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k-DISCRETENESS AND £-ANALYTIC SETS
RONALD C. FREIWALD

1. Preliminaries. All spaces considered here are metrizable. & will always
denote an infinite cardinal. The successor of k will be denoted by k*.

Of particular interest will be the Baire spaces B(k) = [ [ 7., where each
1, is a discrete space of cardinal k. The product topology on B (k) is the same
as the topology given by the (complete) “‘first-difference’” metric, p : p(s, t) =
1/nifs; = t;forl1 £7 < n—1ands, = ¢, A great deal of information about
these spaces can be found in [4].

A subset 4 of X is called k-analytic (in X) if there exist, for each ¢t € B(k),
closed subsets F'(t1), ..., F(ty, ..., t,),...of X such that

A=\ (N Flty, ..., t):tc Bk}

A is called absolutely k-analytic if A is homeomorphic to a k-analytic set in some
complete metric space. This is equivalent to saying that 4 is k-analytic in any
metric space in which it is embedded. The k-analytic sets of X contain the
family of Borel sets of X. Sets k-analytic in this sense were introduced in [5],
where their basic properties are discussed.

If A is a subset of the metric space (X, d) and if, for some € > 0, d(x,y) = «
whenever x, y € 4, we say A4 is e-discrete (in (X, d)). A is called metrically
discrete if A is e-discrete for some ¢ > 0.

2. k-discrete sets. In this section, we introduce the idea of k-discreteness
and some of its elementary properties. EEssentially the same concept occurs in a
different context in [3]. It is designed as a measure of the ‘“thinness’” of a space.
We precede the definition with the following lemma.

LEmMA 1. Let A € (X, d). Then the following are equivalent:

(1) A =\J{X(\) : N € A}, where || £ k and each X (N) is discrete in its
relative topology.

(2) 4 = U {Y(\) : X\ € B}, where |B| < k and each Y (\) is discrete in its
relative topology and closed in X.

(B A =\U{Z(\): N € G}, where || £k and each Z(N\) is metrically
discrete.

Proof. Only that (1) implies (3) is not immediate. For each x € X (\), there
isad(x) > 0such that X(\) M S(x;8(x)) = {x}. Let

X(N\n)=f{xc X(O\):6(x) = 1/n}.
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Then A4 = \J { Uit X\, ) : N € 3}, and cach X (\, n) is metrically dis-
crete.

Definition 2. A space A is called k-discrete if any one of the equivalent con-
ditions of Lemma 1 holds.

Some elementary properties of k-discreteness are immediate. It is trivial that
k-discreteness is a topological invariant. Indeed, though we shall not use the
fact, k-discreteness is an invariant of Borel isomorphism among absolute Borel
sets. This follows directly from the fact that Ro-discreteness (= o-discreteness)
is such an invariant [6].

Any space with <k points is k-discrete, and any subspace of a k-discrete
space is k-discrete. If 4 has weight <k and 4 = \U {Z(\) : X € §}, with
|€| £ kand Z(\) metrically discrete, then each Z(\) must have cardinality <k;
hence a k-discrete space of weight <k has <k points.

Definition 3. A point « € A is k-isoluted if it has an (open) k-discrete neigh-
borhood in 4.

We denote {«¢ € 4 : «is k-isolated in A} by A;, and 4 — A, by 4;*. Thus
A* is closed in 4.

ProrosiTioN 4. A is k-discrete if and only if A is locally k-discrele.

Proof. The latter condition is clearly necessary. So suppose 4 is locally
k-discrete. From a fixed o-discrete open basis for 4, pick a family

{ON 1) : N C Ayt =1,2,...}

of k-discrete sets covering 4 so that, for fixed 7, {O(\, 1) : N € A} is discrete.
Write

O\ 1) = U IO 1,a):a < k)
where each O(X, 7, @) is metrically discrete, and put
Ba,7) = U {O\, 1, @) : N € A}

Given a, 7 and x € A, pick a neighborhood N, of x which meets at most one
O(N\, 1), say O(N*, ), and then a neighborhood N,” of x meeting at most one
point of O(N\*, 7, «). Then N, M N,/ meets B(a, 7) in at most one point, so
B(a, 1) is discrete. Then

A=U{Bla,1):a<ki1=12 ...}
is k-discrete.

The following propositions are easy to check, and, in fact, are special cases
of the kernel properties [7]; 4,* is the “‘nowhere locally k-discrete kernel’ of 4.
In the case £ = 1, these propositions are familiar properties of discreteness.
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ProrositioN 5. For any A4,

(1) Ay s k-discrete,

(2) if Ay* is k-discrete, then so 1s A,

(3) either A* = @ or A* is not k-discrete (and therefore |4,*| > k).

ProrositioN 6. For any 4,
(1) (A*)* = A,

(2) (4:*)r =0,

(3) (Ak)k = Ak,

(4) (4p)* = 0.

The following simple corollary will be used repeatedly in the next section.

CoroLLARY 7. If A C X and G is open in X, and if M = G M A, then
M, = 8. Hence if M # @, M 1s not k-discrete.

Proof. M isopenin A, *. If M; ## 0, then (4,*); ¥ 0, contrary to Proposition
6. Hence, if M # @, the set M = M,* is not k-discrete by Proposition 5.

Other generalizations of discreteness have been used in descriptive set
theory, for example the properties “olw(< k)" (= o-locally of weight less
than k) and “h-lw(< k)" (= h-locally of weight less than k), which occur in
[8] and in [9, 10] respectively. In the latter two papers, the concept of k-dis-
creteness also occurs.

The following theorem, which was pointed out to the author by the referee,
can be used to relate the concepts of k-discreteness and olw(<k). This is
perhaps of special interest since the latter property plays such an important
role in the structure theory of absolute Borel sets [8].

THEOREM 8. For any metric space (X, d), the following are equivalent:

(1) X 1s k-discrete.

(2) X 1s a-locally-of-cardinal < k, 1.c., X = Unp-1 Y, where, for each n,
each y € Y, has a neighborhood in Y, of cardinality < k.

Proof. Assume (1). Then X = U {X) : N € A}, where |A] £ k and each X,
is discrete. We may assume, by Lemma 1, that each X, is metrically discrete.
Foreachn =1,2,3,...,let A, = {N € A: X, is 1/n-discrete}, and

Y,,ZU{X)\ZKE A,,}.

Then X = Us-1 Y, and | Y,| = &k, since the (1/2n)-neighborhood of a point
in Y, contains at most one point from each X,.

Conversely, suppose (2) holds. We can assume that X islocally of cardinal <&.
Cover X by open sets of cardinal < kandlet {V,,:u € M,,n =1,2...} be
a o-discrete open refinement of that cover. Index the points of each 1, , as
Vpua (@ < someordinala, , < k). Then, foreacha < kandeachn = 1,2,.. .,
let Do, = {Uype:n € M,}. Each D, , is discrete since the 1, ,'s are open and
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disjoint for fixed n. There are £k D, ,’s and
X=U{Dyp:aZlkn=12...1

It follows that if X is k-discrete, then X is olw(=k). If X is olw(=k), then
X is kRo-discrete. In particular, if BX0 = k, then k-discreteness coincides with
olw(=k); and assuming GCH, if X is olw(=<k), then X is k*-discrete.

3. k-discreteness and k-analytic sets. In this section we investigate the
consequences if an absolutely k-analytic set 4 is “thick”, in the sense that
A¥ # 0. We first prove the following simple lemma.

LEMMA 9. Let (4, d) be an absolutely k-analytic metric space with A* #= 0.
Then A* contains either a metrically discrete subset of cardinal k* or « closed
subspace C, of cardinal kX°, and homeomorphic either to the Cantor set or @ Baire

space B(p).

Proof. Let m denote the weight of 4,*. Since 4,* is not k-discrete, |A4,*| > k.
So if m =k, then, by a theorem of Stone [5], 4,* contains a closed subset of the
form C. On the other hand, if m > k, then, letting D, denote a maximal
1/n-discrete subset of A;*, we get that |Un.i D,| = m, so some D, has
cardinal > k.

CoroOLLARY 10. Under the hypotheses of Lemma 9, A;* contains either «
metrically discrete subset of cardinal k™, or a copy of B(p) for some p such that
pko = pXo,

Proof. If C is the Cantor set, then C contains a copy of B(Xo),and [B(X,)| =
NoRo = ¢ = |C] = kX0,

In [6], Stone showed that any absolute Borel set is either Xo-discrete (= o-
discrete) or contains a copy of the Cantor set. And in [1], El'kin generalized
this result to absolutely NX¢-analytic sets. The next theorem shows that it re-
mains true for absolutely k-analytic sets.

THEOREM 11. Let (A, d) be an absolutely k-analytic metric space. Then either
A 1s k-discrete or A contains « closed subspace C of cardinal kX°, homeomorphic
etther to the Cantor set or a Baire spuce B(p).

Proof. Assume A is not k-discrete, and write B(k) = H;";l 1,, where T,
is a discrete space of cardinal k. Let X denote the completion of (4, d). Since
A is k-analytic in X, we can find, for each ¢ € B(k), and for each #, closed

subsets F(ty,...,1t,) of X, with
F(ty, ... tyr) € F(ty, ... ,t,), such that
A=\I{ Mt Flty, ..., 1) : t € B(k)}.
Define
Aty ooy ty) = I ENam Flty, ooy te) 0 (G bagey - 2)

€ Tp1 X Thpe X ...} C 4.
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Clearly 4 = \J{AW) : € Th}, A, ..., 1) S F(t, ..., ), and it is easy
to check that each 4 (¢4, ..., ¢,) is k-analytic in X.

Since 4 is not k-discrete, neither is its closed subset 4;*. If 4,* contains a
closed set of form C, we are done. Otherwise, by Lemma 9, for some ¢, > 0,
A¥ contains an ¢;-discrete subset {a(\;) : Ay < k}. For each \; < %, pick an
open (in X) sphere U(\,), centered at a()\;) and of radius < min{1/2, (&)/3}.
Note that if N\ # N/ < k, then clxyU(A;) and clxU()\,") are at distance >
(e1)/3.

For each \; < k, there is a (A1) € T such that A(t(\))* M U) = 0,
and therefore, by Corollary 7, is not k-discrete. For if not, then for some
M < &,

AN UM = JAW) I AG)F] N UM 4 € Ty

would be k-discrete. Hence 4,* M U(\;) would be k-discrete, which, since it
contains a¢(\;), would contradict Corollary 7.

Now suppose that given #, we have defined for every 7, 1 <7 < #n, and
every i-tuple (A, ..., \;) (with A\, < k, 1 =5 = 7)

(1) points t(Ay, ..., N;) € T,

(2) positive numbers e;(Ay, ..., A1) (= g if ¢ = 1)

(3) €;(A\1, ..., Ni_1)-discrete sets {a(Ay, . .., N1, Ay) 1 Ny < K}

(4) open (in X) spheres U(Ay, ..., M) of radius < min{1/2% e;(\y, ...,
Ni—1)/3} centered at a(Ay, ..., \;) in such a way that

B)forz > 1, {any, ... 2 ) A <k} CAGMND, -ty oo, Mm) ) ¥ O
UM, ooy Niz)

(6) for 7 > 1, CIXU(Al, [ )\z) g U()\l, ey )\i—l)

(7)Y AN, .-t AN U0y, .o, ) #£ 0 (and hence, by
Corollary 7, is not k-discrete).

If any of the closed setscl s (A[{ (A1), -« oy ENy o, N BF DY UMy - 02, A)
contains a closed set of the form C, we are done. So suppose not. The set

CIA(A[t()\l), ey t()\l, ey }\n)]k* M U()\], ey }\n))

is not k-discrete or else its subset

AN, oty o N EE DY U (N, oo Ny)
would be, contrary to (7). Hence it contains a metrically discrete subset of
cardinal k, and therefore, for some ¢, 1 (A1, . .., N,) >0, AL\, ..., t(Ay, .. 0,
ML MDY U, ..., N\,) containsan e, 1(Ag, . . ., \,)-discrete set of cardinal &,
say

{u()\ly ey )‘nv )\n+l) : )\n+1 < k}
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Pick open spheres (in X) U(\y, . . ., N\,p1) of radius < min{1/2"" e, (g, .. 0,
N\.)/3} centered at «(\q, ..., \,1) and so that

Cl_\'U(kl, ey A,,+1) g— []()\1, Ceey >\n)

Given now (N1, ..., \g1), there must be a point t(N\y, ..., Ng1) € Lopa
such that

AN, O )T UMy ey Ngr) # 0.
Otherwise,
AN, oo Oy o NI OY Uy ey Ngr)
= U AU, - E O, ey N, L)
AN, o E Oy oy M)y L)l ™)
DUy ooy Ngt) = b € 141}

= {A Ij(}\l)v CEE ,1‘(/\1, cee )\n)v /n+l]/r M Lr()\ly coe )\n+1) : ln+1 E 1Vn+l}
which is k-discrete. This would imply A[f(N\1), ..., i\, ..., AN
U\, ...y Ng1) 18 k-discrete, which, since it contains « (A, - . ., N\,41), would

contradict Corollary 7.

Thus we either produce, at some finite stage of this construction, a closed
subset of 4 of the form C, or else, by induction, we define, for all #, objects
satisfying (1)—(7). Assume the latter occurs.

The space of all sequences {(Ni,..., A, ...): N\, <k}, with the “first-
difference”” metric, is homeomorphic to B (k). Given X = (A, ..., A, ...) €
B(k), the sets

AUODI O UGN, oo AL, e Oy e AT DY UGy oo Ay s

are non-empty. It follows that the decreasing sequence of non-empty closed
sets of X,

]Jlt()\l)] M CIXU(/\I)v ceey ]"U(>W>y ey i(}\lv cee /\n)]
MNelxUg, o0 M), e

whose diameters tend to 0, intersect in a single point f(\) of X. In fact, f(\) € A
since

ﬂ;zn=1 P‘U()\l)y . ,t()\], LN} >\n):| g A.

It is easy to check that the map f: B(k) — 4 is continuous and one to one.
fis also an open map of B(k) onto f(B(k)). Indeed, if W (A, ..., \,) is the
basic open set { (A1, . .., My tpgty - - 2) ¢ g < k) of B(k), then

SIWO oo M) = Uy, oo N) DY fIB(R)].
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Finally, we claim f[B (k)] is closed in 4. We will, in fact, show it is even
closed in X, by proving (f(B(k)), d) is complete. Let {y,:n =1,2,...} bea
Cauchy sequence in (f[B(k)], d). Pick a positive integer N; so that if n = Ny,
then d(y,, yv.) < (€1)/3, where € is as above. Since vy, € f[B(k)], it is in
some (unique) set of the form

Fli(u)] NelxUlpy), w1 < &,

and since, if w1 # p’ < k, the sets clxU(u:) and clxyU(ui") are at distance
> (e1)/3, we get that if n = Ny,

Yu € FU(M)] M CIXU(N])-

Now assume that positive integers Ny > ... > N; have been chosen, and
ordinals u1, . .., u, < k so that, if n = N,
Yn € F[t(p'l)r e rt(“h LA v“i)} M CIXU("LIY L p'?)

Then choose N1 > N son = Ngq implies

d(ym yNs+l) < €H—1(IJ~]y ceey N\)/3

Again, yy, ,, is in a unique set of the form
F[l()\l), o ooy t()\], ey )\H—l)] ﬂ ClXU()\l, o o ey >\N+1),

and since Ngyqp > ... > Ny, we get Ay = uy, 1 =0 = 5. Let A\p1 = pyyr. As
before, if n = N1, we have

Y € FU(#]), BT J(#ly B “’.\‘-H)] M C]XU<ﬂly cee y,u.v+1)~

Let v = f(ut, ..., 4 ...,) € flB(k)]. Since y and vy, are both in
clyU(uy, . .., uy), which has diameter <1/2°—!, the sequence {yy,:s = 1,
2, ...} =y, and therefore the Cauchy sequence {y, : n = 1,2, ...} converges
to v as well.

COROLLARY 12. Under the hypotheses of Theorem 11, A 1s either k-discrete or
contains a copy of B(p) for some p such that pRo = kXo,

CororLrary 13. (El'kin) If A s absolutely NRo-analytic, them A is either
No-discrete or A contains « Cantor set.

Proof. By Corollary 12, 4 is either X¢-discrete or contains a copy of a Baire
space B(p), which in turn contains a Cantor set.

The alternatives of Theorem 11 are not mutually exclusive. For example,
the space B (k) itself, having weight k, is k-discrete precisely when kXo = k.
We shall show, however, that the alternatives are mutually exclusive if
kX¥o > k. We begin by examining B (k) again.

https://doi.org/10.4153/CJM-1980-025-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-025-3

338 RONALD C. FREIWALD

ProPOSITION 14. The smallest k for which B (m) 1s k-discrete satisfiesm < k <
m® and m < k unless m = m¥No,

Proof. We first show B(m) is not k-discrete if & < m. It suffices to show
B(kt) is not k-discrete. We assume H:;l T, = B(k*) has the ‘“first-dif-
ference’’ metric, p.

Suppose B = {B(N\) : N < k} is a family of metrically discrete subsets of
B(kt). We shall show \U 8 = B(k*). For each #, let

A, = {N < k: B(\) is 1/n-discrete}.
Then |A] £ kand A, © At

Pick x,* € T1. Any two points of the form (x,*, x», . ..) are at distance
<1/2, so no two of them are in one B(\)(A € Ay). Thus\U {B(\) : X € A4}
contains =k points of that form. Therefore we can choose x,* € 7’5 so no point
of the form (x*, x2*,...) isin U {B(\) : N € Ay}

Continuing in this way, suppose, for 1 < ¢ < #n, x;* € 1, are chosen so that
no two points of the form (x,*, ..., %% %01, .. .)arein U {B(\) : X € A,1}.
Since any two such points are at distance =1/(z 4+ 1) no B(\)(A € A,) can
contain two of them. Hence, as before, we can choose x,.,* € 7,41 so that no
point of the form (x,*, ..., x,01% ®u4e,...) is inU {B(\): N € A,}. The
point (x:*, ..., x,% ...) whose coordinates have been inductively defined in
this way is clearly not in \U 9B.

The second inequality of the theorem follows from the fact that B (m), with
m®0 points, is m¥o-discrete. The last assertion follows from the remark following
Corollary 13.

THEOREM 15. If A is absolutely k-analytic and kR¥o > k, then one and only one
of the following holds:

(1) A s k-discrete

(2) A contains a closed subset C, of cardinal k¥, and homeomorphic lto either
the Cantor set or a Buaire space B(p).

Proof. It only remains to show (1) and (2) are mutually exclusive. So suppose
kR0 > k and A is k-discrete. If (2) also holds, then 4 contains a copy of B(p)
with pXo = kRo, This copy of B(p) is k-discrete, so p < k by Proposition 14;
since a k-discrete space of weight <k has <k points, it follows that pXo <
k < EXo while p¥ = ERo 3 contradiction.

Corollary 12 also produces a different proof of the following result due to
Stone [5].

THEOREM 16. Let k be an infinite cardinal such that (1) k < kX0 and (i)

PR < k whenever Xg < p < k. Then the following statements about an absolute
Borel set X are equivalent:

https://doi.org/10.4153/CJM-1980-025-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-025-3

k-DISCRETNESS 339

(1) X has weight <k and |X| > k.
(2) X s Borel isomorphic to B(k).
(3) X us generalized homeomorphic to B (k).

Proof. That (3) implies (2) is trivial. If (2) holds, then |X| = kXe > &, and
the weight of X is <k (since weight is an invariant of Borel isomorphism
among absolute Borel sets [5]). If (1) holds, then X is not k-discrete and so,
by Corollary 12, X contains a Baire space B(p) with p¥o = kXo > k. Then

p = k, so X contains a copy of B(k). Hence, X is generalized homeomorphic
to B(k) [5].

We remark that on the generalized continuum hypothesis, any infinite
cardinal k satisfying (i) in Theorem 16 also satisfies (ii). Also, (2) and (3) are
known to be equivalent (for absolutely X¢-analytic metric spaces) without any
cardinal assumptions. This follows from theorems of Preiss [11] and Hansell [2].

4. Results using the generalized continuum hypothesis. If we

assume the generalized continuum hypothesis ((GCH]), then the results of the
previous section can be somewhat sharpened.

LEmma 9* [GCH]. Let (4, d) be an absolutely k-analytic metric space with
A* # 0. Then A* contains either a metrically discrete subset of cardinal k+

or a closed subspace C, of cardinal kX, homeomorphic either to the Cantor set
or B(k).

Proof. If k¥ = k, then the weight of 4,* must be >k, or else 4;* would be
k-discrete. Then it follows, as in the proof of Lemma 9, that 4,* contains a
metrically discrete subset of cardinal 2.

If k% > k, and 4,* contains a closed set C homeomorphic to B(p), with

pRo = ERo, then either p = k or p = kt, and so 4,;* contains a closed copy
of B(k).

TraEOREM 11* [GCH]. Let (A4, d) be an absolutely k-analytic metric space.
Then either A is k-discrete or A contains a closed subspace C of cardinal ko,
homeomorphic either to the Cantor set or B(k).

Proof. The proof is virtually identical to that of Theorem 11, replacing the
uses of Lemma 9 by Lemma 9*.

Remark. It is not possible to conclude that the set 4 of Theorem 11* is either
k-discrete or contains a closed subset homeomorphic to B(k). For example,
the Cantor set is not X,-discrete and contains no closed copy of B(Ny) (or, for
that matter, of any Baire space B(p)). However, it is easy to see that this

stronger conclusion can be drawn, on the generalized continuum hypothesis,
if &> N,.

Our next result generalizes, under the generalized continuum hypothesis,
the classical theorem that every uncountable, complete, separable, zero-dimen-
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sional space is, after the deletion of an appropriate countable set, homeomor-
phic to B(Xo) [4, p. 443].

CoroLLARY 17 [GCH]. Every complete space with (covering) dimension O and
weight <k is the union of two disjoint subspaces A and B where

(1) 4 is open and has cardinal <k;

(2) B 1is either empty or homeomorphic to B (k).

Proof. Since the proof of the classical result covers the case & = Ry, we
assume k& > No. Let 4 = X, and B = X, *. Then 4 is open, and since 4 is
k-discrete and has weight <k, |4]| < k.

If B s @, then it is a completely metrizable, zero-dimensional space of
weight <k which, by Proposition 6, has no k-isolated points. Hence no open
subset of B has k-isolated points. Since each non-empty subset of B is abso-
lutely k-analytic, each contains, by the remarks following Theorem 10*, a
closed copy of B(k), and hence a discrete subset of cardinal k. It follows that B
is homeomorphic to B (k) [5].

In [5], Stone has shown, under the generalized continuum hypothesis, that
the space X of weight =k has every subset absolutely k-analytic if and only if
|X| = k, and raised the question of a similar theorem for spaces of arbitrary
weight. Our next result provides a partial answer.

TuaEOREM 17 [GCH]. Let A be absolutely k-analytic and assume kX0 > k. Then
the following are equivalent:

(1) A 1is k-discrete.

(2) Every subset of A 1s (ubsolutely) k-analytic.

Proof. 1f A is k-discrete, then every subset of A4 is the union of =k closed
sets and is therefore (absolutely) k-analytic. Now assume (2) holds and 4 is
not k-discrete. Then 4 contains a copy of B(k). Therefore all subsets of B (k)
are absolutely k-analytic, and hence each subset of B (k) is a continuous image
of B(k) [5]. But the number of continuous images of B(k) in B(k) is < (kR0)* =

Bt = 2t while B(k) has 2% = 22" subsets.

The author wishes to thank the referee for several helpful comments and
suggestions.
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