme I. Without more detailed assumptions on the

flow rate w we cannot determine the amount of the loss of efficiency.

Saunders and Lwin [6] describe a model in which U and g are specified

more completely. They find that, for realistic values of the parameters,

approximately 10$ more samples must be taken by scheme II than by scheme

I to attain the same accuracy.
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4. Conclusions

We have looked briefly at two examples where stochastic modelling has

enabled us to obtain useful conclusions in situations where, for one reason

or another, complete data were unavailable. My aim in presenting this

paper has been treefold:

1. to describe some of the work in stochastic modelling that is

going on in CSIRO;

2. to show how useful answers to rather vague questions can be

obtained; and finally

3. to show that interesting mathematics can sometimes arise from

practical problems.
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