J. Austral. Math. Soc. (Series A) 30 (1980), 157-167

IDEALS OF FREE INVERSE SEMIGROUPS

W. D. MUNN

(Received 27 February 1980)

Communicated by T. E. Hall

Abstract

It is shown that no proper ideal of a free inverse semigroup is free and that every isomorphism between ideals is induced by a unique automorphism of the whole semigroup. In addition, necessary and sufficient conditions are given for two principal ideals to be isomorphic.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 99.

This paper is concerned with various properties of (two-sided) ideals of a free inverse semigroup S, the investigation being based on Scheiblich's structure theorem for S (Scheiblich (1972), (1973)).

We show first that no proper ideal of S is a free inverse subsemigroup of S (Theorem 1). A complementary result, stating that every ideal of S contains an isomorphic copy of S, is a consequence of a theorem established by the author in a separate note (Munn (to appear)).

The second topic discussed is that of isomorphisms between ideals of S. Every isomorphism from one ideal of S to another can be extended to a unique automorphism of S (Theorem 2): consequently, the automorphism group of an ideal of S is a subgroup of the automorphism group of S itself. A description of the automorphism group of S has been provided by O'Carroll (1974).

Necessary and sufficient conditions are given for two principal ideals of S to be isomorphic (Theorem 3) and for the inverse subsemigroups of S generated by two \mathscr{J} -classes to be isomorphic (Theorem 4). Theorems 3 and 4 answer two questions raised by Reilly (1976).

The notation and terminology throughout will be that of Howie (1976).

Let S be an inverse semigroup. The semilattice of S and the automorphism group of S will be denoted by E(S) and aut S respectively. Also, if A is a nonempty subset of S then A^{-1} denotes $\{a^{-1}: a \in A\}$ and so the inverse subsemigroup of S generated by A is just $\langle A \cup A^{-1} \rangle$, the subsemigroup generated by $A \cup A^{-1}$. W. D. Munn

The following easily-checked facts will be used below without subsequent comment. If V is an inverse subsemigroup of S then any \mathscr{R} -class [\mathscr{I} -class] of S contained in V is also an \mathscr{R} -class [\mathscr{I} -class] of V. Moreover, if T and U are inverse subsemigroups of S and $t \in T$ is such that $R_t \subseteq T$ then, for any isomorphism θ : $T \to U$ for which $R_{t\theta} \subseteq U$, we have that $R_t \theta = R_{t\theta}$.

For the remainder of the paper X will denote a nonempty set. Let $G = \mathscr{FG}_X$, the free group on X, and let 1 denote the identity of G. The length l(a) of $a \in G$ is defined by

$$l(a) = \begin{cases} n & \text{if the reduced form of } a \text{ is } x_1 x_2 \dots x_n & (x_i \in X \cup X^{-1}), \\ 0 & \text{if } a = 1. \end{cases}$$

For all $a \in G$ the set of all initial segments (including 1) of the reduced form of a will be denoted by \bar{a} ; further, for all nonempty subsets A of G we write

$$\overline{A} = \{\overline{a}: a \in A\}$$

and we say that A is *left closed* if and only if $\overline{A} = A$.

We now describe the construction for the free inverse semigroup on X given by Scheiblich ((1972), (1973)). Let \mathscr{Y} denote the set of all finite left closed subsets of G with at least two elements. Write

$$S = \{ (A,g) \in \mathscr{Y} \times G : g \in A \}.$$

It is readily verified that if (A, g) and (B, h) are in S then $A \cup gB \in \mathscr{Y}$; hence we can define a multiplication on S by the rule that

$$(A,g)(B,h) = (A \cup gB, gh).$$

With respect to this multiplication S is an inverse semigroup in which

$$(\forall (A,g) \in S), (A,g)^{-1} = (g^{-1}A, g^{-1})$$

and

 $E(S) = \{ (A, 1) \colon A \in \mathcal{Y} \}.$

Let us write

 $W = \{(\bar{x}, x): x \in X\}.$

(Note that, for all $x \in X$, $\bar{x} = \{1, x\}$.) Then $S = \langle W \cup W^{-1} \rangle$ and each mapping from W to an inverse semigroup T extends to a unique homomorphism from S to T. Accordingly, S is the free inverse semigroup on X and W is a set of free generators of S (see Reilly (1972), (1973)). We denote S, as constructed above, by \mathcal{FI}_X . The cardinal |X| of X is termed the *rank* of S.

The mapping $\pi: S \to G$ defined by

$$(A,g)\pi=g$$

is evidently a surjective homomorphism. Now suppose that T is an inverse

subsemigroup of S. It is straightforward to prove that

(P1)
$$(\forall a, b \in T), \quad a\pi = b\pi \Leftrightarrow ea = eb \text{ for some } e \in E(T).$$

Thus π induces the least group congruence on T(Munn (1961)). Moreover, if T is an ideal of S then $T\pi = G$.

It will be convenient to denote the \mathcal{Y} -component of a typical element a of S by $\mathcal{G}(a)$. Thus

$$(\forall a \in S), \quad a = (\mathscr{S}(a), a\pi).$$

Green's relations on S are characterized in Reilly (1972) and further properties of S are listed in Reilly (1976). We note, in particular, that S is combinatorial and completely semisimple and that its partially ordered set of *I*-classes satisfies the maximal condition. Since elements a and b of S are \mathcal{R} -equivalent if and only if $\mathscr{S}(a) = \mathscr{S}(b)$, we have that

(P2)
$$(\forall a \in S), \quad R_a \pi = \mathscr{S}(a).$$

Each \mathcal{J} -class of S is finite: specifically,

(P3)
$$(\forall a \in S), |J_a| = |\mathscr{S}(a)|^2$$

Reilly (1972) has shown that every set of free generators of S is contained in $W \cup W^{-1}$. The following property therefore follows from (P3).

If a belongs to a set of free generators of S then $|J_a| = 4$. (P4)

For ease of reference we also record that

(P5)
$$(\forall a, b \in S), (a, b) \in \mathcal{J} \Leftrightarrow \mathcal{S}(a) = g^{-1} \mathcal{S}(b) \text{ for some } g \in \mathcal{S}(b).$$

Unlike the corresponding situation for free groups, not every inverse subsemigroup of a free inverse semigroup S is free; for example, E(S) is not a free inverse semigroup. By a proper ideal of S we mean an ideal other than S itself. We now establish

THEOREM 1. No proper ideal of a free inverse semigroup S is a free inverse subsemigroup of S.

PROOF. Take $S = \mathcal{F}\mathcal{I}_X$. Suppose that M is an ideal of S which is also a free inverse subsemigroup of S. We shall show that M = S.

Let K be a set of free generators of M and let $a \in K$. Then, by (P4) (with M replacing S), the \mathscr{J} -class of M containing a has exactly 4 elements. Since M is an ideal of S this means that $|J_a| = 4$. Consequently, by (P3), $|\mathscr{S}(a)| = 2$ and so, since $a^2 \neq a$, have that $a \in W \cup W^{-1}$. Thus $K \subseteq W \cup W^{-1}$ and we therefore $K \cup K^{-1} \subseteq W \cup W^{-1}$. Hence $(K \cup K^{-1})\pi \subseteq (W \cup W^{-1})\pi = X \cup X^{-1}$.

[4]

Now suppose that there exists $b \in (W \cup W^{-1}) \setminus (K \cup K^{-1})$. Then $b\pi \in (X \cup X^{-1}) \setminus (K \cup K^{-1})\pi$, since $\pi |_{W \cup W^{-1}}$ is injective. Let $e \in E(M)$. Then $eb \in M$ and so there exist elements $k_1, k_2, ..., k_n$ in $K \cup K^{-1}$ such that

$$k_1 k_2 \dots k_n = eb.$$

Since $e\pi = 1$ it follows that

$$(k_1 \pi)(k_2 \pi)...(k_n \pi)(b\pi)^{-1} = 1.$$

But

$$k_i \pi \in (K \cup K^{-1}) \pi \subseteq X \cup X^{-1} \setminus \{b\pi, (b\pi)^{-1}\} \quad (i = 1, 2, ..., n)$$

and so we have a contradiction. Thus $K \cup K^{-1} = W \cup W^{-1}$. Hence $M = \langle K \cup K^{-1} \rangle = \langle W \cup W^{-1} \rangle = S$ and the proof is complete.

REMARK. Although a proper ideal of a free inverse semigroup S is not itself a free inverse semigroup, it contains an isomorphic copy of S (Munn (to appear) Remark 3).

We now examine isomorphisms between ideals of a free inverse semigroup. To save repetition we shall assume that $S = \mathscr{FI}_X$ and $G = \mathscr{FI}_X$ in the three lemmas below.

LEMMA 1. Let T and U be inverse subsemigroups of S and let $\theta: T \to U$ be an isomorphism. Then there exists an isomorphism $\phi: T\pi \to U\pi$ such that, for all $a \in T$, $a\pi\phi = a\theta\pi$. Suppose, further, that $t \in T$ is such that $R_t \subseteq T$ and $R_{t\theta} \subseteq U$. Then

 $(\forall a \in R_t), \quad a\theta = (\mathscr{S}(a)\varphi, a\pi\varphi).$

(Note that if $a \in R_t$ then $\mathscr{S}(a) \subseteq T\pi$, since $\mathscr{S}(a) = R_t\pi$, by (P2).)

PROOF. Let $a, b \in T$ be such that $a\pi = b\pi$. Then, by (P1), there exists $e \in E(T)$ such that ea = eb and so $e\theta a\theta = e\theta b\theta$. Since $e\theta \in E(U)$, this shows that $a\theta\pi = b\theta\pi$. Thus we can define a mapping φ : $T\pi \to U\pi$ by the rule that

(1)
$$(\forall a \in T), a\pi \varphi = a\theta \pi.$$

Since θ is surjective, φ is surjective. Now suppose that $a, b \in T$ are such that $a\pi\phi = b\pi\varphi$. Then, by (P1), there exists $f \in E(U)$ such that $f(a\theta) = f(b\theta)$ and so $(ea) \theta = (eb) \theta$, where $e = f\theta^{-1} \in E(T)$. Thus, since θ is injective, ea = eb. Consequently, by (P1), $a\pi = b\pi$. Hence φ is injective. Since θ and π are homomorphisms, so also is φ . Thus φ is an isomorphism.

Next, let $a \in R_t$. Since $R_t \subseteq T$ and $R_{t\theta} \subseteq U$ it follows that $R_a \theta = R_t \theta = R_{t\theta} = R_{a\theta}$ and so

$$a\theta = (\mathscr{S}(a\theta), a\theta\pi)$$

= $(R_{a\theta}\pi, a\theta\pi)$ by (P2)
= $(R_{a}\theta\pi, a\theta\pi)$
= $(R_{a}\pi\varphi, a\pi\varphi)$ by (1)
= $(\mathscr{S}(a)\varphi, a\pi\varphi)$ by (P2).

This completes the proof.

DEFINITION. An automorphism φ of $G = \mathscr{F}\mathscr{G}_{\chi}$ is special if and only if $(X \cup X^{-1})\varphi = X \cup X^{-1}$.

Let the set of all special automorphisms of G be denoted by aut*G. It is clear that aut*G is a subgroup of aut G. If X is finite with exactly n elements then $|\operatorname{aut}^* G| = 2^n n!$.

Theorem 2 of O'Carroll (1974) shows, in effect, that

aut
$$S \cong aut^* G$$
.

LEMMA 2. Let M and N be ideals of S and let θ : $M \to N$ be an isomorphism. Then there exists $\varphi \in \operatorname{aut}^* G$ such that

$$(\forall a \in M), \quad a\theta = (\mathscr{S}(a)\varphi, a\pi\varphi).$$

PROOF. Since M and N are ideals of S, each is a union of \mathscr{R} -classes of S. Also $M\pi = G = N\pi$. Hence, by Lemma 1, there exists $\varphi \in \text{aut } G$ such that

(2)
$$(\forall a \in M), \quad a\theta = (\mathscr{G}(a)\varphi, a\pi\varphi).$$

It remains to show that φ is special.

Suppose that there exists $x \in X \cup X^{-1}$ such that $l(x\varphi) > 1$. Let $e \in E(M)$ and let $k = |\mathscr{S}(e)|$. Since $\mathscr{S}(e)$ is finite and left closed there exists a nonnegative integer r such that $x^n \in \mathscr{S}(e)$ if $0 \le n \le r$ and $x^n \notin \mathscr{S}(e)$ if n > r. (By convention, $x^0 = 1$.) Let us write f = eg, where $g = (x^{r+2k}, 1)$. Then $f \in M$, since M is an ideal of S. Now let $A = \{x^{r+1}, x^{r+2}, ..., x^{r+2k}\}$. We have that

$$\mathscr{S}(f) = \mathscr{S}(e) \cup A, \quad \mathscr{S}(e) \cap A = \emptyset$$

and so $|\mathscr{S}(f)| = 3k$. Thus, since φ is injective,

$$(3) \qquad \qquad \left| \mathscr{S}(f)\varphi \right| = 3k.$$

[5]

But $A\varphi \subseteq \mathscr{G}(f)\varphi$; also $\mathscr{G}(f)\varphi$ is left closed since $\mathscr{G}(f)\varphi = \mathscr{G}(f\theta)$, by (2). Hence $\overline{A\varphi} \subseteq \mathscr{G}(f)\varphi$. Thus, from (3),

$$(4) |\overline{A\varphi}| \leq 3k.$$

Let $u, v \in X \cup X^{-1}$ be the first and last letters, respectively, of $x\varphi$. Then, for all $n \in \mathbb{N}$, u and v are the first and last letters, respectively, of $(x\varphi)^n$. Consider the elements listed below:

(5)
$$(x\varphi)^{r+1}, (x\varphi)^{r+2}, ..., (x\varphi)^{r+2k}, (x\varphi)^{r+1}u, (x\varphi)^{r+2}u, ..., (x\varphi)^{r+2k-1}u$$

Let $p, q \in \mathbb{N}$. If $p \neq q$ then $(x\varphi)^p \neq (x\varphi)^q$ and $(x\varphi)^p u \neq (x\varphi)^q u$. Now suppose that $(x\varphi)^p = (x\varphi)^q u$. Then $p \neq q$, since $u \neq 1$, and so $l((x\varphi)^{p-q}) > 1$. But $(x\varphi)^{p-q} = u$ and l(u) = 1, which is a contradiction. Thus the 4k - 1 elements in the list (5) are distinct. Furthermore, for all integers p such that $r+1 \leq p \leq r+2k-1$, $(x\varphi)^p u$ is an initial segment of $(x\varphi)^{p+1}$ if $u \neq v^{-1}$ and is an initial segment of $(x\varphi)^p$ if $u = v^{-1}$. It follows that all the elements in the list (5) lie in $\overline{A\varphi}$. Hence $|\overline{A\varphi}| \geq 4k-1$. But this contradicts (4), since k > 1. Consequently, $l(x\varphi) = 1$ for all $x \in X \cup X^{-1}$; that is, $(X \cup X^{-1})\varphi \subseteq X \cup X^{-1}$.

Suppose that $(X \cup X^{-1}) \varphi \neq X \cup X^{-1}$. Then there exists $y \in X \cup X^{-1}$ such that $y\varphi^{-1} \notin X \cup X^{-1}$. Hence

(6)
$$l(y\varphi^{-1}) > 1.$$

Now θ^{-1} is an isomorphism from N to M. By analogy with (2), there exists $\psi \in \operatorname{aut} G$ such that

$$(\forall b \in N), \quad b\theta^{-1} = (\mathscr{S}(b)\psi, b\pi\psi).$$

Thus, for all $a \in M$, $a\pi = (a\theta) \theta^{-1} \pi = (a\theta) \pi \psi$ and so $a\pi \psi^{-1} = a\theta\pi = a\pi\varphi$. Since $M\pi = G$ this implies that $\psi^{-1} = \varphi$. Hence $\psi = \varphi^{-1}$. The same argument as before, with $N, M, \theta^{-1}, \varphi^{-1}$ replacing M, N, θ, φ respectively, now shows that (6) leads to a contradiction. Hence $(X \cup X^{-1})\varphi = X \cup X^{-1}$; that is, φ is special.

LEMMA 3. Let $\varphi \in aut^* G$. Then there exists an automorphism α of S such that

$$(\forall a \in S), a\alpha = (\mathscr{S}(a)\varphi, a\pi\varphi).$$

PROOF. We first note that, for all $g \in G$, $\overline{g\phi} \sim \overline{g\phi}$ and so, for all $a \in S$, $\mathscr{S}(a)\phi$ is left closed. Hence we can define a mapping $\alpha: S \to S$ by

$$(\forall a \in S), a\alpha = (\mathscr{S}(a)\phi, a\pi\phi).$$

Similarly, we can define $\alpha': S \to S$ by

$$(\forall a \in S), \quad a\alpha' = (\mathscr{S}(a)\phi^{-1}, a\pi\phi^{-1}).$$

Then $\alpha' \alpha = \iota = \alpha \alpha'$, where ι is the identity mapping on S. Hence α is bijective. Moreover, α is a homomorphism, since ϕ is a homomorphism. Thus $\alpha \in aut S$.

REMARK. From Lemma 2 (with M = N = S) and Lemma 3 we can recover O'Carroll's theorem linking aut S and aut*G.

We now come to the second main result.

THEOREM 2. Let S be a free inverse semigroup, let M and N be ideals of S and let $\theta: M \to N$ be an isomorphism. Then there exists a unique automorphism α of S such that $\alpha|_{M} = \theta$.

PROOF. Let $S = \mathscr{FI}_X$, as before. By Lemma 2, there exists $\varphi \in aut^* G$ such that

$$(\forall a \in M), \quad a\theta = (\mathscr{S}(a)\varphi, a\pi\varphi).$$

Hence, by Lemma 3, there exists $\alpha \in aut S$ such that

$$(\forall a \in S), a\alpha = (\mathscr{S}(a)\varphi, a\pi\varphi).$$

Thus $\alpha|_{\mathbf{M}} = \theta$.

Now suppose that $\beta \in \text{aut } S$ is such that $\beta |_{M} = \theta$. Then, by Lemma 2 (with M = N = S), there exists $\psi \in \text{aut}^* G$ such that

$$(\forall a \in S), \quad a\beta = (\mathscr{S}(a)\psi, a\pi\psi).$$

Hence, since $a\alpha = a\beta$ for all $a \in M$, we have that

$$(\forall a \in M), \quad a\pi \varphi = a\pi \psi.$$

But $M\pi = G$. Consequently $\phi = \psi$ and so $\alpha = \beta$.

By specializing to the case M = N we readily obtain the following corollary concerning aut M.

COROLLARY. Let M be an ideal of a free inverse semigroup of S. Then

aut
$$M \cong \{ \alpha \in \text{aut } S \colon M \alpha = M \}.$$

Thus, since aut $S \cong aut^* G$, we see that aut M is isomorphic to a subgroup of

aut* G. In particular, if S has finite rank then aut M is finite.

As an application of the corollary above, consider the following sequence of ideals of S. For each $n \in \mathbb{N}$ let us write

$$S_n = \{a \in S: |\mathscr{S}(a)| \ge n+1\}.$$

It is almost immediate that each S_n is an ideal of S and that

$$S = S_1 \supset S_2 \supset S_3 \supset \dots$$

Now, for all $n \in \mathbb{N}$ and all $\alpha \in \text{aut } S$, we have that $S_n \alpha = S_n$, as can easily be verified with the help of (P3). Hence, from the corollary,

$$(\forall n \in \mathbf{N}), \quad \text{aut } S_n \cong \text{aut } S.$$

On the other hand, since the number of elements in a maximal \mathcal{J} -class of S_k is $(k+1)^2$ it follows that

$$(\forall m, n \in \mathbb{N}), \quad S_m \cong S_n \Leftrightarrow m = n.$$

In the special case where S has rank 1 the ideals S_n ($n \in \mathbb{N}$) are the only ideals of S and hence all ideals have the same automorphism group, namely the group of order 2. It will be shown later that if S has finite rank greater than 1 then S possesses a principal ideal whose automorphism group is trivial.

Next we give a method for testing whether two principal ideals of a free inverse semigroup are isomorphic.

THEOREM 3. Let $S = \mathscr{FI}_X$, let $G = \mathscr{FG}_X$ and let $a, b \in S$. Then $SaS \cong SbS$ if and only if there exist $\varphi \in aut^*G$ and $g \in \mathscr{G}(b)$ such that $\mathscr{G}(a)\varphi = g^{-1}\mathscr{G}(b)$.

PROOF. Suppose first that there exists an isomorphism θ : $SaS \rightarrow SbS$. Then, by Lemma 2, there exists $\varphi \in aut^*G$ such that

$$(\forall c \in SaS), c\theta = (\mathscr{G}(c)\varphi, c\pi\varphi).$$

In particular, $a\theta = (\mathscr{G}(a)\varphi, a\pi\varphi)$ and so $\mathscr{G}(a\theta) = \mathscr{G}(a)\varphi$. But J_a and J_b are the greatest \mathscr{J} -classes of SaS and SbS respectively and so $(a\theta, b) \in \mathscr{J}$. Thus, by (P5), there exists $g \in \mathscr{G}(b)$ such that $\mathscr{G}(a\theta) = g^{-1} \mathscr{G}(b)$. Consequently, $\mathscr{G}(a)\varphi = g^{-1} \mathscr{G}(b)$.

Conversely, suppose that there exist $\varphi \in \operatorname{aut}^* G$ and $g \in \mathscr{S}(b)$ such that $\mathscr{S}(a) \varphi = g^{-1} \mathscr{S}(b)$. By Lemma 3, there exists $\alpha \in \operatorname{aut} S$ such that

$$(\forall a \in S), \quad a\alpha = (\mathscr{S}(a) \varphi, a\pi\varphi).$$

Now $b = (\mathscr{G}(b), b\pi)$ and so, since there exists $g \in \mathscr{G}(b)$ such that $g^{-1} \mathscr{G}(b) = \mathscr{G}(a) \varphi = \mathscr{G}(a\alpha)$, it follows from (P5) that $(b, a\alpha) \in \mathscr{J}$. Thus $(SaS)\alpha = S(a\alpha)S = SbS$; hence $SaS \cong SbS$.

The result can be expressed in a simple form making use of the author's concept of a 'word-tree' (Munn (1974)). Each \mathscr{J} -class of $S = \mathscr{F}\mathscr{I}_X$ corresponds to an unrooted word-tree and two principal ideals of S are isomorphic if and only if the word-trees corresponding to their generating \mathscr{J} -classes are obtainable from each other by reversing the orientation of those edges labelled by elements of some subset of X and then relabelling all the edges by applying a permutation to X.

The argument used in the first part of the proof of Theorem 3 enables us to show that a free inverse semigroup of finite rank greater than 1 has a principal ideal whose automorphism group is trivial. Let $S = \mathscr{F}\mathscr{I}_X$ and $G = \mathscr{F}\mathscr{G}_X$, where $2 \le |X| = n \in \mathbb{N}$, and let the elements of X be $x_1, x_2, ..., x_n$. Take

$$a = (\bar{x}_1 \cup \overline{x_2^2} \cup \overline{x_3^3} \cup \dots \cup \overline{x_n^n}, 1)$$

and let $\theta \in aut SaS$. Then there exist $\varphi \in aut^*G$ and $g \in \mathscr{S}(a)$ such that

(i) $(\forall c \in SaS), c\theta = (\mathscr{S}(c)\varphi, c\pi\varphi)$

and

(ii) $\mathscr{G}(a)\varphi = g^{-1}\mathscr{G}(a).$

The elements of $\mathscr{G}(a)\varphi$ of length 1 are $x_1\varphi, x_2\varphi, ..., x_n\varphi$. Suppose that $g = x_i^r$, where $1 \le i \le n$ and $1 \le r \le i$. If $r \ne i$ then $g^{-1}\mathscr{G}(a)$ has precisely two elements of length 1, namely x_i^{-1} and x_i , while if r = i, it has precisely one of length 1, namely x_i^{-1} . In either case we obtain a contradiction from (ii). Consequently, g = 1. Hence, since φ is length-preserving, it follows from (ii) that φ is the identity automorphism of G. Thus, from (i), θ is the identity automorphism of SaS.

Theorem 3 provides a solution to a problem suggested by Reilly (1976). A second problem, also posed by Reilly in the same paper and related to the first, can be solved by similar techniques. We state the result as

THEOREM 4. Let $S = \mathscr{FI}_X$ and let $a, b \in S$. Then $\langle J_a \rangle \cong \langle J_b \rangle$ if and only if there exists an isomorphism

$$\varphi: \langle J_a \rangle \pi \to \langle J_b \rangle \pi$$

and an element g in $\mathcal{G}(b)$ such that $\mathcal{G}(a)\varphi = g^{-1}\mathcal{G}(b)$. (Note that $\mathcal{G}(a) \subseteq \langle J_a \rangle \pi$, since $\mathcal{G}(a) = R_a \pi$, by (P2).)

PROOF. Write $T = \langle J_a \rangle$ and $U = \langle J_b \rangle$. Since $J_a^{-1} = J_a$ we see that T is an inverse subsemigroup of S. Similarly, U is an inverse subsemigroup of S.

Suppose that there exists an isomorphism $\theta: T \to U$. Since J_a and J_b are, respectively, the greatest \mathcal{J} -classes of T and U, it follows that $J_a \theta = J_b$. Hence, in

particular, $R_{a\theta} \subseteq U$. Thus, by Lemma 1, there exists an isomorphism $\varphi: T\pi \to U\pi$ such that

$$a\theta = (\mathscr{G}(a)\varphi, a\pi\varphi).$$

Hence $\mathscr{S}(a\theta) = \mathscr{S}(a)\varphi$. But, by (P5), since $(a\theta, b) \in \mathscr{J}$ there exists $g \in \mathscr{S}(b)$ such that $\mathscr{S}(a\theta) = g^{-1} \mathscr{S}(b)$. Thus $\mathscr{S}(a)\varphi = g^{-1} \mathscr{S}(b)$.

Conversely, suppose that there exists an isomorphism $\varphi: T\pi \to U\pi$ and an element g in $\mathcal{G}(b)$ such that $\mathcal{G}(a)\varphi = g^{-1}\mathcal{G}(b)$. First, we note that, for all $h \in \mathcal{G}(a)$,

$$(h^{-1} \mathscr{S}(a)) \varphi = (h\varphi)^{-1} \mathscr{S}(a) \varphi$$
$$= (h\varphi)^{-1} g^{-1} \mathscr{S}(h)$$
$$= (g(h\varphi))^{-1} \mathscr{S}(b);$$

furthermore, $g(h\varphi) \in \mathscr{G}(b)$, since $h\varphi \in \mathscr{G}(a)\varphi = g^{-1} \mathscr{G}(b)$. Combining this with (P5) we see that, for all $h \in \mathscr{G}(a)$ and all $k \in h^{-1} \mathscr{G}(a)$,

(7)
$$((h^{-1} \mathscr{S}(a)) \varphi, k\varphi) \in J_b.$$

Now consider an element $c \in T$. By the definition of T there exist $c_1, c_2, ..., c_r \in J_a$ such that $c = c_1 c_2 ... c_r$. But $\mathscr{S}(c_i) = h_i^{-1} \mathscr{S}(a)$ for some h_i in $\mathscr{S}(a)$, by (P5), and so, by (7), $(\mathscr{S}(c_i)\varphi, c_i \pi \varphi) \in J_b$ (i = 1, 2, ..., r). Thus

$$(\mathscr{G}(c)\varphi,c\pi\varphi) = (\mathscr{G}(c_1)\varphi,c_1\pi\varphi)\dots(\mathscr{G}(c_r)\varphi,c_r\pi\varphi) \in \langle J_b \rangle = U.$$

We can therefore define a mapping θ : $T \rightarrow U$ by the rule that

(8)
$$(\forall c \in T), \quad c\theta = (\mathscr{G}(c)\varphi, c\pi\varphi).$$

Clearly θ is a homomorphism; moreover, since φ has an inverse it follows that θ is injective. We show that θ is surjective. It will suffice to prove that $J_b \subseteq J_a \theta$.

Let $d \in J_b$. By (P5), there exists $k \in \mathscr{G}(b)$ such that $\mathscr{G}(d) = k^{-1} \mathscr{G}(b)$. But $\mathscr{G}(b) = g(\mathscr{G}(a)\varphi)$, by hypothesis. Hence $k = g(h\varphi)$ for some $h \in \mathscr{G}(a)$ and so

$$k^{-1} \mathscr{S}(b) = (h\varphi)^{-1} g^{-1} [g(\mathscr{S}(a)\varphi)];$$

that is,

(9)
$$\mathscr{G}(d) = (h^{-1} \, \mathscr{G}(a)) \, \varphi.$$

Also $d\pi \in \mathscr{G}(d)$ and so, by (9), $d\pi = m\varphi$ for some $m \in h^{-1} \mathscr{G}(a)$. But $(h^{-1} \mathscr{G}(a), m) \in J_a$, by (P5). Hence, by (9) and (8),

$$d = ((h^{-1} \mathscr{S}(a))\varphi, m\varphi) = (h^{-1} \mathscr{S}(a), m) \theta \in J_a \theta.$$

Thus $J_b \subseteq J_a \theta$, as required.

The mapping θ is therefore an isomorphism and the proof is complete.

To conclude, we give an example to illustrate Theorems 3 and 4. Let $X = \{x, y, z\}$, let $S = \mathscr{FI}_X$ and let $a, b \in S$ be defined as follows:

$$a = (\{1, x, xy, xyx\}, 1), \quad b = (\{1, x, z^{-1}, z^{-1}x\}, 1).$$

Let $G = \mathscr{FG}_{\mathbf{X}}$. Then it can be verified, by exhaustion of cases, that there does not exist (φ, g) in aut* $G \times \mathscr{S}(b)$ such that $\mathscr{S}(a)\varphi = g^{-1}\mathscr{S}(b)$. Thus, by Theorem 3, $SaS \ncong SbS$.

Now $\langle J_a \rangle \pi$ and $\langle J_b \rangle \pi$ are, respectively, the free groups on $\{x, y\}$ and $\{x, z\}$. Let $\varphi: \langle J_a \rangle \pi \rightarrow \langle J_b \rangle \pi$ be the isomorphism defined by

$$x\varphi = x$$
, $y\varphi = x^{-1}z$.

Then

$$\mathscr{S}(a)\varphi = \{1, x, z, zx\} = z\mathscr{S}(b)$$

and $z^{-1} \in \mathscr{G}(b)$. Hence, by Theorem 4, $\langle J_a \rangle \cong \langle J_b \rangle$.

Acknowledgements

The main part of this work was carried out while I held a visiting appointment at Monash University. I wish to express my gratitude to the university authorities for their support and my thanks to the members of the Mathematics Department for many helpful and stimulating discussions.

References

- J. M. Howie (1976), An introduction to semigroup theory (Academic Press, London).
- W. D. Munn (1961), 'A class of irreducible matrix representations of an arbitrary inverse semigroup', Proc. Glasgow Math. Assoc. 5, 41-48.
- W. D. Munn (1974), 'Free inverse semigroups', Proc. London Math. Soc. (3) 29, 385-404.
- W. D. Munn (to appear) 'An embedding theorem for free inverse semigroups', Glasgow Math. J.
- L. O'Carroll (1974), 'A note on free inverse semigroups', Proc. Edinburgh Math. Soc. (2) 19, 17-23.
- N. R. Reilly (1972), 'Free generators in free inverse semigroups', Bull. Austral. Math. Soc. 7, 407-424.
- N. R. Reilly (1973), 'Free generators in free inverse semigroups: corrigenda', Bull. Austral. Math. Soc. 9, 479.
- N. R. Reilly (1976), 'Free inverse semigroups', Algebraic theory of semigroups, pp. 479-508 (Colloquia Mathematica Societatis János Bolyai 20).
- H. E. Scheiblich (1972), 'Free inverse semigroups', Semigroup Forum 4, 351-359.
- H. E. Scheiblich (1973), 'Free inverse semigroups', Proc. Amer. Math. Soc. 38, 1-7.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland