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Abstract

Let G be a doubly transitive permutation group on a finite set fi, and let K"
be a normal subgroup of the stabilizer Ga of a point a in £2. If the action of
Ga on the set of orbits of K" in £2—{a} is 2-primitive with kernel K" it is
shown that either G is a normal extension of PSL(3, q) or K" n Gy is a strongly
closed subgroup of Gay in Ga, where y e £2—{a}. If in addition the action
of Go on the set of orbits of K" is assumed to be 3-transitive, extra information
is obtained using permutation theoretic and centralizer ring methods. In
the case where K" has three orbits in £2—{a} strong restrictions are obtained
on either the structure of G or the degrees of certain irreducible characters
ofG.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 B 20, 20 B 25.

Consider the following situation: G is a finite permutation group, 2-transitive on a
set Q, for a e Q there is a nontrivial normal subgroup Ka of Ga = {g | g e G, a? = a},
and for y # a we denote by Kv the unique conjugate of Ka contained in

O'Nan (1975,1) observed that in the known groups satisfying these conditions,
it seems that for yj^a, either KanKy = 1 which is equivalent to saying that Ka

is a T.I. set (that is, (Ka)° n Ka is Ka or 1 for g in G), or the subgroups K* = Ka n Gy

and Ky = KynGa are equal which is equivalent to saying that AT£ is a strongly
closed subgroup of Gay in Ga.

We shall give conditions under which the observation is true; in particular we
shall prove the following

THEOREM A. Let G be a 2-transitive permutation group on a set Q. of n points;
for oLinQ. let Ka be a nontrivial normal subgroup of Ga and let S a = {Bf\ l^i^t}
be the set of Ka-orbits in £2—{ex}. Let Kf be the unique conjugate of Ka in Gy,for
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146 M. D. Atkinson and Cheryl E. Praeger [2]

y^a . Assume that t = | S a | ^ 3 and that the action of Ga on Sa is 2-primitive with
kernel Ka. Then either

(i) K« = Klforyj*ot,or
(ii) PSL(3,t-l)^G^PTL(3,t-l), and Q is the set of points or lines of a

Desarguesian projective plane of order t—\, where t—\ is a prime power.
Also ifQ. is the set of points then {<x}uBf is a line in the plane. Finally in this
case KanK?=lfory^a.

If we strengthen the conditions on the action of Ga on the set of ^"-orbits in
Q—{a} then we can say more in the case K% = K%.

THEOREM B. Let G be a 2-transitive permutation group on a set Q. of n points; for
<x in Q let Ka be a non-trivial normal subgroup of Ga and let 2™ = {Bf\l</</}
be the set of Ka-orbits in Q —{a}. Let K.v be the unique conjugate of Ka in Gyfor
y^oi, and let S? = {B?\ 1 <jsjf} be the set of K">'-orbits in Q-{y), where aeB{.

Assume that | S a | = f>3 and that the action of Ga on 2™ is 3-transitive with
kernel Ka. If we set 2 = (Jaen ̂ a f^en I ^ I = tn andine acti°n ofGonY, is transitive
of rank 6 or 7. Moreover

(i) in the rank 6 case, KanK? = 1 for yi^a. and G is the group described in
Theorem A (ii),

(ii) in the rank 7 case, K* = K'*0L for yi^a, and the subdegrees are 1, t—\,
b, b(t-\\ b(t-l), b{t-\)k, b(t-l)(t-l-k),for some integer k satisfying
1 ^k^^(t-l), where b = \Bf\. Now iffieBf then Gafi/K<$ acts faithfully and
2-transitively on 2a-{B«} and on 27-{Bf} both with degree t-\, and the
permutation characters for both actions are the same. Also, either these two
representations are equivalent and k = 1, or Ga acting on S a is a 3-transitive
group of automorphisms of a symmetric 3-(t,k+1, A) design, where either
(a) t = 4A+4, k = 2A+1 and the design is a Hadamard 3-design, A^ 1, or
(b) * = (A+2)(A2+4A+2) + l =(A+l)(A2 + 5A + 5), and k = A2 + 3A+1,

REMARKS. In Theorem B (ii) with k > 1, the symmetric 3-design exists in case (a)
if and only if there is a t x t Hadamard matrix, and it is unknown if the 3-design of
case (b) exists for values of A greater than 1. If A = 1 in case (b) then the design is a
Steiner system on 22 points which admits the Mathieu group M22 as a group of
automorphisms (see the remarks in Cameron (1973) or Kantor (1974), section 9B).
Cameron (1971) (or see Kantor (1974), section 9B) has shown that these designs
do not have 3-transitive automorphism groups for certain values of A (for example,
if 2 < A < 103, or if A +1 is a prime power). In case (a) if A is even and the group of
automorphisms is 3-transitive, then Norman (1968) has shown that A = 2.
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We shall prove Theorems A and B in Section 1, and shall continue our discussion
of the rank 7 case of Theorem B in Sections 2, 3 and 4. In Section 2 we give the
sizes of the intersections of K"-orbits and AT^-orbits in terms of two non-negative
integer parameters, c and JC, which are related by a quadratic equation. We shall
show that G is a group of collineations of an affine plane of order /— 1 if the
parameter c = 0; and if c is non-zero then we show that the group induced on a
A""-orbit cannot be 2-primitive. Next, in Section 3, we study the permutation
character IT' of G acting on 2 . Here, by use of centralizer ring methods, divisibility
conditions are obtained which restrict the possibilities for n and the degrees of the
constituents of n'. Finally, in Section 4, we consider the special case t = 3 and
prove the following:

THEOREM D.IfG is a doubly transitive group of degree n on a set Q, and Ga has
a normal subgroup K which has 3 orbits in £2—{a} which are permuted as S3 by Ga

then one of the following occurs:
(i) G^PSL(3,2) of degree 7,

(ii) G has a normal subgroup M, M n Ga = K and G/Mc? S3,
(iii) G has nonlinear irreducible characters of degree x, y,y— 1 such that

(a) x+y = n+l,
(b) 2n(n— l)/xy and x(n—l)/(y— 1) are each squares of integers,
(c) n=4, mod 6.

DEFINITIONS. If t, v, k, A are integers with t^ 0, k > 0, A > 0, and v > k+1, then we
define a t—(v,k, A) design (or t-design) to be a set of v points and a set of blocks
with a relation of incidence such that

(i) any block is incident with k points,
(ii) any t distinct points are incident with A blocks.

If we have a t—(v,k, A) design <2) then we define the incidence structure 3>p as
follows: the set of points is the set of points of @ with the point/? removed, the set
of blocks of @)p is the set of blocks of Q) incident with p, and incidence is the same
as in 2l. Then 2V is a (t — 1) - (v -1, k — 1, A) design; <S is called an extension of 3>p,
and 3)p is called extendable.

If t = 2 and if the number of points is the same as the number of blocks we call
the design a symmetric 2-design. An extension of a symmetric 2-design is called a
symmetric 3-design.

REMINDER. Readers are reminded that if G has a permutation representation on
a set Q and also on a set O', with permutation characters II and II ' respectively,
then

(a) (1, II)G is the number of orbits of G in Q, where 1 is the principal character of
(7; and
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(b) (U,H')G is the number of orbits of Ga in Of where
(and the analogous statements for Q',IT).

1. Proof of Theorems A and B
Let G, Ka, 2°< = {Bf\ 1 s£ /s£ t} et cetera be as defined above, where for y¥= <* we

assume that aeB\. We assume that Ka is the kernel of the action of Ga on 2 a ,
and we set

S = U 2a.

LEMMA 1.1. (a) IfGa is 2-primitive on S a and if for j8^ a, K%^K&, then G acting
on 2 is a transitive rank 6 #rowp of degree nt and the orbits of the setwise stabilizer
Ha of Bf in 2 are as shown in the table.

No.

1
2
3
4
5
6

Description

Bl
B%, 2*Zi<t

2?f, jSeBf 2 < y ^ /

2>3r,y*{«}ul>S,2<.

1
/ - I

6(f — 1)
6(/-l)

(b) IfGa is 3-transitive on 2 a then G is transitive on £ and the sets 1-5 above are
orbits for Ha in S, and the last set is either an orbit or the union of two orbits for Ha,
where Ha is the setwise stabilizer ofBf in G. Moreover, in the rank 7 case, iffieBf
then Gap is 2-transitive on both Sa—{Bf} and2,P-{B(}, both with degree t-\, and
with the same permutation character, and the kernel of both representations is
KP = K«. The 6th and 1th orbits have lengths b{t-\)k and b{t-V){t-\-k) for
some integer k, \^k^\(t— 1). Either the two representations of Gap above are
equivalent and then k = 1, or the action ofGa on E a is a 3-transitive group of auto-
morphisms of a symmetric 3-(t,k+1, A) design where either

(i) t = 4A + 4, k = 2A+1 and the design is a Hadamard 3-design, A^ 1; or
(ii) f = (A+2)(A2+4A+2) + l = ( A + l ) ( A 2 + 5A+5), and k = A2+3A+1, A>1.

PROOF OF LEMMA 1.1. Clearly G is transitive on 2 . Since G is primitive on ii it

follows that 5? = BP if and only if a = j3, i —j, and so | S | = nt. For any y let
Hy denote the setwise stabilizer of B\.

First suppose that Ga is 2-transitive on S a . Since Ha is transitive on Bf and on
Q-(5fu{a}) clearly sets 1, 2, 3 and 4 are orbits for Ha in 2 . Now if jSefi?,
then (Gafi)^ = GafiK^K^, and since K^ is transitive on B{ clearly GafiKf> = H?
and so (Ga/?)

s(J = (H^, and similarly (G^" = (H**)**. Thus Gafi is transitive on
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2^-{2?f} and since Ha contains Gafi for j3 in B%, it follows that set 5 is an orbit
for Ha in 2.

Consider the 6th set X = {Bj\2^j<t,y^Bfu{a}}. Suppose first that Ga is
2-primitive on 2°= and that K«£Kl for y#a . Since (Gay)sv = (#?)£y, it follows
that Gay is primitive on 5> - {BJ}. Also since K«^ K%, then AT£ is a normal subgroup
of Gay which acts nontrivially on 2?, and hence -ST? is transitive on 2?—{BJ}.
Finally, since 7/* contains A^ for any y in Q—(Bfu{a}), it follows that ffa is
transitive on X and so Gz has rank 6.

Now suppose that Ga is 3-transitive on 2 a . We have shown that sets 1-5 are
orbits for Ha in 2 so we must consider the 6th set X. Let yeQ—(5fu{a}), and
let B|, say, be the #a-orbit containing y. Then Gay is 2-transitive on 2a-{JB«}
and #£ is the stabilizer of B% in this action. Also Gay is 2-transitive on 2? -{5$ .
For the proof of this lemma only, let II = 1 +x, and II' = 1 +x be the permutation
characters of Gay for the action on 2™—{fig} and S?—{5J1} respectively, where 1
is the principal character of Gay and x, X a r e irreducible characters of Gay both
of degree t-2. Then the number of orbits of H« in 2 ? - { 5 $ is

Since \X\ = b(t— I)2 and since Ha is transitive on Q—(5J"u{a}), it is clear that
Ha is transitive on X if and only if H* is transitive on 2?—{BT[} for some and
hence any y$B%<j{a). We have shown above that this is true if and only if ;

Consider the case in which Ha is not transitive on X. Then x = x'
two orbits in 2? — {By}. Let their lengths be k and t—l—k where 1;
Then Ha has two orbits in X of lengths b(t— l)k and b(t-1)(/—1 —A:) since Ha

is transitive on O — (B%u{<x}). Since II = IT clearly the kernels of the two actions,
namely K« and A"£ are the same. Now if g is an element of Ga such that y° = j8,
then conjugation by g maps Gay to Ga/}, and the actions of Gay on 2a—{5|} and
2?-{5?} to the actions of Gafi on 2a-{5f} and 2^-{5f} respectively. So these
latter two actions have the same character, the same kernel A"̂  = K£, and the
setwise stabilizer, say L of B% in Gafi, has two orbits in 2^-{fif} of lengths k and
?—1 — k. Either k = 1 and the two actions are equivalent, or k ^ 2 and the translates
of theL-orbit of length A; in 2̂ —{.B }̂ by elements of Ga/8 form the set of blocks of
a symmetric 2-(t-l,k,\) design for Ga;? in 2^-{5f}. Since (Ga;?)

sP = (H")sP,
this design clearly extends to a symmetric 3-design for G^ in 2^ with parameters
(t,k+l, A) where by Cameron (1973) and Kantor (1974), section 9B, the parameters
satisfy either

(i) t = 4A+4, k = 2A+1 (a Hadamard 3-design), or
(ii) f = (A+2)(A2+4A+2) + l = (A+l)(A2+5A+5) and k = A2 + 3A+1.

(The other two conclusions of the theorem of Cameron (1973) do not have
3-transitive automorphism groups as was noted in Kantor (1974), section 9B.)
This completes the proof of Lemma 1.1.
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In the remainder of the proof of the theorems we must consider the rank 6 case,
and show that the only groups which arise are the 2-dimensional projective linear
groups.

LEMMA 1.2. Suppose that /Je-BJ, and that G is a transitive rank 6 group on 2 ;
suppose either that Ga is 2-primitive on 2™ with K^K^, or that Ga is 3-transitive
on 2 a . Then ifdtj = \BfnBj\for i = 1, ...,tandj = 1,...,/, thedi} take the following
values:

b-\-{t-X)c, if i=j=\,

c, if i = l, j>l, or / > 1 , 7 = 1

if
t-V

where c is a non-negative integer andc = (bt—t+l±a)/t2 where

is also a non-negative integer.

PROOF OF LEMMA 1.2. Let Ha, H? be the setwise stabilizers of Bf, B( respectively.

Then as we showed in the proof of Lemma 1.1,

{GnRYa = (HaW and

In particular Gap is transitive on 2a—{B%} and fixes B( so that dtl = c for some
integer c^O and any / ^ 2 . Then since ^l\=1dil = \B(—{a}| = b — 1, if follows
that dxl = b— 1 — (t — l)c. Similarly since Ga/S fixes Bf and is transitive on 2^—{B$}
it follows that dy = c for y> 2.

Next let La be the setwise stabilizer in Ga of Bf for some fixed />2 , and let g
be an element of Ga which interchanges 5« and Bf. Then j8» = y eBf, (La)a = F " ,
and so (L<fia = ^ " - In Lemma 1.1 we showed, if either Ga is 2-primitive on S a

and Kfj^Kg, or Ga is 3-transitive on S a and G is rank 6 on 2 , that / / " is transitive
on £T—{£7}. it follows that L^ is transitive on 2^-{!?£} and so rfw = x for some
integer JC^O and any y>2. Then since b = '£l

t
i=1dij = c+(t—l)x, we have

x = (b—c)/(t—l). Since this holds for any i^2, we have found all the dtj in terms
of an integer c^O.

Now by Atkinson (1975), Lemma 2.7

where the summation is over all i = 1,.. . ,/ and7 = \,...,t. Since 2 « ^ = f6—1,
we have

On the other hand, by using our calculated values we find that
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which simplifies to

Thus,
t2c2-2(bt-t+l)c+b*-(t-l)b =

and, therefore,

c= [bt-t+l±J{(bt-t+iy-t* b(b-t+

= (bt-t+l±a)/t\

where a = ̂ ]{(t— \)(bt(t—2) + t— 1)} is a non-negative integer.

Finally, we prove

LEMMA 1.3. Suppose that G is rank 6 on £ and that either Ga is 2-primitive on S a

and Ka
fi^ Kg for jS/ a, or Ga is 3-transitive on 2 a . Then

PSLQ, t -1) < G *S PTL(3, t-l)

andQ. is the set of points or lines of a Desarguesian projective plane of order t—\,
where t—l is a prime power. If Q is the set of points then Bfu{<x} is a line, and
finally K«nK0=l for a? j8.

PROOF OF LEMMA 1.3. If G is rank 6 on S then by Lemma 1.1 the subdegrees are
1, t-l, b,b{t-\), b(t-\) and b{t-\f. Now let IT = l+x be the permutation
character for the action of G on Q, where 1 is the principal character and x is a n

irreducible character of degree tb. Let II' be the permutation character of G on 2.
Then (II, IT) is the number of orbits of Ha in Q. which is 3, and since G is transitive
on 2, (1, IT) = 1. Thus II' = 1 +2x+9», where <p is a character such that (II, <p) = 0.
Also since G is rank 6 on 2, 6 = (II', II') = 5 + (<p, <p) and so <p is an irreducible
character and its degree is

A remarkable result of Frame (1941) shows that

is an integer. Then since n = 1 +tb and setting s = t— 1 >2, the above expression
becomes

s%l+(s+l)bf
(tb)l((t-2)(l+tb) + l) (s2-l)b+s "

Now the greatest common divisor of l+(s+l)Z> and (s2— l)b+s is 1, and so
s5 = r(s+(s2— l)b) for some integer r ^ l . Now if r = 1 then s5 — s+(s2— \)b,
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that is,
2). (1)

So assume that r ̂  2. Then
b = (s5/r-s)/(s2-\)

Since (s,s2— 1) = 1, then s2— 1 divides s4 - r , that is

52-l =(i2-l,5*-r) = (s2-l
and it follows that

for some positive integer x. Thus

b = 5(S*-JC(J 2 - 1 ) -

If JC = 1 then
b = s=t-\ (2)

so assume that x^2. Now

and
( J 2 + 1 -x,x(s2-1) +1) = ( J 2 + 1 - x , x2-2*+1) <(x-1)2,

and since b is an integer it follows that

x(52-l) + K ( x - l ) 3 . (3)

Now b = s(s2+l-x)/(x{s2-l) + l)<s(s2-l)l(x(si-l) + \)<sjx, and substituting
in (3) we have

x(s2 -1) + 1 < Xs < xs*/b2 < x$2/4,
that is,

which yields a contradiction since s^2. Thus the only possible values for b are
given by equations (1) and (2),namely ,

b = t(t-l)(t-2) (1)
or

b = t-h (2)

Consider the first case. By Lemma 1.2, as the factors are distinct integers,

is an integer, and hence t\t—2)2 + l =yi for some nonzero integer y. Hence
(y-t(t-2))(y+t(t-2)) = 1, which is impossible.

In the second case since dn = (b— 1) — (/—1)00 and since b = t— 1 it follows
that c = 0, and so B%nB(=B%-{p}. Then by Atkinson (1975), Lemma 2.2 it follows
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that G is a group of automorphisms of a 2-design with A = 1, the blocks of which
are the G-translates of Br u {a}. Since the number of blocks containing a, namely t,
is the same as the number of points in a block, it follows that the number of
blocks is the same as the number of points and the design is symmetric. Then
since A = 1, the design is a projective plane of order t— 1. It follows from Ostrom
and Wagner (1959), Theorem 5, that the plane is Desarguesian and that
PSL{2>,t-\)^G^PYL{3>,t— 1) where t-\ must be a prime power. Finally, since
j??u{a} is a line for any / = 1, ...,t, then Ka is the kernel of the action of Ga on
the set of lines containing a, and Ka is transitive on Bf for each i = \,...,t. It
can be shown easily that KanK^= 1 for j8^a since distinct lines intersect in
exactly one point.

The proofs of both theorems follow from the results of these three lemmas.

2. Discussion of the rank 7 case of Theorem B
In this section we assume the hypotheses and notation of Theorem B and we

assume that G acts on 2 as a transitive rank 7 group. First we obtain a result
similar to Lemma 1.2.

LEMMA 2.1. Suppose that jSeffJ and that G is a transitive rank 7 group on 2 . If
dy — | Bf n B? | for / = 1 ,...,t andj = 1,...,?, ?/iew fhe dtj take the following values:

b-\-(t-\)c if i=j=l,

c if i=\, 7>1, or i>\, j=\,

x k times in the ith. row, for any i>\,

—— t—l—k times in the ith row for any i> 1,

where c and x are non-negative integers satisfying

t— 1 —K

or equivalently

t-l-k)-2xk+b2-b(t-l-k))/(t-l-k) = 0.

(Actually if U. is the stabilizer of B? in Gap, then dii = x if B% lies in the Z^-orbit
of length k in 2a-{£«}, and dti = (b-c-kx)/(t-l-k) if Bf lies in the other
orbit, where /> 1, j > 1.)
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PROOF OF LEMMA 2.1. Let Ha, H$ be the setwise stabilizers of Bf, B( respectively.
Then as in the proof of Lemma 1.2 we obtain the values du = b — 1— (t—l)c,
dy — c if i#7 and i=\ orj = 1, for some integer c ̂  0.

Let Z,a be the setwise stabilizer of Bf for some i^2, and let g be an element of
Ga which interchanges Bf and 5£ so that j8» = yeBf, (Lay = #« and (Z/£)» = 77£.
By Lemma 1.1, H% has two orbits in 2? - {JS^} of lengths k and f — 1 - k respectively
(and the possible values of k are given in Lemma 1.1). It follows that L^ has two
orbits in 2P-{B(} of lengths k, t-l-k respectively. Thus d^^x, say, if Bj
lies in the orbit of length k and dij = y for Bj in the other orbit. Since
1>i^j^fdij = c+kx+(t-l-k)y = b we have y = (b-c-kx)/(t-l-k). Clearly
x is independent of 1 (since if LP is the stabilizer of Bj we find as above that Lg
has two orbits, of length k and t—l—k respectively, in Ea-{2?£}, and Bf lies in
the Z^-orbit of length k if and only if Bj lies in the L^-orbit of length k).

Finally, the quadratic equation is obtained by substituting for the dti in the
equation

of Atkinson (1975), Lemma 2.7.

LEMMA 2.2. (i) IfK^ = K^ is nontrivial then b^t+2.
(ii) The group G is not a normal extension of the linear group PSL(m,q) in its

natural representation for any m^3 and prime power q.

PROOF, (i) Since in the rank 7 case K<% = K£, it follows from O'Nan (1975, II),
Theorem C, that n < (b-1)2, and hence b > t+2.

(ii) Suppose that G is a normal extension of PSL(m,q) for some m^3. Then
B?u{a} is a line containing a, and Ka is the kernel of the action of Ga on the set
of lines containing a. Hence K^Kfc for a^jS, and G is not rank 7 on 2 by
Theorem A, which is a contradiction.

THEOREM C. Suppose that G satisfies the hypotheses of Theorem B and that G has
rank 7 on 2. Then:

(a) The following four conditions are equivalent.
(i) b<t.
(ii) The integer c defined in Lemma 2.1 is zero.

(iii) G is an automorphism group of a 2-design with A = 1, the blocks of which
are the translates under G ofBfu{oc}.

(iv) O with the translates ofB%u{ot} as lines is an affine translation plane and
G contains the group of translations.

(b) If the integer c defined in Lemma 2.1 is nonzero then b^t+l, Ha acts faith-
fully on Bf, and Ha is not 2-primitive on Bf. Moreover, if Ha is 2-transitive
on Bf then c = (b-l)/(t-l)^2 and {BfnBj\2^j^t} is a set of t-\ blocks
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of imprimitivity of length cfor Ga/? in Bf—{fi}, and is permuted 2-transitively
by Ga/} with kernel K^.

PROOF OF THEOREM C(a). Suppose that b<t. Then since the integer dn of
Lemma 2.1 is non-negative it follows that c = 0. Thus B%nB( = Bf-{fi}, where
BeBf, and so by Atkinson (1975), Lemma 2.2, the G-translates of 5Ju{a} form
the set of blocks 88 of a 2—(n, b +1,1) design preserved by G. By Fisher's inequality
the number / of blocks containing a satisfies t^b + l. (Also \&\ = nt/(b + l) and
so b+l divides t(t— 1).) Thus it is sufficient to show that the design is an affine
plane and (iv) is true. If we can show that the design is an affine plane then the
rest of (iv) follows from Ostrom and Wagner (1959), Theorem 1.

By Lemma 2.2(a), K* acts semiregularly on Q-{a}. If Ha is not faithful on
Bf then the design is an affine plane by Praeger (1978) and Lemma 2.2(b) and
so suppose that Ha acts faithfully on Bf. Let L be the setwise stabilizer of
B = B%u {a} in G. Then L is 2-transitive on B and La = Ha has a normal subgroup
Ka which acts regularly on B—{&} = B%. It follows from Hering, Kantor and
Seitz (1972) that LB has a normal subgroup N where either N is regular and
elementary abelian, or LB< Aut TV and N is L2(q), Sz(q), Uz{q) or R(q). If N is one
of the simple groups then since Ga/S = Lap is faithful on B,

where q = pa for a prime p. Now since a<q then

This is impossible since Gafi is 2-transitive of degree t—\. Thus N is elementary
abelian and so b+l is a prime power. Now (N.Ka)B is a sharply 2-transitive
Frobenius group with complement (Ka)B. It follows that Ka has a nontrivial
characteristic cyclic subgroup X say, see Gorenstein (1968), 7.6.2, 10.3.1. Then X
is normal in Ga and is semiregular on O—{a}. Thus by a result of Aschbacher and
and O'Nan (see Kantor (1974), 5B(3)), G has a regular normal subgroup M (for
none of the other groups is Ga 3-transitive on a set of blocks of imprimitivity).

We shall show now that G acts on 88 faithfully as a transitive rank 3 group.
Clearly G is transitive on 88, and since any point is equal to the intersection of
some pair of blocks, it follows that G acts faithfully on 88.

Define a map <p: Y.^88 by <p(BJ) = {y}uBJ for BJ in 2. Then >p{BJ) = p(5f)
if and only if either

(i) y = B,i =j or

(ii) y?p,yeB? (and hence jSefiJ).
Clearly each block in 88 is the image of exactly b + l members of 2. Now we know
that sets 1-5 of Lemma 1.1 are orbits for Ha in S, and set 6 is the union of two
orbits of Ha in S. If L is the setwise stabilizer of {a}uBf, then L^Ha and L is
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transitive on {a} u Bf. First, the image under <p of sets 1 and 3 is the unique block
{a} uBf = B1 say, which is fixed by L. Next the image under tp of the union of sets 2
and 4 is also an orbit for L since L fixes and is transitive on Bv Call it 8§2. It is
easy to see that the <p(BP) are distinct for distinct pairs (fi,j) where j8e/?1; and
j = 2,...,t, and so |^ 2 | = (b+l)(t— 1). Now since a.eBi{ for y^oc, we have
{y}uB{ — {«}uB? where yeBf and so <p maps set 5 into 88%. Also if y$Bx and
if/Sefif then yeBj for some y>l , and {|3}uBj = {y}uBJ where jSefir. Since
a$BP. then i> 1 and it follows that <p maps at least one of the //"-orbits in set 6
into ^2. If <p maps the whole of set 6 into ^ then <p maps (f-1)(1 + 2b+b(t-1))
members of 2 into 88%. However, since each block is the image of exactly b + l
members of 2, this number is equal to (b +1)|8§2\ = (b + l)2(f-1). It follows that
t = b + l. Thus the design is symmetric and so is a projective plane. By Ostrom and
Wagner (1959), Theorem 5, it follows that G is a normal extension of PSL(3, t— 1),
a contradiction to Lemma 2.2. Hence G acts as a rank 3 group on 88. The image
under g? of one of the //"-orbits in set 6 is an L-orbit; call it 9S3.

Suppose that <p maps the //"-orbit of length b(t—\)m into 3$2, where m is k
ott—\—k. Then the number of members of S mapped into ̂ 2, that is (b +1)2 (< — 1),
is equal to (/ -1 ) (1 + 2b + bm) and it follows that b = m. Since b +1 divides t(t -1)
and 6^2, and since m is & or /— 1 — k we obtain the following possibilities:

(i) b = t-l-k = t-2oi
(ii) b = A: = \t— 1 (Hadamard design) or
(iii) b = k = A2 + 3A+1, and < = (A+2)(A2+4A+2) + l, for some positive

integer A.
In case (i) it follows from Dembowski (1968), p. 21, that the design is an affine

plane so assume that (ii) or (iii) is true. Since \&\ = nt/(b+l)>n, the normal
subgroup M is not transitive on 88 and so G acts imprimitively on 88. In case (ii),
I ^21 = ¥(!-1) > I &s\ = (£'-1) (t-1), so {5Ju J*3 must be a block of imprimitivity
for the action of G on ̂ , and in particular 1 +18§3 \ divides 188̂  \ which is impossible.
Similarly in case (iii), 18SZ \ = b(t -1) (/ - 1 - A:) > 188% \ = (b +1) (r -1) , so {5J u 88%

is a block of imprimitivity for G in 88 and l+\&2\ divides 18SZ \. A small calculation
shows that this is impossible.

PROOF OF THEOREM C(b). If c^0 then by part (a), b^t. Suppose that b = t. Then
since the integer dn of Lemma 2.1 is non-negative and c>0 we must have c = 1.
Then by Lemma 2.1, y = (b-c-kx)/(t-1 -A:) = (t-1 -kx)/(t-1 -k), and x are
non-negative integers. An easy calculation shows that

(i) x = (t-l)/k,y = 0,or
(ii) x = y= l .or
(iii) JC = 0, yss(t-i)Kt-i-k).
The quadratic equation of Lemma 2.1 with b = t, c = 1 simplifies to

t- \-k)y = 2t- 3.
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If x = y = 1 then t = 2 whereas we are assuming that t > 3. In cases (i) and (iii)
we find that the integers k and t—l—k respectively are equal to (f— l)2/(2f—3).
However, since (t— I)2 and 2r — 3 are coprime it follows that 2t—3 = 1, a contra-
diction as before. Thus 6>f + l. Suppose that #<* is 2-transitive on iff. Then
Gafi = H% is transitive on Bf-{f5}. However, since | 5 f n 5 | | = c^O and since Gafi

fixes BfnB( setwise it follows that (BfnB() is empty, that is c = (b- l)/(t-1)> 1.
Clearly the set {B%nBj\2^j^t} is a set of t— 1 blocks of imprimitivity of length
c for Gap in fij—{jS}, and Ga/? acts 2-transitively on them with kernel K&.

Finally, if Ha is not faithful on Bf then by Praeger (1977), Lemma 1.1 and
part (a) we have a contradiction. This completes the proof of Theorem C.

REMARK. If Ha is 2-transitive on B% we have in addition to the information
of Theorem C, the quadratic equation of Lemma 2.1. This, however, seems
intractable.

3. The permutation character of

In this section we continue to assume the hypotheses and notation of the previous
section and, in addition, let 11,11' be the permutation characters for the actions
of G on Q,S respectively. Then, as in the proof of Lemma 1.3, II = 1+x and
II' = l+2x+<p where (y>,II) = 0. Here, however, q> is not irreducible; since
(II', IT) = 7 we have (<p, <p) = 2 and <p = <Pi+<Pz, where <px and <p% are irreducible
characters of G. The degree of x is «— 1 and we shall denote the degrees of epx, <p%

by x,y; so then x+y = (t—2)n+l.
We note that the Frame condition demonstrates that

{(ntf.(t-i)b.b(t-l).b(t-l)bit-l)k.b(t-l)(t-l-k)}lxy

is an integer. Using n— 1 = bt it follows that {«5(n—1) (t— Xfk(t— 1 —k)}/xy is an
integer (which we shall call the Frame parameter). Note that, if <px and y2 are
rational, the Frame parameter is a perfect square, see Frame (1941).

LEMMA 3.1. The degrees x and y are unequal and, in particular, <p± and <p2 are

rational.

PROOF. If x = y = j((t—2)« +1) the Frame condition yields that

4bs5k(s-k)/(bs*+s-bY

is an integer. In deriving this condition we have used that n and t are coprime
with (/—2)n +1 = bt2—2bt+t— 1, and substituted s in place of t— 1. We consider
the three possibilities for k given by Theorem B. In each case a routine calculation
shows that k(s-k) is coprime with bs*+s—b. Consequently 46s5 = r(jbs2+s—b)2

for some positive integer r. We rewrite this as a quadratic in b:

* - 1 )2 + 2bs(s2 r-r-2si) + rs2 = 0.
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The roots of this are
(2s5 - J3 r+sr ± 2s3 V<0M*2 - If,

Where d = s*—rs2+r, and at least one of the roots is a positive integer. In particular
one of ((2s5±2s3Jd)/r(s2 — 1)) — rs(s2— l)/r(s2— 1) is a positive integer and so one
of (2s5±2s3Jd)/(s2-l) is a positive integer. Since (5i,s2-l) = l, one of
(2s2±2,]d)/(s2—l) is a positive integer. If (2s2—2<Jd)/(s2— 1) is a positive integer
it must be equal to 1 or 2 both of which lead to an easy contradiction. If
(2s2+2sjd)l(s2—l) is a positive integer we have

2<(2s2+2yjd)l(s2- I)<(2s2+2s2)/(s2-l) = 4+4/(s2-1).

Hence 2<(2s2+2jd)/(s2-l)<5 with equality on the right only if s = 2. Easy
contradictions are obtained in all cases except for (2s2+2s]d)/(s2—l) = 4 which
leads to b = s = t— 1. In this case we may argue as in the final paragraph of the
proof of Lemma 1.3 and obtain a contradiction from Lemma 2.2. This completes
the proof of Lemma 3.1.

We now apply to the rank 7 group (G, 2) some of the standard theory of
centralizer algebras. An account of this theory may be found in Higman (1972)
but we shall briefly discuss the parts which we use. Corresponding to each of the
7 orbits F j O f G o n S x S there is an adjacency matrix At of dimension tn. These
matrices commute with the permutation matrices T(g), geG, and span a
7-dimensional algebra A.

Suppose that U is some non-singular matrix which reduces the permutation
matrices into their irreducible constituents:

U-1T(g)U=diag(X(g), Y(g), Y(g),Z(g),
where X, Y, Z, W are the representations which afford the characters
respectively. By Schur's lemma the matrices f/-1^ E/ have the form

T ni

U~1AiU =

ci

Ci

dt

dt

Pi

Pi
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where at, bt, q, dt occur n — 1 times, pt occurs x times and qt occurs y times. It
follows that there exists a non-singular matrix V such that

V^Ai V= diagfo, Q, ..., Q, pt, ..., pt, qis ..., qt),

where Ct = I and occurs « — 1 times.U *J
Following standard practice, we shall use terminology such as "the eigenvalue

Pi is associated with gŝ " and "the two eigenvalues of Ct are associated with %".
As is well known, /%, the eigenvalue associated with the character 1, is the subdegree
corresponding to At.

The four representations of the algebra A induced by mapping each At to nt,
Q, p^ q{ are all irreducible and comprise all the irreducible representations of A.
The character table of A is a 4 x 7 matrix whose rows are indexed by the repre-
sentations and whose columns are indexed by A1,A2)...,Ai and whose (ij) entry
is the trace of the matrix which is the image of Ai in the rth representation. It is a
consequence of the constituents of II ' being rational that the entries of this character
table are integers. The rows of the character table satisfy certain orthogonality
relations. Taking the third row with itself leads to

Pt, Pi .Pj. IPiPs , Pl | />! _tn
1 t-\ b b(t-l) b(t-\)k b(t-l)(t-l-k) x

from which we can deduce that n(n— Y)(t— \)k(t— 1 —k)/x is an integer. A similar
calculation with the fourth row produces a corresponding result for y and so we
have

LEMMA 3.2. n(n-l)(t-l)k(t~l-k)/x and n(n-l)(t-l)k(t-l-k)/y are
integers.

Since Ax is the identity matrix all of its tn eigenvalues are equal to 1. In the next
lemma we consider A2.

LEMMA 3.3. A2 has eigenvalues t—\ with multiplicity n and —1 with multiplicity
n(t— 1). The eigenvalue t—\ is associated with the principal character 1 and with x,
and the eigenvalue — 1 is associated with x, <Pi and <p% except possibly in the following
situations:

(i) t = 3 and one ofx and y is equal to 2,
(ii) t = 2b +1 and one ofx and y is equal to n— 1.

PROOF. The rows and columns of A2 are indexed by the points of 2 in some
order. We shall take an ordering in which, for each j8eQ, the points of 2 ^ are
adjacent. Then it is clear that A2 has the form diag(/—/,. . . , /—/) where / and J
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are the txt identity and "all ones" matrix, and where /—/ occurs n times. Since
/—/has eigenvalues t— 1 with multiplicity 1 and —1 with multiplicity t—\ the
first part of the lemma follows.

For the second part note first that t — 1 is associated with the principal character
because it is the subdegree. Since x+y = (/—2)n + l>n and the eigenvalue t—\
occurs only n times, t — 1 cannot be associated with both <pt and y>2. We only have
to show that it is associated with neither, except possibly in the expectional cases.
So suppose, without loss in generality, that the eigenvalue t — 1 is associate with <pv

It then follows that x = n-1 and y = (t-3)n + 2.

Then, according to Lemma 3.2,

nbt{t-l)k{t-\-k)l((t-3)n + 2) is an integer.

Since ((/-3)w+2,w) = 1 or 2 and (t-3)n+2 = bt2-3bt+t-l which is coprime
with /,

(*) 2b(t-\)k(t-l-k)/(bt2-3bt + t-l) = m, a positive integer.

We study this condition in each of the three cases arising from Theorem B.

(a) k= 1. Then (*) becomes 2b(t-l)(t-2)/(bt2-3bt+t-l) = m which can
be rewritten as (m-2)b(t-l)(t-2) = m(2b-t + l). If m>2 then m(2b-t+\) is
positive and, since it is divisible by b(t— l)(t—2), we have

b(t-l)(t-2)<m(2b-t+l)<2mb.

So m>Ut-\)(t-2). But then, from (*),

2b{t-\)(t-2)>\(t-\)(t-2)(bt*-3bt+t-\)

from which it quickly follows that t < 4 and so t = 3, y — 2 which is one of the
exceptional cases. If m — 2 then t = 2b +1 and this is the other exceptional case.
The case m — 1 is easily seen to be impossible.

(b) k = \t— 1. In this case (*) becomes

2b(t-l)(it-l)Mbt2-3bt+t-l) = m

and since t is coprime with the denominator we have

2b(t -l)(t- 2)/(bt2 -3bt + t-l) = 4m/1

and now an argument as in (a) shows that this is impossible.

(c) A:

f-l=(A2+4A+2)(A+2),

*-2 = (A2+3A+l)(A+3).

It follows from (*) that 2b{t-\){t-2)(X + \f = m(bti-3bt+t-l) and this may
be rewritten as b(t -1) (t - 2) (w - 2(A +1)2) = m(2b - 1 +1). If m > 2(A +1)2 then
m(2b-t+l) is positive and, as in (a), m>\(t-\)(t-2). But then

2b(t-l)(t-2)(\+l)2>%(t-\)(t-2)(bt2-3bt+t-l)
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and we can deduce that 4(A + l)2>f2-3f. Since / = (A+l)(A2 + 5A+5) this is
impossible. If m<2(A+l)2 then b{t — \){t—2) divides the positive number
m(f-26-l) and so b(t-l)(t-2)<m(t-l). Hence

which is also impossible. If m = 2(A +1)2 then t = 2b +1 which is one of the excep-
tional cases. This completes the proof of Lemma 3.3.

Before continuing with the general exposition we consider briefly the two
exceptional cases in the above lemma. In the first case with t = 3 we may suppose
that y = 2. Let M be the kernel of cp2, and let JX be the 2-dimensional character of
Ga whose kernel is Ka (note that GJKa~ S3). Then, as

(ftk, iG.+/*) = (ftk. i&) = (ft, i£.) = (ft.no = l
and

we have <p2\Oa = /x. Thus MnGa = Ka and, in particular, G/M~S3.
In the second case with t = 2b +1 we calculate with the Frame condition. The

Frame parameter is n5b(t- \fk{t-1 -k)/(t-2). If k = 1 or if k = A2 + 3A+1 and
t = (A+l)(A2 + 5A+5) then k(t-l-k)/(t-2) is a square. Hence nb is a square.
Since n and 6 are coprime we have n = i2, b =j2 and the equation i2 = j2(2j2 +1) + 1 .
By a theorem of Siegel, see Mordell (1969), this equation has only a finite number
of solutions in integers i,j.

In view of the above remarks we shall assume in the remainder of this section
that the exceptional conditions of Lemma 3.3 do not hold.

LEMMA 3.4. The adjacency matrices Alt ...,A7 satisfy the following.:
(i) A2A3 = At,

(iii) A2A5 =

(iv) A2At = kA5+(k-l)Ae+kA7,
(v) ,M7 = (

PROOF. The only one of these relations which we use subsequently is (i) and so
we prove only this; the others are proved in a similar way. Let Bf and Bj be a
typical a-block (that is, an element of 2«) and a typical j8-block. The (Bf, B?)
entry of A% A3 is the number of y-blocks B\ for which {Bf, B%) e T2 and (B%, B?) e F3,
where Tt is the /th orbit of G in S as described in Lemma 1.1. The first condition
holds if and only if By

k = B^ for some m # i and so the second condition holds
also if and only if <xeB? and j8efi«. Hence the (Bf,Bf) entry of A2A3 is 0 or 1
and is 1 if and only if aeBj and 8$Bf. This proves (i).

LEMMA 3.5. 4 n ( « - 1 ) 0 - l)b2k(t-1 -k)/xy is the square of an integer.
6
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PROOF. The character table of the algebra A has the following form:

A± A% A3 A& A§ AQ A-J

1
n - 1
X

y

1
2
1
1

t - \
t-1
- 1
- 1

b

P
Q

Kt-1)

-p
-q

b(t-\)

-P
-1

bif-\-K)

ito+P)

b(t-i)(t-l-k)

UP-a)

The entries in the left-most column are the multiplicities of the correspondin,
characters. The entries £t(A^) follow from Lemma 3.3. Lemma 3.4 shows tha
£3(^4) = £3(^2) £3(^3) a Qd t n f i other entries follow from similar consideration
together with the relations £ j £i(/43) = 0 if i> 1, and the relation Ai — AJ. We nô f
use the orthogonality relations on the rows of the character table taking the follow
ing pairs: (£3, £3), (f4, Q, (f3, f j . This yields

(i) bk(t-l-k)t+pXt+l)k(t-l
= n(n-\){t-\)k(t-\- k)/x,

(ii) bk(t-l-k)t+q\t+l)Kt-l
= n(Jl-\)(t-\)k(t-\-k)ty,

(iii) MO- 1 -k)t+pq(t+ l)k(t- \ -

= 0.
Now, taking (i) qi + (ii)pi—(iii) 2/>g gives

(iv) ( n -

Next we use the relations satisfied by the columns of the character table. Suppose
that A, n are the eigenvalues of C3 and A', /*' are the eigenvalues of Q . Then, as
tr(,43) = 0 and tr(^§) = tnb,

bz+(n~ l ) (A2+/x2)+xp2+^2 = tnb

and two similar equations hold for A', / / . Moreover det C4 = det C2. det C3 and so
A'/x' = — (t—l)A)u.. Eliminating A,/x., A',/A' between these 5 equations leads to

(v) n(xf+yq*)(t-\)-xy{p-qJ = «62(f-1)2.
Combining (iv) and (v) then gives 4n(n-l)(t-\)b2k(t-l-k)/xy - (aq-^pf

thereby completing the proof of the lemma.

4. The case ( = 3

In this section we consider a doubly transitive group G on a set O where, for
cteQ, Ga has a normal subgroup K having 3 orbits in Q.—{a}. In order to set this
in context we begin by noting some related results.
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LEMMA 4.1. If G is doubly transitive on £1 and Ga has a normal subgroup with
2 orbits in Q. — {a} then G has a normal subgroup M of index 2 and M is a rank 3
group on Q. with subdegrees l,b,b.

The classification of such groups appears to be a very difficult problem although
some progress has been made by Higman (1971).

LEMMA 4.2. If G is doubly transitive on Q. and Ga has a normal subgroup K with
3 orbits in Q —{a} then one of the following occurs:

(i) Ga permutes the 3 orbits triply transitively, that is, as S3;
(ii) G has a normal subgroup M of index 3 and M is a rank 4 group on Q. with

subdegrees l,b,b,b.
Both of these lemmas follow directly from

LEMMA 4.3. If G is doubly transitive on Q and Ga has a normal subgroup K of
index t with t orbits in O — {a} then G has a normal subgroup M of index t which
is a rank t+l group on O with subdegrees \,b,b,...,b.

PROOF. It is easily seen that Ga/? < K for any )3^ a. If II = 1 + x is the permutation
character of G then II = lga and \\aa — ^ G V

Let 6 be any non-principal irreducible character of Ga with kernel Ne containing
K. Then (6°, l o ) = 0 and (0O,X) = (6,X\OJ = (0, l g ^ = (6\Ga$, 1GJ = 6(1), and
so 6° = 6(1) x + £ where $ is some character of degree 6(1). Since 9 is irreducible,
(6°,i) = (6,$\GJ = l and so 0 = £|Ga. So if Mfl = ker£ then MenGa = Ne.
Hence if M = f\e^e ( t n e intersection being taken over all non-principal irreducible
characters of Ga whose kernel contains K) then MnGa = K. As G is doubly
transitive M must be transitive and Ma = K has orbits of size 1, b, b,..., b in Q—{a}.

From now on we assume the hypotheses of Lemma 4.2 and conclusion (i) thus
placing ourselves under the hypotheses of the earlier sections. We shall also assume
that neither x nor y is equal to 2; this possibility was explored in Section 3 and led
to a factor group S3 of G. Clearly k=l, b = (n-l)/3 and x+y = n+l. The
conditions on x, y, n derived above are already very restrictive but further conditions
can be obtained by considering the subgroup N of index 2 in Ga which is the pre-
image of the Sylow 3-subgroup of GJK~ Sz (we change the notation slightly by
writing K and H in place of Ka and Ha). Let II" be the permutation character
for G acting on the set of cosets A of N.

LEMMA 4.4. (G, A) is a rank 4 group with subdegrees 1,1,H— \,n — 1, (II, II") = 2
and(U',U") = 4.
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PROOF. Since N is transitive on the set of 3 non-trivial orbits of K in Q, N has
2 orbits in O. Thus (II, 11") = 2 and we have W *= 1 +x+v where l ,x are not
constituents of v.

Acting on the cosets of Ga, N has 2 orbits one of which is Ga itself. Each coset
of Ga contains precisely 2 cosets of N. Clearly N has two orbits on the cosets of N
contained within Ga and therefore (<7,A) either has rank 4 with subdegrees
1,1,«—l,7i—1 or has rank 3. Hence (v, v) = 2 or 1, respectively.

Let II be the permutation character for G acting on the cosets of K. Then
fi = lg. = (lg?)0 = (lGa+A+2jLt)G where lOa, A, /u. are the irreducible characters
of Ga with K in their kernel (corresponding to irreducible characters of iS3 and of
degrees 1 ,1,2 respectively). Thus

It follows that (11,11') = l l + fopiHO^ss). However (11,11') is the number of
orbits of Kin 2 . Three of these orbits are Bf, B$, B% and form S a ; and the number
of orbits of K in U#=B<« ̂ 1 S clearly independent of /. So (fi, II') is divisible by 3.
Hence (fi, II') = 12 and one of (v, <p^) and (v, $?2) is equal to 1 and the other is zero.
Without loss in generality we may assume that {y, <p^) = 1. It follows that v is not
irreducible because otherwise v = <px, x = n, y=l. The Frame condition then
tells us that 2(«— 1) is a square and so n is odd. But on the other hand if L = kerg?2

then II'I^ contains the principal character twice and so L has two orbits (of
equal length) in 2 and so n is even.

This proves the lemma and we note that v has the form fx+<p3 where <p3 is
irreducible and of degree y—\.

Finally, we show that O can be given the structure of a regular 2-graph (see
Seidel (1973) for the relevant background and details). Since N has 2 orbits on
cosets of Ga and 4 orbits on cosets of N, the two cosets of iV contained in a single
coset of Ga are never equivalent under N. In particular if xeG, neN and
Gaxn = Gax then Nxn = Nx, that is, if nxeGa then Ti^eiV. It follows that
Hypothesis A of Hale and Shult (1974) holds. Hale and Shult prove that G acts
on a set {eo^OL€n of equiangular lines in the spaces afforded by either ^ or <p3,
that is, that O has the structure of a regular 2-graph preserved by G. If this 2-graph
is trivial then one of <p± and <p3 has dimension 1. However, we cannot have x = 1
by the argument given at the end of Lemma 4.4 and we are assuming that y — 1 ^ 1.
So the 2-graph is non-trivial and in particular n is even.

The above discussion enables the proof of Theorem D to be completed easily.
Suppose now that G is a group satisfying the hypothesis of Theorem D. Then
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(G, S) has rank 6 or rank 7 and in the former case Theorem B allows us to conclude
that G~PSL(3,2). In the rank 7 case, if the exceptional conditions of Lemma 3.3
hold then G has a normal subgroup M,MnGa = Kand G/M~ S3. If the exceptional
conditions do not hold then n is even, n=\ (mod 3) and so n=4 (mod 6). Moreover,
as x+y = n +1 and, by Lemma 3.2, x and y divide 2n(n— 1), x and j are coprime
and so xy divides 2n(n — 1); by the Frame condition the quotient is a square.
We omit the proof that x(n—l)/(y— 1) is the square of an integer: it follows by a
standard application of centralizer ring theory to (G, A).

We are indebted to Miss Petra Rogers for extensive computer searches for
numbers n,x,y satisfying the third conclusion of Theorem D, and for pointing out
the following parametric solutions:

(a) K = i(/>2-1)(/>2-2), y = p2-1, withps3 (mod 6).
(b) n = (y— I)2 where y satisfies the "Pellian" condition that y and 2(y— 1) are

each squares.
These are the only solutions which arise for «<108.
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