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Abstract

This paper calculates the central Borel 2 cocycles Z^,nt(G, A) for certain 2-step nilpotent Lie groups G
with values in the injectives A of the category of 2nd countable locally compact abelian groups. The
G's include, among others, all groups locally isomorphic to a Heisenberg group. The A's are direct
sums of vector groups and (possibly infinite dimensional) tori, and in particular include R, T, and C.
The main results are as follows.

(4.1) Every symmetric central 2 cocycle is trivial.
(4.2) Every central 2 cocycle is cohomologous with a skew symmetric bimultiplicative one (which is

necessarily jointly continuous by [7]).
(4.3) The corresponding cohomology group H^M(G, A) is calculated as the skew symmetric jointly

continuous bimultiplicative maps modulo Homcont([G, G]~, A).
These results generalize the case when G is a connected abelian Lie group and A = T, due to

Kleppner [3]. Using standard facts of the cohomology of groups they can be interpreted as classifying
all continuous central extensions

(1) -» A -» E -> G -> (1)

of the group G by the abelian group A. Finally some counterexamples are given to extending these
results.

1980 Mathematics subject classification (Amer. Math. Soc): 22 E 41.

Introduction

In studying representations of locally compact groups, projective representations
arise as a natural and inescapable generalization. It is therefore of interest to
determine all possible multipliers or central 2-cocycles on the group with values in
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166 Martin Moskowitz [2]

the circle if one is interested in unitary representations or the non-zero complex
numbers in general. Of course structural considerations are another important
motivating factor; namely, one wishes to find all central extensions of a given
group G by a given abelian group A. In this paper we shall essentially determine
all possible central 2 cocycles for a certain class of non-abelian groups G with
values in the class of injectives A for the category of locally compact abelian
groups (Theorem 4.2). Then we shall compute the associated cohomology group
(Theorem 4.3). The ,4's are direct sums of vector groups and (possibly infinite
dimensional) tori. The G 's will be certain 2-step nilpotent groups (those satisfying
* of Section 2). These include, among others, all groups which are locally
isomorphic to a Heisenberg group. The notions of a bimultiplicative map,
symmetry, skew symmetry, 2 cocycle and H2

ent(G, A) are defined in Section 1.
Our main results are as follows.
(4.2) Every central 2 cocycle is cohomologous with a skew symmetric bimulti-

plicative one.
(4.3). H2

ent(G, A) = skew symmetric bimultiplicative maps modulo
HomCODl(lG,G]-,A).

0. Preliminaries

Let G and A be second countable locally compact groups written multiplica-
tively, with A abelian. Further properties of G and A will be specified later. We
shall be concerned with Borel measurable functions w: G X G -> A satisfying
w(l, x) = 1 = a(x, 1) for all x e G and u(xy, z)u(x, y) = u(x, yz)u(y, z) for
all x, y, z G G, henceforth called 2 cocycles. The set of all 2 cocycles is denoted
Z2(G, A). It is an abelian group under pointwise operations. An easy calculation
shows that examples of 2 cocycles are provided as follows. Let / : G -> A be a
measurable function, and let uf(x, y) = f(x)f(y)f(xy)~1 for x, y & G. It is easy
to see that ayay< = u^>. Two cocycles u and w' are called cohomologous if
to = u'uf for some / . So if u is cohomologous with uf, then it equals uf, for some
/ ' , and we say that w is trivial. Also the set B2(G, A) of trivial cocycles is a
subgroup, and by definition H2

ent(G, A) = Z2(G, A)/B2(G, A).
Important facts about central 2 cocycles are the following (see G. Mackey [4]

and C. C. Moore [5]). Given a 2 cocycle u, one gets a topological group extension

where A is a closed central subgroup and E/A = G. Here Eu = G X A as a set,
and (a, x)(a', x') = (aa'a(x, x'), xx'). Now A and G have natural Borel struc-
tures which are standard. The direct product defines a standard Borel structure
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on Eu, and the map (e, e') >-* ee'~l is measurable, so that Ea is a standard Borel
group. Since the direct product of the Haar measures is an invariant measure on
Eu, it follows by (7.1) of [4] that Eu has a unique locally compact topology in
which it is a separable group with the above Borel structure. Two such extensions
are equivalent in the obvious sense of the diagram below

(1)

if and only if co and w' are cohomologous [5].
A well known but interesting example of a 2 cocycle is provided by the

following. Let B: G X G -> A be measurable and multiplicative in each variable
separately. Then B is easily seen to be a cocycle. We denote by BA(G, G) the set
of such cocycles. It is easily seen to be a subgroup of Z2(G, A). It is the purpose
of this paper to explore the relationship between BA(G, G) (in fact the skew
symmetric part of BA(G, G)) and all of Z2(G, A), that is to investigate under
what circumstances a general 2 cocycle is cohomologous with a bilinear one. Our
assumption on A beginning in Section 4 will be that A is an injective for the
category of locally compact abelian groups (see [6], where the projectives and
injectives of this category are computed). Because of second countability, this
means that A = R" X TN, where N < Ko, and where R and T are, respectively,
the reals and reals modi. ^4's of special interest of course are T, R+( = R) and
their direct sum T X R* = Cx. By [7], the elements of BA(G,G) are actually
jointly continuous if, for instance, G is a connected Lie group and A is as above.
Notice that the well known Heisenberg group Nr (of dimension 2r + 1), r > 1, is
given by such an extension

and in fact the multiplication is given in additive notation as follows:

{z,X,Y)(z',X',Y') = (z + z' + {X,Y'),X+ X',Y+ Y').

Thus, «((*, Y),(X', Y')) = (X, Y') (inner product in Rr) is bilinear. This is not
an accident, since, for T valued cocycles, such results were proven by A. Kleppner
[3] if, for example, G is abelian and simply connected (the hypothesis used in [3]
is that each element of G must have a unique square root). Simple modifications
in this situation carry over to R valued cocycles and indeed A -valued ones, with
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A as above. The objective here is to investigate the question for non-abelian
groups G.

1. Abelianization and decomposition into symmetric and skew symmetric parts

For a topological group G, let [G,G] be the derived group, [G,G] its closure,
and 77 the canonical map: G -* G/[G,G]~.

LEMMA 1.1. Let B e BA(G,G), where G and A are a-compact locally compact
groups. Then there exists B* e BA(G/[G,G]-,G/[G,G]~) such that B =

PROOF. Suppose x = y and z = w. Then x = yc and z = wd, where x, >>, z, w
G, and c, d e [G,G]~. Then

Now by multiplicativity and the fact that A is abelian, B(y, d) = 1 for d e [G, G].
Since /? is measurable, it is measurable in the second variable. But it is multiplica-
tive, and since G and A are a-compact, it is continuous in the second variable
(see [7]). Hence, B{y, d) = 1 for all d e [G,G]~. This shows the last two terms
are each equal to 1. Similarly /?(c,w) = l. Thus /?(*, z) = P(y,w). Clearly
/?*(TT,I7) = )8 and /?* e ^ (G/ [G,G]" .G/ [6 ,GD because j8 is bimultiplicative,
(?r, TT) is open, and open sets generate the a-algebra of Borel sets.

DEFINITION. If w e Z2(G, A), we shall write u~(x, y) = w(^, x). We shall call
« symmetric if « = w~and •yfow symmetric if w"1 = w~. The symmetric and skew
symmetric parts of BA(G,G) will be denoted by BA(G,G)S and BA(G,G)a,
respectively.

LEMMA 1.2. (or1)" = (w-)"1 /or a// w e Z2(G, ,4); moreover, if w e Z2(G, 4̂),
50 (foes «~.

PROOF, ( W - 1 ) ^ ^ , J)W~(X, y) = u-\y, x)co(y, x) = 1, so (u'^u- = 1. Now if
u> e Z2(G, ^ ) , then w~(x, 1) = <o(l, x) = 1, and w( l , x) = w(x, 1) = 1. Also
w(z, xy)u>(y, x) = w(^z, x)«(z, y) for all x, >>, z e G. Consider the bijective
map / -> r 1 of G. Then the latter yields u(z~\ x^y-^u^y-1, x'1) =
a(y-lz-\ x-l)w(z~\ y-1). But w(z"V, x"1/"1) = "(z"1, (jx)"1), and
wC^-^"1, x"1) = u((zy)-\ x'1). Substituting and applying t -» r"1 again yields
the identity «(z, yx)u(y, x) = ^(z^, x)w(z, y). This is the cocycle identity for
w~.

The point here of reproving the important Lemma (1.3) presented in [3] is that
now it holds for non-abelian but a-compact groups G and A.
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LEMMA 1.3. / / w e Z\G,A), then u(u)-1 <= BA(G,G)a. Moreover, (by [7]) it
is jointly continuous.

PROOF. u(u~)~\xy, z) = u(xy, z)(ui'1)~(xy, z) = u(xy, z)u~1(z, xy) =
u(xy, z)u(x, y)u(x, y)~1u(z, xy)~l. By the cocyle identity the latter equals

u(x, yz)u(y, z)a(x, y)~1u(z, xy)~l

= u(x, yz)u(y, z)(u(z, x)u(zx, y))~l

= u(x, yz)o)(y, z)u(x, z)u(x, z) w(z, x)~ u(zx, y)~ .

Does this equal

u(u~)'\x, z)u{u~)'\y, z),

i.e. u(x, z)u(z, x)'lui(y, z)u(z, y)'1"! If we cancel out common factors this
question becomes "Does w(x, yz)u(z, y) = «(JC, z)u(zx, y)T Since u G
Z2(G, A), w~ is also a cocycle by (1.2). In terms of <o~ this says that
u~(y, z)u~(yz, x) = w~(z, x)u~(y, zx), which proves the statement above.

Now u(u~)~1 is multiplicative in the left variable. But w(a)-)"1w"1<o~ =
Bu'1((iij"1iii"= 1. So (<o(w~)"1)"1 = w"lw~. Clearly (w(w~)"x)~= w-w"1 = u~lw~,
since Z2(G, A) is abelian. Thus u(w)'1 is skew symmetric. Therefore it is also
multiplicative in the right variable.

LEMMA 1.4. Let G/[G,G]~ be a connected and simply connected Lie group. If
j8 e BA(G,G), then there exists y e BA(G,G) with y2 = p.

PROOF. Case 1. G is an abelian group and each element has a unique square
root (which is a measurable function). When A = T, this is Kleppner's case. For
completeness we furnish the simple argument. Let (g, h) e G X G. Then x2 = g
for a unique JC 6 G. Define v(g, /i) = j8(x, h). If JCJ = gx and x\ = g2, then
(xlx2)

2 = xfcf = gjg2, and so y(gxg2, h) = P(xxx2> h) and y(glt h)y(g2, h) =
J8(XJ, h)B(x2, h). Since B is multiplicative, so is y. Now y~(g, A) = y(h, g) =
^( j ' , g), where >>2 = A, and y(g, h) = B(x, h), where x2 = g. So v~(g, /i)y(g, A)
= B(y, x2)B(x, y2) = /5(j, x)2B(x, y)2 = (B(y, x)B(x, y))2 = I2 = 1, since /?
is skew symmetric. Thus, y is skew symmetric. Since it is multiplicative in the left
variable, it is therefore multiplicative in the right variable. Finally, y2(g, h) =
Y(g, h)2 = B(x, h)2 = B(x2, h) = /?(g, h) so that y2 = B. Since B is measurable,
so is y.

Case 2. G/[G,G] is connected and simply connected and each element has a
unique square root. Form B* as in (1.1). Now B*(x, y) = B(x, y), and B*(y, x)
= B(y,x), soB*(x, y)B*(y,x)= B(x, y)B(y,x) = 1. Thus B* is skew symmet-
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ric. By Case 1 there exists y e BA(G/[G,G]-,G/[G,G]')a such that y2 = /?*.
Let Yi be y lifted to G X G; that is, yx(x, y) = y(x, y). Then clearly y1 is skew
symmetric and measurable, since y and (w, -n) are measurable. Since T is a
homomorphism, we see that yl e BA(G,G). Now y^x, _y) = y(Jc, J')2 = /?(x, y)

COROLLARY. 1.5. / / w e Z2(G, A), then there exists y e BA(G, G)a with y2 =
w(w-)"1 (this follows from (1.3) and (1.4)). In particular, y2 = B(B~)~l for any
B <= BA(G, G).

2. Some structural results

Our initial assumption on the second countable locally compact group G is the
following: there exist closed abelian subgroups Hx and Kx of G such that
G = HXKX and Hx n K1 2 Z(G), the center of G. We shall provisionally call this
condition C.

LEMMA 2.1. i/L a« J A\ are normal if and only if G is 2-step nilpotent.

PROOF. If Hl and A\ are normal, then H1 n ATX is closed, and we get an
injective homomorphism G/(HX n ATJ ^ G/Hx X G/AT^ Now G/i/i =
HlK1/Hl s KX/(EX n -Kj), which is abelian since Kx is. Similarly G/^j is also
abelian. This means that G/(HX n ^Tj), hence also G/Z(G), abelian. Conversely,
if G is 2-step nilpotent, then [HX,G] c [G,G] c Z(G) c Hx. So i/j, and similarly
Kx, are normal.

Condition C together with the normality of Hx and Kx will constitute our
basic assumption about G. This we shall call •.

C O R O L L A R Y 2.2. If G is a connected Lie group satisfying *, then, in particular,

G is nilpotent, so the exponential map is onto, and each g £ G has a square root. If

G/[G, G]~ is connected and simply connected, then each element of it has a unique

square root. In particular, if G is connected and simply connected, then this is so

(since [G, G]~ is connected).

LEMMA 2.3. If G is simply connected, then * is equivalent to the following. Let g

be the 2-step nilpotent Lie algebra of G. Then one can choose a basis {ZX,...,ZS}

of j ( g ) and extend this to a basis {ZX,...,ZS,XX,..., Xn, Yx,...,Ym) of g so that

[Xt, Xj] = 0 = [Yk, Y,] for all i, j = 1 , . . . , n and k, I = 1 , . . . , m.

PROOF. Let bj = lsR(Zx, . . . , Zs, Xx, . . . , Xn), and let lx =
lsR{Zx,..., Zs,Yx,...,Ym}. Then i)x and tx are abelian subalgebras, i)x +tx =Q,
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and &! n fj = a(g) . N o w [ b i , f\] c [g, g] c j ( g ) = bx n f\, so hx and f\ are
ideals. Let /fj and Kl be the corresponding normal analytic subgroups. Then Hx

and Kx are abehan, //x n ^ = Z(G) , and Hx and A"x closed because G is
simply connected. If g = exp X & G, then A" = / i t + Ar1; where hr e b l 5 Jtx G f j .
But exp/i j expfcj = e\p(hl + kx + \[hv kx]) by the Campbell Hausdorff For-
mula. Since \[hv kx] e a(g) , the latter equals exp(/i1 + A:1)exp(^[/i1, &J), and so
g = exp hx exp fcj exp(- |[A1 ( kj). Since [bx, fx] c f 1; the product of the latter
two factors is in Kv so g G H1K1. Conversely, if G has property *, then the
ideals bj and f\ corresponding to Hl and Kt are abelian, and l)1 n f2 2 3(fl). If
x e g, and if g = exp A' = exp h1 exp ATJ, then, by *, and by the fact that exp is
surjective for bi and I1 ; we see from the Campbell Hausdorff Formula that
X = l og^xp / i i expfcj) = hx + kx + \[hv kj]. Since fx is an ideal, g = bj + tv

(2.4). An example is now clearly provided by the Heisenberg group Nr. Let n r

be its Lie algebra. Then n r is generated by X = (xv..., xr), by Y = (yt,..., yr)
G Rr, and by z e R, with bracketing [(Ar,y,z),(A' ' ,y ' ,z ' )] = (0 ,0 , (7 , A") -
( A ' , y ' » . Clearly then bj = {(Ar,0,z)} and IX = {(0,7,z)} are abelian ideals
with bi + ?i = 8 and bi n fx = 3(g). By (2.3), * is satisfied here. More gener-
ally, let g be any 2-step nilpotent Lie algebra, and let { Z 1 ; . . . , Zs} be a basis of
3(g). Extend this to a basis {Zv..., Zs, Xx,..., Xn) of 8- Then

(i) [Xt, Xj] = Il-iCfj Zk, where cfj e R and i, ; = 1 , . . . , «; and
(ii) all other brackets among {Zl,...,Zs,X1,...,Xn} are zero except for

[A},A-]= -[X,,Xj].
Conversely, if { Z x , . . . , Zs, Xx,..., Xn} is an independent over R set of elements
in a vector space a, and if bracketing is defined by (i) and (ii), then [Z,, X] = 0
for all X G a and i = 1 , . . . , s. Hence any triple bracket is 0. Therefore the Jacobi
identity is automatically satisfied, and since

it follows that Q is 2-step nilpotent.
Now by (2.3), * (or rather the corresponding Lie algebra condition) is satisfied

by a if and only if we can partition { Xx,..., Xn } into { Xx,..., Xn Xt+1,..., Xn)
so that [A',, Xj] = 0 if /', j < / or /, _/ > / + 1. Since Zv..., Zs are linearly
independent, this holds if and only if cfj = 0 for /, j < / or /, j > t + 1. In other
words, the cf y must form a family of s, t X n — t matrices. In this case we would
take fil = teR{Zv...,Z,,Xl,...,Xl} and tx = lsn{Zv...,Zs, Xl+l,..., Xn}
and argue as in (2.3). Clearly such a partition need not exist, so our results need
not apply even to arbitrary 2-step nilpotent groups. But, for example, if dim = 4,
then by the above together with (2.5) below, * is always satisfied.

Some sufficient conditions, and a characterization of nr , follow.
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PROPOSITION 2.5. Let g be a 2-step nilpotent Lie algebra over R with 1-dimen-
sional center. Then g = nr for some r. In particular, * is satisfied.

PROOF, [g, g] = 3(9). If we let p(X, Y) = [X, Y], then 0: g X g -+ [g, g] is a
skew symmetric bilinear form. If either X or Y belongs to 3 (g), then ft (X, Y) = 0.
Hence /J induces a skew symmetric bilinear form: g/3(g) X g/3(g) -> [g, g].
Now if fi(X + 3, Y +_ 3) = 0 for all Y e g, then [X, Y] = 0 for all y, so that
I G J and Z + 3 = 0. Thus the form is of maximal rank, and dim(g/3(g)) is
even, say equal to 2r, by skew symmetry. Thus dim g = 2r + 1, and
[(X, Y, z),(X', 7 ' , z')] for all (X, Y, 2), and (X\ Y', z') e g, is defined by

'0
1
0
0

-1
0
0
0

0
0
0
1

0
0

-1
Oi

where ( , ) is the usual inner product on R2r, X = ( x 1 ; . . . , x r ) , Y = (yv..., yr),
X' = (x[,..., x'r), V = (y[,..., y'r), and where

A =

is a 2r by 2r matrix. Direct calculation tells us that [(X,Y, z),(X',Y',z')] =
(X,Y') - (Y, X'), where ( , > is the usual inner product on W. Therefore,
[(X,0,o),(X',0,o)] = 0 = [(0,y,o),(0, Y',o)]. So {(X,0,o): JfeR'} and
{(0, y, 0): Y e W] are abelian subalgebras, {(0,0, z): 2 e R} is the center, and
[(X,0,o),(0,Y,o)]= (X,Y).Thus Q = nr.

Let G, H and v4 be locally compact abelian groups and /?: G X H -> A &
bimultiplicative map. This gives rise to a bimultiplicative (polarized) map <o:
(Gx H)X(GX H)^A us follows: w((g, h),(g', h')) e j8(g, A')- We form £
= Zŝ  as usual and get a central extension.

(l)-,4->£^GX#-> (1),

where multiplication is given by (a, g, h)(a\ g', h') = (aa'fi(g, h'), gg', hh'). Now
since «((g, 1), (g ' , 1)) = P(g, 1) = 1 and co((l, A), (1, A')) = 0(1, A') = 1, we see
that the closed normal subgroups ir~\G) and ir^iH) of E are abelian. Also

ir~l{G) n n and = £ . Now if 0 is nondegenerate, then
.4 = Z(£), so that IT-\G) n ff
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An easy calculation shows that

Hence if 0 has dense range, then [£ ,£ ] "= A and E/[E,E]~ = G X H. Thus we
have another class of examples

PROPOSITION 2.6. Let G, H, and A be locally compact abelian groups, and let /?:

G X H -» A be a bimultiplicative map. Suppose that

(i) /?: G X H -* A is a nondegenerate form with dense range,

(ii) G and H have unique square roots.

Then E satisfies * and E/[E/E] has unique square roots.

3. Symmetric cocycles

Let 03. G X G -* A be a Borel cocycle which is symmetric.

LEMMA 3.1. ^gg'Ag'g)'1) = "(g'g^g'g)"1) forg,g' e G.

PROOF. Using the central cocycle identity, we get

Since w(l, g") = 1 for all g", it follows that if we take g" = g'g, then we get

The fact that the latter term is 1 and that w is symmetric yields the result.

COROLLARY 3.2. / / w is symmetric, then in Eu we have

PROOF. We have

)"1[(a, g),(a>, g'))-(a, g){a>, g>)((a>, g')(a, g))"

= (aa'a{g, g'), gg')(a'acc(g', gr^fg'g^g'g)-1)"1, (g'g

= (<w'«(g, g')a'-la-lu{g', g)"1
W(g', g), (g'g)~1)"1<o(gg',(g'g)-1), [g, g'])

" ( 1 , [«,*'])
by the symmetry of w together with (3.1).
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COROLLARY 3.3. If w is symmetric, and if G is nilpotent, then the index oj
nilpotence of E equals that of G.

LEMMA 3.4. / / <o is symmetric, and if G and A are separable, where A is injective
for the category of locally compact abelian groups, then for each closed abelian
subgroup H of G, EH is abelian and u{h,h') = 1 for all h, h' e H.

PROOF. Consider u\H X H, which is a central Borel cocycle of H. Since
w | H X H is symmetric, the central extension EH given by

(1) -» A -» EH -» H -» (1)

is abelian. EH is locally compact and separable by Mackey's theorem [4] for
measurable cocycles. Since A is injective, this splits. Hence (a,h\a',h') =
(aa'u(h, h'), hh') = {aa\ hh'), and so <o(h, h') = 1.

Now take H = Z(G), the center, and assume that G satisfies *. Then G is
2-step nilpotent by (2.1), so that [G, G] c Z(G). Hence we get

COROLLARY 3.5. a(c,c') = 1 fore, c' e [G,G].

Now consider the extension Eu = E
(1) -» A -* E -» G -» (1)

for w symmetric.

LEMMA 3.6. Let x = [elte[] • • • [en,e'J e [ £ , £ ] , wAm e, = (fl|., g,) and e\ =
(a,', g,') are /« £ . T/ie« x = (1, [gv g[] • • • [gn, g'J).

PROOF. By (3.2), [et,e-] = (l,[g,, g,']) for each /. Induction then yields

X = ( l , [ f t , ft'] • • • [£„-!, g'a-lW-[gn, g'J) = («Qft, ft'] • • • \Sn-V g'n-lMgl, g'l)

• • • [gn, g'n]). But by (3.5) this is ( l , [ g l , g[] • • • [gn, g'J).

COROLLARY 3.7. [E, E]~n A = (1).

PROOF. By (3.6), if x e [E,E], then x = ( l ,c) , where c e [G,G]. It follows
that [E,E]~Q {(l ,g): g e [G,G]~}, and hence [£, £ ] ~ n y4 = (1).

Cohomology for symmetric cocycles, the main results

THEOREM 4.1. Now let G be a second countable locally compact group satisfying
*, let u be a Borel cocycle a: G X G -* A, and let (1) -» A -» E ^* G -» (1) be
the associated central extension. If u is symmetric, and if A is second countable and
injective for the category of locally compact abelian groups, then w is cohomologous
to 0.
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PROOF. Let H = ir~\Hx), and let K = v'\Kx). Since G = H J A J , and since
Hx and Kx are normal in G, we have E = HK; moreover, H and K are normal in
E and closed, since Hx and AT x are. Because « is symmetric and H1 and A^ are
abelian, we know that H and K are abelian by (3.4). Now we have A c H C\ K.
Also, by normality, [K,H]c H n K, and, since H and A are closed, [K, H ] " c
# O A:. By Corollary (3.7), [A, H]~n A = (1); therefore [K, H]~A is a direct
product, since the factors commute. Now extend the identity map id: A -» A to a
continuous homomorphism / : [AT, / / ]~X ,4 -+ ,4 by taking /([A", i / ]~) = (1). In
particular, f([k, h]) = 1 for all (A:, h) e A X H. Since 4̂ is an injective, and since
H n K is abelian, / extends to a continuous homomorphism which we again call
/ : H n K -* A . Now since H and A are abelian, by using injectivity again we
can extend this to continuous homomorphisms f:H-*A and g: K ~» A such
that / | f f n K = g\H<Mc aad { \ A ~ id- Moreover, f(khk~1h-1)= 1 for /i e # ,
/t G /T. But &M"1 G /f, and / is a homomorphism of H, so that 1 = f{khk~xh~x)
= f{khk'l)f{hyl. Thus f{khk'1) = /(A) for all A: e K and /i e i/.

We wish to find a continuous homomorphism 3>: E -> A such that <t> | H = / .
Then $ | w = / 1 A = id, and therefore A would be a direct factor of E, so the
original sequence would then split, and therefore <o would be trivial. Define $:
E -> A by $(hk) = f(h)g(k). Now if Wfc = /j'A:', then A'"1* = /t'/t"1 e H n K,
so that f(h'~lh) = ^(fc'Ar1). But since / and g are homomorphisms, f(h')~lf(h)
= g ^ O g W 1 , and therefore f(h)g(k) = f(h')g(k'). It follows that 0 is well
defined. Since this is so, if h e H, then /i = hi, where 1 e K, and so $(A) = f(h).

Now let /i/t and h'k' e E. Then it/i' G W = iflt, so jfeA' = h"k. Thus

Q(hkh'k') - ${hh"kk') = f(hh")g(kk')

= f(h)f(h")g(k)g(k')

= f{h)f(kh'k~l)g{k)g{k>).

On the other hand, $(hk)$(h'k') = f(h)g(k)f(h')g(k'). Since ,4 is abelian,
these are equal, provided that f(kh'k~l) = /(A') for all )t e A" and A' e /T. Thus
O is a homomorphism.

Finally, as for the continuity of $, let H X K act on E as follows: (/i, k)e =
hek~l. This is a jointly continuous action, and, since E = 7/A", we see that the
orbit <PHxK(l) = E, and so the action is transitive. Clearly the stability group
StabWx/f(1) = {(x, x): x e H n K). Since^4 and G are second countable, E as
well as H x A" is second countable, and therefore (see Hochschild [2]), E is
H x K equivariantly homeomorphic to H X A/StabffxAr(l).

Let hnk~l converge to hk'1 in E. Then (/!„, A:B)Stab//XA-(l) -»
(h, k)St&bHxK(l) in Hx A/Stab. Let Wo be a neighborhood of 1 in A. Choose
a neighborhood W of 1 in A so that WW~l c tfg. By continuity of / and g,
choose neighborhoods U and V in H and A, respectively, so that f{U) c W and
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g(V) c W. Then, for all n large, (h,ky\hn,kn) e StabWxAr(l)f7 X V; that is,
for some x e H n K, (x^h^h„,x^k'lk„) £ l / x K But then f{x-lh~lhn) e

/ ( ( / ) c JF and g(x"1A:"1A:n) G g ( F ) c If. Since / and g are homomorphisms on

H and AT, respectively, and since x e / / n K, we have / ( ^ ) 1 1

and g(x)'1g(A:)~1g(A:n) G H .̂ Because ;4 is abelian,

But / and g agree on H r\ K, so that $(/inA:;1)$(/iA:"1)"1 G WO for n large.
Thus <*>(hnk;1) ~

We now come to Theorem (4.2), one of the two main results of our paper,
which extends that of [3] to nonabelian groups G satisfying * (as well as to more
general groups 4). Theorem (4.2) is analogous to a result of Ritt [8] (see also P.
Cassidy [1], especially page 112) which deals with the algebraic but also abelian!
case. Then follow some counterexamples to extending Theorem (4.2) by any
method to more general groups. Finally, the other main result, Theorem (4.3),
presents the calculation of the cohomology group itself.

THEOREM 4.2. Let G be a connected Lie group satisfying * whose abelianization
G/[G,G]~ is simply connnected, and let A be a second countable injective for the
category of locally compact abelian groups. Then the map BA{G,G)a -* Z2(G, A)
-* H^ent{G, A) is surjective. In other words any measurable cocycle w is cohomolo-
gous with a jointly continuous skew symmetric bilinear cocycle.

PROOF. Choose y G BA(G, G)a so that y2 = « («~) 1 (1.5). Then uy~ly = a. If
uy'1 is symmetric, and therefore cohomologous to 1 by (4.1), we would have u~y.
Now since y2 = u(u~)~l we know that <a~y = ay'1. But («y~1)~=«~
Y since y is skew symmetric.

REMARK. Our method also works for abstract groups. It yields the following
analogue of Theorem (4.2).

Let G be a group with normal abelian subgroups Hx and K1 such that
G = HlK1 and HXC\ A^ 2 Z(G), and let A be a divisible abelian group. If each
element of G/[G,G] has a unique square root, then the map BA(G,G)a-+
//^m(G, A) is surjective.

We note that Theorem (4.2) is not true for arbitrary central extensions of Lie
groups. For if A does not satisfy the conditions imposed on it by Theorem (4.2),
then, even if G satisfies * and G/[G,G]~ has unique square roots, the conclusion
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of Theorem (4.2) fails in general. For let G be any connected but not simply
connected Lie group, let G~ be its universal covering group, and let A = II^G),
the fundamental group. Then A is a finitely generalized discrete abelian group,
and (1) -» A -> G~ -» G -* (1) is a central extension of Lie groups. Suppose the
corresponding measurable cocycle is equivalent to B e BA(G, G). Then (also by
[7]) B is jointly continuous. Since A is discrete and G is connected, we see that
Pig* g') = 1 f°r a^ £> £' s o that G~ = -4 X G. But since G~is connected and A is
discrete, we have A = (1) and G = G~, which is a contradiction. Now choose G
satisfying • which is not simply connected, but for which G/[G, G] is simply
connected. For example, let G = Nr/T, where T is a discrete central subgroup of

Similarly, if G does not satisfy *, then, even if A satisfies the conditions
imposed upon it, Theorem (4.2) fails. Let n > 2, let E = Gl(n,C),1et A = CXI,
and let G = SL(«,C). Then A = Z(E) and E = &4, so £/04 = Gv4/^ = G/G
C\ A = Ad(G), since G D A = Z{G), which is a nontrivial finite group. Thus we
have a central extension (1) -» A -> £ -> Ad(G) -» (1) of Lie groups, with ,4
satisfying the conditions of (4.2). If the corresponding cocycle were similar to a
bilinear map B: Ad(G) X Ad(G) -> A, then for fixed x e Ad(G), we have
j8(x, Ad(G)) = 1 because Ad(G) is semisimple and A is abelian. Therefore /? = 1,
and we can find a continuous cross section $: Ad(G) -^ E to IT. Therefore
iKAd(G)) is a semisimple analytic subgroup of E and so is contained in a Levi
factor. But since E is reductive it has a unique Levi factor, namely G. So
*(Ad(G)) c G. Thus * is a cross section for ir\c. Hence G = Z(G) X Ad(G),
and by connectedness Z(G) = (1). This is impossible since Z(G) is a nontrivial
finite group.

Our last step will be to calculate the cohomology itself.

THEOREM 4.3. Let G be a connected and simply connected Lie group satisfying *,
and A be as in (4.2). 77ien Hlnt(G,A) = BA(G,G)a/Homcoat([G,Gr, A), where
the Horn group is identified with a subgroup of BA(G,G)a in the manner described
below.

PROOF. In view of Theorem (4.2) we know that BA(G, G)aB
z(G, A) = Z2(G, A).

Hence H2 = Z2/B2 = BA(G,G)aB
2/B2 = BA(G,G)a/BA(G, T)a n B1. It re-

mains to study this intersection. Let a>f be in the intersection, where / : G -» A is
a measurable function. Since oy is skew symmetric, it follows that

(0 fig)2fig')2=figg')fig'g) for all g,g' e G. If g' = z e Z(G), this says
that fig)2fiz)2 = figz)2 for g e G, z e G. On the other hand, ay e BA(G, G),
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so that for g, g\ g" e G, we have
(ii) f(g)ttg')f(g")f(gg'g")=f(gg')f(gg")f(g'g")- Taking g' = g in (ii)

yields f(g)2f(g")f(g2g")=f(g2)f(gg")2, so that, if if g" = z e Z, we get, by
using (i) and the fact that A is abelian, that f(g2z) = f(g2)f(z) for g e G,
z e Z. Now each x e G has a unique square root, so x = g2 by Corollary (2.2).
Hence /(xz) = f(x)f(z). In particular, /1 z is a continuous homomorphism and
/(I) = 1. Now by (ii) we get, upon taking g' = g, that f(g)2f(g")f(g2g") =
f(g2)f2(gg"). Multiplying by f(g"), using (i) and cancelling then yields

(iii) f(g"g)f(g2g")=f(g2)f(gg")f(g")- Now gg" = g"gz, where z e Z,
since G is 2-step nilpotent, so by the above f(gg") = f(g"g)f(z). Hence by (iii)
f(g2g")=f(g2)f(g")f(z)- The fact that each element of G has a square root
tells us that

(iv) Kgh) = f(g)f(h)f[g1/2,h] for g,/i e G. Thus we see that «,(*,*) =
/ [g 1 / 2 , A]"1. Now because G is 2-step nilpotent, the map [ , ]: G X G ^> [G,G]
which is obtained by forming commutators is bimultiplicative. From this it
follows that [g1/2, h] = [g, h]1/2, so that

In any case uf depends only on /1 ( c c ] rather than on / itself. Now assume
only (v). Since [, ] is bimultiplicative, and since / is a homomorphism on [G, G]~,
it follows that oy(g2, hh') = ay(g2, /i)«/(g2, h'). Since any x = g2, we see that
such an <*y is multiplicative in the left variable. Also [g, h2] — [g, h]2 and
Ih,g2] = [ft,g}2, so uf(g

2,h2)=f[g,h2]-l=f[g,h]-2, while o>f(h
2,g2) =

/[^> if] 2 = /[g> ]̂2> s o w/(^2> £2) = w/(^2> A2)"1. The existence of square roots
again tells us that ay is skew symmetric, i.e. belongs to BA(G, G)a n B2. Finally,
the map / -» u>f from Hom^^fG.G]", ^ ) -» BA(G,G)a n fi2 is clearly one-to-
one since the commutators generate a dense subgroup of [G, G]~.

We note that our method also works in the case of abstract groups and yields
H^Dt(G, A) = BA(G, G)a/Hom([G, G], A), where each element of G has a unique
square root, G satisfies *, and A is as in the remark following Theorem (4.2).
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