
J. Austral. Math. Soc. 20 (Series B) (1978), 434-445

VARIATIONAL CONTROL PROBLEMS FOR LINEAR DIFFERENTIAL
SYSTEMS WITH STIELTJES BOUNDARY CONDITIONS

W. L. CHAN and S. K. NG

(Received 5 April 1978)

(Revised 13 June 1978)

Abstract

Necessary and sufficient conditions for optimality in the control of linear
differential systems x = Ax+Bu with Stieltjes boundary conditions
J'jdv{t) x{t) = 0, where i> is an r x n matrix valued measure of bounded
variation, are obtained. Feedback-like control is given in the case of
quadratic performance.

1. Introduction

In the last decade, the development of the relatively new field of general boundary
value problems consisting of the study of an ordinary differential system under
general boundary conditions and differential-boundary operators has been vigor-
ously pursued by many, noticeably by A. Krall and his associates. Krall [5] gave a
comprehensive and up-to-date survey of the state-of-art of the field. Examples of
this type of system arise from various disciplines, for example, diffusion processes,
dissipative operators, nuclear reactors, vibrating wires in magnetic fields to name
just a few. On the other hand, results in the control of special cases of this type of
system (specifically, with multipoint constraints in the state trajectory) have been
reported by Bryson and Ho [4]. The purpose of this paper is to give a more precise
investigation for the necessary and sufficient conditions of the optimal control of
linear systems with Stieltjes boundary conditions, as studied by Brown and Krall
[3], when the control is unconstrained. In particular, we give a generalized feed-
back structure for the quadratic performance case. An example is also given to
illustrate our analytical results.
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[2] Variational control problems 435

We shall study optimal control problems of the following type. Let <?/ad be the
set consisting of all ueL}J_t0) tj] such that for each « G ^ a d there exists <f>, an
absolutely continuous function on [t0> tj] with range in Rn such that

(i) <f,(t) = A(t)<j>{t) + B(t) u(t), (1)

where A(t), B(t) are n x n and n x m continuous matrices respectively,

(ii) <f>(to) = xo given, (2)

dv(t)<f>(t) = Q, (3)

where v is an r x n matrix-valued measure of bounded variation.

The pair (<f>, u) is said to be an admissible pair. Let / be a real-valued function on
the set of all admissible pairs:

f
J

, u(t)) dt, (4)
to

where g(t, •) and L(t, •) are C2 on Rn and on RnxRm respectively for each
t e [tQ, / J . The problem is to find ($, w) such that

1, u) = min J(<f>, u). (5)

In what follows, we want to characterize such an optimal pair ($, u).

2. Preliminaries

In this section we shall derive an integration by parts formula. Our development
parallels that of Brown and Krall [3]. By the Lebesgue decomposition, v can be
uniquely decomposed in the form v = vc+vs where vc and vs are measures of
bounded variations such that vs±dt and vc<^dt with dt denoting the Lebesgue
measure. Thus (3) can be written as

r'^x(t)dt = 0,

where dvjdt is the Radon-Nikodym derivative of vc with respect to dt.
Let

E = [xeLHtg,^]: x is absolutely continuous on [t0,fj, and (3) is satisfied},

p = {p eLllto, tj: p(t) = h{t) - vj[to, t] b for some b e RT, h is

absolutely continuous on [t0, tx] and p eL\[t0, t-J}.

where T denotes transpose.
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We have then

LEMMA 2.1. For <f>eEandpeP, the following relation holds

\hpT(t)<j>(t)dt = p(t^i>(t1)-p(to^<f>(t0)-^ f'^<f>(t)dt- f > ( 0 # 0 * . (6)
Jfe Jlo dt Jlo
where T denotes transpose.

PROOF. We start with the equation

(hpT(t)4(t)dt+ |V(0#0<*
Jlo Jlo

= PipiO+vTKtWtVdt- \\vJ[to,t]F<j>(t)dt
Jlo Jlo

j[/0, n * r #t) dt - \\v^[t
to Jlo

where () ' also means differentiation.
This is possible since vj[to,t]b is differentiable a.e. on [t0,fj and

(vJ[to>ti\bYemto>til T n e right-hand side of (7) now equals

o, rx] b]^ <KQ ~ [PUO) + vj[to] 6

Jlo

lo

Sincep(t) + vj[to,t]b is absolutely continuous on [?0,^], the first three terms are
obtained by integration by parts on the first term of the right-hand side of (7);
and since vsldt and we have that vsLdt if and only if (dvjdt) [t0, t] = 0, a.e. the
fourth term of the right-hand side of (7) is zero.)

Therefore the right-hand side of (7) becomes

f hd
Jto
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3. Necessary conditions for optimality

The following development is an extension of those in [4, pp. 47-59] and
[2, sections 5-7]. Suppose that (p,ii) is a local solution to (5). Let u = u
and <f> corresponds to ii+eSu. Then we know

= O(f, Q x0 + f W , T) B(T) K(T) dr

and

ft) = <Ht, t0) x0 + f V , T) 5(T) («(T) + e8u(r)) dr,
Jlo

where O(/, T) is the fundamental matrix of x = Ax. Let

s#0-#0 = e

= f
Jl

Noting that S^(r0) = 0 and

we find

f
to

Now consider the value J($+e8<f>,ii+e8u)—J(<j>,u). Let

H(t, x, u,p) = L{t, x, u) +pTf(t, x, u)
with

f{t,x,u)=Ax+Bu, peRn.

Then, along the path (<?(/), u(t)), t e [t0, tx] and peP,

ety,u+eSu) -J($, u)

f'\L(t, tft), «(0) -US, &t), u
Jto

lpvl-
Jto

where (dg/dx)\A denotes dg/dx evaluated at (tlt<f>(tj) and f,u,p,H(t,f,u,p) are
simplified notations for $(t), u(t),p(t), H(t,$(t),u(t),p(t)). The use of Lemma 2.1
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and the fact 8<f>(t0) = 0 then gives

e8<f>,ii + e8u) -J($, u)

[5]

+ o(e)

On the other hand, let p be such that

dvT

-jj-b a.e. on [/0, tj,

(8)

(9)

(10)

<••)

Now choose 8u=(dL/du)\A+BTp, where p is still undetermined because b is
arbitrary. We want to choose p such that 8ii is admissible, that is,

then, from (8) and using the fact that /(<£, u) is a local minimum, we have

(WO 8ftO = O, (12)

where 8<f> corresponds to 8u. Further, (12) is easily seen to be equivalent to

Hi ft
dv{t) O(/,-

J fa J fa

Now let p(f) be defined as

(%(t,r)B^ dr. (13)

(14)
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on [fo»'i]- Then, p is of the form p(t) = h(t)-vj[to,t]b and hence peP. Further,
note that

dx

Also, since d/dt(vj[to,t]b) exists and is equal to zero a.e. on [t0,tj] it follows that
p(t) exists for almost all t in |>0, <J and

dt

8H

"dx

dvT

a.e. on

satisfies the conditions (9) and (10). Finally, from (12) or (13), we require
p to be such that

dr.

In other words, we have to solve for b in the following system of linear equations:

, r) BB1 [f*(tv r) vj[to, tjJ

rfr. (15)
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The above equation can be written as

Mb = k, (16)

where M is an r x r matrix and k is an r-vector.

ASSUMPTION 3.1. Either v=0 or M is nonsingular.

If Assumption 3.1 holds, then (16) has a solution b. It follows that p is thus
determined. With this p, we have that

f
Jit

and hence 8u = (dL/du)\A + BTp is admissible and, from (11),

+ B'rp\\ dt.

This shows that

az. a.e. on [?0, r j .

Summarizing, we have proved the following

THEOREM 3.1. Suppose Assumption 3.1 Ao/&, then for (<}>, u) to be a solution of
(5), it is necessary that there exists a peP such that the following relations hold:

dH

dH

r
dfl

~~di 8x

(17)

(18)

(19)

a.e. on [t0, tj] where b is a constant vector to be determined and
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Indeed, p is of the form:

441

where O is the fundamental matrix of(\). Further,

8H
8u

8L
8u

= 0 a.e. on [t0, r j ,

where H(t, x, u,p)sL{t, x, u) +pT(Ax+Bu).

We now give conditions under which Theorem 3.1 becomes sufficient.

COROLLARY 3.1. Suppose Assumption 3.1 holds and that J is convex on the set of
all admissible pairs. Then, in order for ($, u) to be a solution of (5), it is necessary
and sufficient that the relations in Theorem 3.1 hold.

PROOF. By Theorem 3.1, we need only to prove the sufficient part.

Suppose the relations in Theorem 3.1 hold. Then this means that

J(<j> + e((f>-<f>),u+e(u-«))-/($,it)>o(e) for all ue^ad.

Since J is convex with respect to (<f>, u), we have

J((f>,u)-J($,u)>l/e[J($+E(<f>-<f>),u+e(u-u)-J($,ii)] for all 0 < e < l .

Hence J(<f>,u)—J(f,u)^o(e)/e. Letting £->0 we have J(<f>,u)^J($,u).

REMARK. Assumption 3.1 may be regarded as an extended controllability
condition by the following observation.

First, from the derivation of Theorem 3.1 we see that if the constraint
fydv(t)<f>(t) = 0 is replaced by fydv(t)<f>(t) = c, where c is a constant vector, then
the above procedure remains true.

Now, in the particular case when vc = 0, we have vs{t^ = D which is an r x n
matrix of the form

1 0

1 0

5\o
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Since vs{S} = 0 whenever S does not contain tly we may choose the constant c
suitably, and our problem becomes a problem with the rth components (i = 1,..., r)
of the terminal state fixed.

Finally, M becomes

D f Vi,
hwhich is nonsingular if JJj Ofo, T) B(T) Br(j) 4>T(tlt T) </T is nonsingular, and the

latter is the usual controllability condition.

4. Linear quadratic problem

For the important special case when / is quadratic, we have

PROPOSITION 4.1. Suppose Assumption 3.1 holds, and that J is given by

JQ, u)=K#0, Fm>+5 J W ) , Q<KO>+<«, m«» *.
where <•, •> denotes the inner product of Rn or Rm and F,Q(t)^0,R(t)>0 for
amost all t in [t0, /x] . 77ze«, in order for ($, u) to be a solution of (5), it is necessary
and sufficient that ($,u) satisfies the following differential-boundary systems:

xo, (20)

(21)

u = -R~1BTp. (22)

PROOF. The above proposition follows from Corollary 3.1 and the fact that /
is convex on the set of all admissible pairs.

Next, we want to construct a feedback structure for the optimal control. We
start by assuming that

p(t) = Kit) ft) +/(/) - vj[to, t] b, (23)

where K{t),f{t) are to be determined. Differentiating (23) (thanks to the fact that
t0, t]b = O, a.e. on [t0, tt]) we get

p = K<j>+Kcj>+f a . e . o n [ v : ] . (24)
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Employing (20-22), equation (24) becomes

-Aip-Qi—jj-b = K(A<f>-BR-1BTp)+Kct>+f, a.e. on [to,tx]

or
(K+KA + AT K+ Q - KBR-1 BT K)<f> + (A't- KBR~l BT)f

-£b+f = O, a.e. on [t^tj. (25)

Now choose K(-) to be an absolutely continuous matrix-valued function such
that

K=-KA-ATK+KBR-1B'IK-Q, (26)

K(tx) = F

and/(-) to be an absolutely continuous function from [tQ, tx] to Rn such that

f [ ^ b , (27)

Having chosen K() and/(-), an optimal feedback-like control is then given by

u(<t>(t),t) = -tf(0-15T(0(#(0<K0+/(0-''s
T[w]6). (28)

REMARK. For the development of K, one may consult (2, sections 9-3) and
[1, pp. 23-26].

We note that the existence of solution of the Riccati equation (26) is independent
of v, and one may show that this existence is implied by the existence of minimal
J with v = 0, which is always the case (see, for example, [1, pp. 23-28]).
To illustrate the results of this paper we give a simple example.

Minimize

\ J/ (29)
subject to

First note that M = 5 so that Assumption 3.1 holds. Let

H=\u2+pu
and we have

p(t) =
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where vB is a measure such that vg{0} = vg{l} = vs{2} = 1, and vs{A) = 0 for all
measurable sets A in R whenever A n{0,1,2} is empty. Then,

($(2)+2b,

p(t) = \$(2)+b, UK2,

I t = 2

and BH/du = u+p = 0 a.e. implies

( -}(2)-2b,

8(0 = -Pit) = -$(2)-b, U«2,

/ = 2.

After some calculations, we have

To find b, let <£(0) + <£(l) + <£(2) = 0 so that b = <£(0) = a, and hence

fa,

Also evaluating J gives

Furthermore, we see that ($, u) is an optimal solution by the following observation.

Let

M(0+A:2(0, U K 2,

), UK2.

Then, in order to satisfy <£(0) + <£(l) + <£(2) = 0, we require

2

This relation leads to

! \

y^
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To determine a closed-loop optimal control, we finally have to solve equations
(26) and (27). This gives

= 3 ~ / ' te[0'2]'

. <*,<!.
M =

and

where 6 is to be determined by the boundary conditions.

5. Conclusions

We have studied the problem of optimal control for linear systems with Stieltjes
boundary conditions with unconstrained controls. The necessary conditions for
optimality are represented by a system of differential-boundary equations. Under
some convexity requirement on J, these become sufficient as well. When J is
quadratic, an optimal feedback control has been constructed and an example has
been presented to illustrate our results.
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