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SOME FIXED POINT THEOREMS FOR PARTIALLY
ORDERED SETS

HARTMUT HOFT AND MARGRET HOFT

1. Introduction. A partially ordered set P has the fixed point property if
every order-preserving map f : P — P has a fixed point, i.e. there exists x € P
such that f(x) = x. A. Tarski's classical result (see [4]), that every complete
lattice has the fixed point property, is based on the following two properties of a
complete lattice P:

(A) For every order-preserving map f : P — P there exists x € P such that

x = f(x).

(B) Suprema of subsets of P exist; in particular, the supremum of the set
{xlx < f(x)} C P exists.

Of course, arbitrary posets do not have these properties, and we shall work with
the following weakened versions, which seem to be more appropriate for
arbitrary posets.

(C) For every order-preserving map f : P — P there exists x € P such that «
and f(x) are comparable, i.e. either x = f(x) or f(x) = x.

(D) Every non-empty chain of P has a supremum and an infimum.

THEOREM 1. Suppose the partially ordered set P satisfies (C) and (D). Then P
has the fixed point property.

Proof. Let f : P — P be order-preserving, and let ¢ € P be comparable to

f(a). Since property (D) is self-dual, we may assume that a < f(a). The
system of chains C for which

(*) x€ C implies f(x) € Cand x = f(x)

contains the non-empty chain {f*(a)|k = 0, 1, 2, . . .}, and therefore contains a
maximal chain M by Zorn's Lemma. By assumption, m = sup(M) € P exists.
Since M satisfies (*), we have x = f(x) =< f(m), for all x € M, so that
m = f(m). On the other hand, if m € M, then the chain M \J {ff(m)|k =
0,1,2,...} properly contains M, and satisfies (*) in contradiction to the
maximality of M. Therefore, m € M and also f(m) € M, hence f(m) < m.
This makes m a fixed point of f.
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m is even a maximal fixed point of f: Suppose z = f(z) is another fixed point,
and suppose m < z. Then M U {z} belongs to the system of chains satisfying
(*). Again, this contradicts the maximality of M.

In[1] and [5], one can find fixed point theorems that are similar to Theorem 1
(e.g. Theorem 2 in [1] and Theorem 1 in [5]). We can obtain a somewhat
stronger theorem if condition (D) is weakened even further: not every non-
empty chain, but only chains contained in certain intervals of the poset need to
have suprema and infima. For our purposes, condition (D) as stated above is
sufficiently general and convenient.

COROLLARY. Suppose P has property (D). Then Property (C) and ihe fixed
point property are equivalent.

One consequence of the Corollary is that every finite poset with a least or a
largest element has the fixed point property. More generally, a poset with a
least (largest) element that satisfies the ascending (descending) chain condition
has the fixed point property.

2. A sufficient condition.

THEOREM 2. Suppose that the poset P has finitely many minimal elements, that
each element of P contains a minimal element, and that the supremum of every
non-empty subset of minimal elements exists. Then P has Property (C).

Proof. Let f : P — P be order-preserving and let M be the set of all minimal
elements. We define a sequence of subsets of M by:

M] = M
My = {x € M|x < f(sup(My))}

Each set M, is non-empty, because f(sup (M;—1)) contains at least one minimal
element by hypothesis. We show by induction, that the system S = {M;|k =
1,2, ...} isachain. My C M, % @ is obviously true. Let now x € M;,,; since
vy < f(sup(My)), for every vy € My,1, we get

(**) x = sup(Mi41) = f(sup(My)).

The induction hypothesis My C M, implies that f(sup (M})) =< f(sup(My-1)),
so that x = f(sup(M;_1)), i.e. x € M;.
P has only finitely many minimal elements, therefore the descending chain

M—_—MlDMgD ..... DMkD

terminates. Let M, = M,,; then sup(M,) = sup(M,+1) = f(sup(i,)), by
(**). Thus, property (C) is verified.

Obviously, the dual of Theorem 2—replacing minimal by maximal and
supremum by infimum—is also true.
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COROLLARY. Suppose P fulfills the hypotheses of Theorem 2 (or of its dual) and
has Property (D). Then P has the fixed point property.

Specializing to a single extremal element, we see that, for instance, every
finite semi-lattice (join or meet) has the fixed point property; or specializing
the Property (D), every poset satisfying the hypotheses of Theorem 2 and the
ascending chain condition has the fixed point property.

We conclude this section with an example that the conditions of Theorem 2
are not necessary. Consider the following poset of height two:

All suprema of the minimal elements «a, b, and ¢, except for sup(a, b), exist.
Nonetheless, the poset has the fixed point property.

3. An equivalence condition. Let 7" be a poset, considered as an index set.
For a family P, ¢t € 7T, of posets, we define the lexicographic sum
P = L{P,|t € T} to be the set {(t,x)|t € T,x € P} with the lexicographic
order:

(5,2) = t,y)es<tors=tandx < y.

The inclusion mappings ¢,: P, — P defined by 7,(x) = (¢, x) are order-
embeddings, so that we may identify the posets P,—we will call them pzeces
of P—with their images 7,(P,) in P.

Every poset P admits a representation as a lexicographic sum; i.e. there
exists an index set 7" and pieces P,, ¢ € T, such that P = L{P |t € T}. For one

such representation one may choose 7" = P and |P,| = 1, for all { € T for
another, one may take |7 = 1 and P, = P. These two trivial representations
always exist; there may, of course, be many more.

The poset

admits, for example, the non-trivial representation P = L{P,|t € T}, where the
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3
r=o/\
1 2

where the piece P; consists of two incomparable elements, P, has a single
element, and P; is a copy of 1.

index set

THEOREM 3. For any poset P, the following two statements are equivalent:

(1) P has Property (C).

(2) P admits a representation as a lexicographic sum, P = L{P |t € T}, where
the index set T as well as all the pieces P, have Property (C).

Proof. The implication (1) = (2) is obvious, since every posets admits the
two trivial representations. For the other implication, let f : P — P be order-
preserving. Define a mapa: P — T by a(¢, x) = ¢ and let ¢ be a choice func-
tion on the family (P,),r. Then the map B: T'— T defined by B(¢) =
a(f(t, ¢(t))) is obviously monotone and hence by assumption there exists an
element » € T such thatr < B(r) or r > B(r) or r = B(r). In the first case we
have (r, ¢(r)) < f(r, ¢(r)) and in the second: (r, ¢(r)) > f(r, ¢(r)). Hence we
may assume that B(r) = r, i.e. that there exist elements x,y € P, with
f(r,x) = (r,v). Consider the non-empty subset Q = { (v, x)|f(r, x) € 7,(P,)} of
i, (P,). If Q =14,(P,), then f|Q: Q — Q is an order-preserving map on the
piece P,. Since P, has Property (C) by assumption, we obtain Property (C)
for P.

Let from now on Q # ,(P,).

Case 1: There is (r, x) € Q and (r,y) ¢ Q—but still y € P,—such that x
and y are comparable in P,. If x < v, then f(r, x) < f(r, y) and, since f(r, y) ¢
1,(P,), f(r,y) = (¢, 3) wherer < t. Thus, (r,y) < f(r,y), and we have verified
Property (C) for P. A similar argument will take care of the case y < «.

Case 2: For every (r,x) € Qand (r,y) ¢ Q, x and y are incomparable in P,.
Pick any two elements a, b € P,such that (r,a) ¢ Qand (r,b) € Q. We define
amapg: P,— P, by

_Ja if (r,2) € Q
g(z)_{b if (r,2) € Q°

Our assumption for Case 2 implies that g is order-preserving. Furthermore,
there is no element in P, which is comparable to its image under g. This
contradicts the hypothesis that P, has Property (C). Therefore, this last case
cannot occur.

COROLLARY. If the poset P satisfies Property (D) then the following conditions
are equivaleni:
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(1) P has the fixed point property.
(2) P admits a lexicographic representation L{P |t € T} in which the index
set T and each piece P, has the fixed point property.

Proof. The implication (1) = (2) is evident again because of the trivial
lexicographic representations. The converse follows from Theorem 1 and the
implication (2) — (1) of Theorem 3.

It should be noted here that if a poset has the fixed point property, it may
admit only a trivial representation satisfying (2) of the Corollary. This is the
case, for instance, for all posets of length one that have the fixed point
property: In any lexicographic representation of P, the pieces must be of
length at most one. If the index set 7" has the fixed point property, then either
|T| = 1 or T is connected and of length one. If |T| = 1, we get a trivial repre-
sentation. In the other case, if T 5 P, then |P,| # 1, for at least one index.
But P, has to be of length zero, i.e. P, contains at least 2 incomparable ele-
ments, contradicting the fixed point property for P,. Thus T"= P, and the
representation again is trivial. For posets of length one having the fixed point
property, Theorem 3 is therefore useless. But these posets—at least the finite
ones—have already been characterized in [3].

As an example that Theorem 3 and its Corollary can be quite useful, consider
the poset P

—0

P |

[ o o e et e
T |

As the pieces of a lexicographic representation of P we choose the boxes; the

index set is then 1" = /\ All components evidently have the fixed point

property, therefore P has the fixed point property.

In the proof of Theorem 3, we used the fixed point property for the pieces of
the lexicographic sum for one single piece only. This suggests that the proper-
ties of the index set are crucial for the existence of fixed points.

A subset Q of a poset P is a retract of P if there is an onto, order-preserving
map 7 : P — Q such that = oid, = idy,.
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TBEOREM 4. If the poset P has the fixed point property and of Q C P 1is a retract
of P, then Q has the fixed point property.

Proof. Let f : Q — Q be order-preserving and let 7 : P — (Q be the retraction
map. Then f o w: P — P has a fixed point by assumption, indeed a fixed point
in Q. Since f o7 oidy = f, f also has a fixed point.

A poset P is fixed point free if it does not have the fixed point property, i.e.
there is an order-preserving map f : P — P without a fixed point.

THEOREM 5. Let P be a lexicographic sum, P = L{P |t € T}. If T is fixed
point free, then so is P.

Proof. We show that T'is order-isomorphic to a retract of P. Then Theorem 4
establishes the assertion. Let x be a choice function on the set system
{P |t € T}, ie. x(P,) € P, for each ¢t € T; and let Q = {x(P )|t € T} with
the partial order inherited from P, ie. x(P) = x(P,) if and only if
(s, x(Ps)) = (t, x(P,)). Then Q and T are order-isomorphic. The map
7 : P— Q defined by n(t,x) = x(P,), for all t € T" and all x € P, is the
required retraction map.

Let us point out here, that the fixed point property for the index set 7" alone is
not sufficient to force the fixed point property for the whole lexicographic sum.
2
For example, suppose that 7" is the two-element chain I . Let P, as well
1
as P, consist of two incomparable elements. Their lexicographic sum is the
fixed point free poset
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