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ON NORMED LIE ALGEBRAS WITH SUFFICIENTLY MANY
SUBALGEBRAS OF CODIMENSION 1

by E. V. KISSIN
(Received 21st January 1985)

0. Introduction

Let H be a finite or infinite dimensional Lie algebra. Barnes [2] and Towers [5]
considered the case when H is a finite-dimensional Lie algebra over an arbitrary field,
and all maximal subalgebras of H have codimension 1. Barnes, using the cohomology
theory of Lie algebras, investigated solvable algebras, and Towers extended Barnes’s
results to include all Lie algebras. In [4] complex finite-dimensional Lie algebras were
considered for the case when all the maximal subalgebras of H are not necessarily of
codimension 1 but when

M={0) 1)

MeS(H)

where S(H) is the set of all Lie subalgebras in H of codimension 1. Amayo [1]
investigated the finite-dimensional Lie algebras with core-free subalgebras of codimen-
sion 1 and also obtained some interesting results about the structure of infinite
dimensional Lie algebras with subalgebras of codimension 1.

By X we shall denote the class of complex finite or infinite dimensional normed Lie
algebras for which (1) holds. In Section 2 the resuits of Amayo will be applied in order
to prove that for every complex normed Lie algebra H and for every subalgebra
M e S(H) the largest Lie ideal I(M) of H contained in M has codimension less or equal
to 3. Using this result for the case when HeX we shall show that, if S,(H)=
{M e S(H):codim I(M)=k}, for k=1,2,3, then L(H)={\pecs,@os,mn(M) is a semi-
simple ideal in H and R(H)=|) mesyanl(M) is the radical of H. We shall also prove that
H < L(H), so that R(H),,=0. If H is finite-dimensional, then it was proved in [4] that
H=L(H)+R(H) and that L(H)=L,+ --- +L,, where all L, are Lie ideals in H and
isomorphic to sl(2,C). If H is infinite dimensional, then this does not necessarily hold
any longer. We shall consider an example of a normed Lie algebra H from X such that
R(H)=0 but L(H)#H. We shall also show that the property of belonging to X is
inherited by all closed subalgebras of H and by all quotient algebras H/J s where S is
any subset of S(H) and where J s=(")ycs/(M). Finally, we shall consider the set T of
all ideals I(M) such that codim J(M)=3 and shall introduce a Jacobson’s topology on T.

In Section 3 the structure of solvable algebras from X is investigated. For every Re X
we consider a special set £ of functionals on R from R?l) (R, is the polar of R)) and

199

https://doi.org/10.1017/50013091500017582 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017582

200 E. V. KISSIN

the corresponding set of ideals Rf,,={r'eR:[r,r']=g(r)r' for every re R} in R,,(geX). If
R is a finite-dimensional solvable Lie algebra from X, then it was shown in [4] that

(T;) the nil-radical N of R is commutative and a commutative subalgebra I' of R
exists such that R=T+N,

(T,) N=Z+Ry,,, where Z is the centre of R, and Ryy=Y1-, +R%,, where g;e X.

For the case when R is infinite dimensional but * is a finite set, we shall prove in
Theorem 3.6 that (T;) and (T3) hold. (This is the main result of the section). If X is not
finite, then the structure of R is more complicated. In particular, (7;) and (7;) may no
longer hold. To illustrate this we shall consider a solvable algebra R such that N=Ry,,
that dim (R/R;))=2 and therefore dim(RQ,)=2, but X is infinite. We shall show that in
this case (T;) and (T;) do not hold and that there is not even a commutative algebra I’
such that I’ n N =0 and such that linear combinations of elements from I' and N are
dense in R. We shall also prove that Rf;,=0 in this example for all ge Z.

Finally, I would like to thank the referee for the many helpful suggestions which have
helped me to improve the article.

1. Preliminaries and notation

Let m and n be arbitrary integers. Then (') is the usual binomial coefficient with the
understanding that (') =0 if m<0 or n<0 or m<n. But we take (J)=1if m=—1. As in
[1] we define, for arbitrary integers,

i+]j i+j
A= - . 2
v <i+1> (j+1> &)
If a linear space B is the direct sum of its subspaces B;, for i=1,...,n we shall denote
it by
B=B,+ ' +B,.

Let H be a complex Lie algebra of finite or infinite dimension and let there exist a
subalgebra M of codimension 1. By I(M) we denote the largest Lie ideal of H contained
in M. Then I(M) contains any Lie ideal of H contained in M. Now put I,=M and let
h_ be an element in H which does not belong to M. For every i=0 let us define by
induction

I; ={heH:[hh_Jel}. (3)
If he H by {h} we shall denote the one-dimensional subspace generated by h.

Theorem 1.1. [1] (Amayo) If M is.a Lie subalgebra in H of codimension 1 then three
possibilities exist:

(1) I(M)=M;
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(2) dim (H/I(M))=2, H/I(M) is solvable but not commutative and there exist elements
h_ and hy in H such that

H={h_}+M, M={hy} + (M)
and
[h_,hy]=h_ mod I(M); 4)

(3) (i) all I, are Lie ideals of M, I, , <1, and
I(M)= ﬂ Ii’
i=0
(ii) there exist elements h;, possibly zero, such that

Li={h}+1;y, and [h,hjJ=);h;, ;mod I, 4,

(i) if I;=1;4, for some i, then I;=1;., for all j=2, I(M)=1, and there exist
elements h_, hy and h, in H such that

H={(h_}+M, M={ho}+ {h,} + (M) %)
and |
[h-,hoe]l=2h_ mod I(M), [ho,h,]=2h, mod I(M),
[hs,h_]=hy mod I(M). (6)

Now let a complex Lie algebra H be a Banach space. We shall call H a normed Lie
algebra if a constant C exists such that

ks, B2l = Clla || ] (7

for every h,,h,e H. We say that a closed subalgebra M of a normed Lie algebra H has
codimension 1 if there exists he H such that h¢ M and that H=M —i-{h}. By S(H) we
denote the set of all closed Lie subalgebras of codimension 1 in H. We shall often make
use of the following property of Lie algebras from X which follows easily from (1): for
every he H there exists M e S(H) such that H=M + {h}.

By H?=[H, H] we shall denote the closed Lie subalgebra of H spanned by all Lie
products of pairs of elements of H. H* for k> 1, is the closed Lie subalgebra which
is defined inductively by the rule H*={H*"!,H]. H is said to be nilpotent if H*=0
for some k. The closed subalgebras H,, are also defined by the inductive rule that
H,,=H? and H=[Hg,Hy] for k21. H is called solvable if H,,=0 for some k.
A solvable (nilpotent) ideal R(N) is called the radical (nil-radical) of H if it contains
every solvable (nilpotent) ideal of H. If R=0, then H is called semisimple.
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For every linear subspace G in H let G be its closure. Using (7) one can easily prove
that [G,,G,]1=[G,,G,] for all subspaces G, and G, in H and that, if G is a subalgebra
of H, then G is also a subalgebra of H. Therefore, if G is a solvable (nilpotent)
subalgebra of H, then G is also a solvable (nilpotent) subalgebra of H. Thus R and N
are closed ideals of H.

The simple Lie algebra of complex matrices (¢ _2) is denoted by sl(2,C). Set h=(2 9),
ho=@ _9) and h, =(3 §). Then

Cho,h 1=2h, [ho,h_-]=—2h_, [h.,h_T=h,. ®)

2. The structure of normed Lie algebras from X

Theorem 2.1. Let H be a complex normed Lie algebra and let there exist a closed Lie
subalgebra M of codimension 1. Then
(1) I(M) is closed,

(i) if dim(H/I(M))>2, then dim(H/I(M))=3, H/I(M) is isomorphic to sl(2,C) and
there exist elements h_, hy and h, in H such that formulae (5) and (6) hold.

Proof. Since I(M) is the largest Lie ideal of H contained in M, the proof of (i)
follows from the fact that, if G is a Lie ideal of H, then G is also a Lie ideal of H.

If H is finite-dimensional, then the proof of (ii) follows immediately from Theorem
1.1 (3) (iii). Now let H be infinite dimensional. First we shall show by induction that all
I; are closed. I,=M is closed. Suppose that I, is closed. Let elements h® belong to I, ,
and converge to h. By (7),

(I8 31— 0P, b 3| =(|CR =2, b 3| < Cll = B[] .|| 0.
Hence the elements [A*”, h_,] converge to [h,h_ 1. By (3), [h'",h_,] belong to I, and,
since I, is closed, we have that [h h_,] belongs to I,. Therefore hel,,, and I, is
closed.
It follows from Theorem 1.1 (3) (ii) and from (2), that for j=0
[ho,hj1=jhj+a;,

where a;,,€l;,,. Since, by Theorem 1.1 (3) (i), all /; are ideals of M and since hye M,
we have that [hy,h]€l;, for every hel;,, and that

[ho, hj+h]1=[ho,h;]1+[ho,h]= jh;+ N
where ' =a;,, +[ho, h] belongs to I;, . By (7),

| jn;+H

| = ko, hy+ 1< Cllol 1+ ]

Dividing by j we get that for every hel;,, the element f(h)=h/j in I;,, exists such
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that
[+ f (B < Cy ||+ A ©)

where C,=C||h||/j. Let us choose an element A in I;,, and let us put by induction
h® — £(h%~D). Then, by (9),

(B Bl =, + £ (BE D[ S C, [l + D
- Culhy S0 SCEl e - S

If j is large enough so that C, <1, then we obtain that ||h;+h™®)|—0. Since all h* belong
to I;,, and since /;,, is closed, we have that h;el;,,. Hence, by Theorem 1.1 (3) (ii),
I;={h}+1;,,=1;,, and the proof of the theorem follows from Theorem 1.1 (3) (iii)
and from formula (8).

For k=1,2 and 3 we put

Su(H) = {M € S(H): codim I(M) = k}.
Then S(H)=|)3?-, Si(H). Now put

LH)= () IKM) and RH)= () IM).

MeS (H)yuS,(H) MeS,(H)

If S,(H)vw S,(H)=(J, then put L(H)=H. If S;(H)=¢, then put R(H)=H. If He X, then
it follows from (1) that

LHARH)= () IM<c () M=0.
MeS(H)

MeS(H)

Since all I(M) are closed, L(H) and R(H) are also closed.
Lemma 2.2. If HeX, then H;,< L(H).

Proof. Let MeS,(H). Then I(M)=M and an element h_ exists such that H=
{h_}+ M. Therefore H,,=[H,H]<I(M). Since M is an arbitrary subalgebra in S,(H),
we obtain that

Ho<cHy<s () I(M).
MeS, (H)

Now let M e S,(H). Then, by Theorem 1.1(2), the elements h_ and h, exist such that
H={h_}+M, M={hy}+1(M)

and
[h_,ho)=h_ mod I(M).
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Therefore H(l)g{h_}-i-I(M) and H=[H,),H4]<I(M). Since M is an arbitrary
subalgebra in S,(H), we obtain that

Hp<s () IM).
MeS,(H)

Thus H ;)< ( \mes, s, a [(M)=L(H) which completes the proof.
For every closed subalgebra G of H set

Sc(H)={MeS(H):G¢ M} and S¢(Hy={MeS(H): GS M}.
Then S(H)=Sg(H) v S°(H). Now let S be a subset in S(H). Set

Ts= () I(M).

MeS

Then J is a closed ideal of H.

Theorem 2.3. Let HeX.

(1) If G is a closed subalgebra of H, then Ge X.
(ii) For every subset S in S(H) the quotient algebra H/J 5 belongs to X.

Proof. Let G be a closed subalgebra of H. For every MeSg(H) set Mg=Gn M.
Then all M are closed subalgebras in G of codimension 1 and

Mcs N MG=Gn< N M>=  M=o0.
M’'eS(G) M;eS(G) MeS;(H) MeS(H)

Therefore G € X and (i) is proved.

Now let SSS(H) and let [ be the homomorphism of H onto H/J 5. If MeS75(H),
then f(M) is a closed subalgebra of codimension 1 in H/J 5. Therefore in order to
prove (ii) it is sufficient to prove that

(a) if h¢ T s, then there exists M € S75(H) such that h¢ M.

Since h¢ 7 g, there exists M€ S such that h¢ I(M,).

If MyeS,(H), then I(My,)=M, and therefore h¢ M,. Since MyeS7S(H), we obtain
that (a) holds for h.

If MyeS,(H), then there exist elements h_ and h, such that (4) holds. Therefore
h=ah_+bhy+i where a and b are complex and where ieI(M,). If a+#0, then h¢ M,
and (a) holds for h. Let a=0, that is, h=bhy+i and b#0. Then he M,. Set x=h_ +h,
and M =I(M,)+{x}. We have that M is a Lie subalgebra of H and that h¢ M. Since
I(M,) is closed and since dim (H/I(M,))=2, we obtain easily that M is closed and that
codim M =1. Since 7 g= I(My)<=M, (a) holds for h.
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Finally, let M€ S;(H). Then there exist elements h_, hy and h, such that (5) and (6)
hold. Therefore h=ah_+bhy+ch,+i where a, b and ¢ are complex and where
ie(M,). If a#+0, then h¢ M, and (a) holds for h. Let a=0, that is, h=bhy+ch, +i and
|b| +]c| #0. Then he M. If ¢ #0, then set M=I(M,)+ {h_}+{ho}. Since I(M,) is closed
and since dim (H/I(M,))=3, we obtain easily that M is closed. It follows from (5) and
(6) that M is a Lie subalgebra of H, that h¢ M and that codimM=1. Since
T s<1(My) <= M, (a) holds for h. Now let ¢=0, so that h=bhy+i and b+0. Set

x=h_+hy, y=h_+2hy—4h, and M =I(Mg)+{x}+{y}.
It follows from (6) that [x, y]=2ymod I{M,). Therefore M is a closed Lie subalgebra of
codimension 1 in H and h does not belong to M. Thus (a) holds for & and the proof of
(ii) is complete.

From Lemma 2.2 and from Theorem 2.3 we obtain immediately the following
corollary.

Corollary 24. If HeX and if H'=H/L(H), then H' is solvable, H(;,=0 and L(H) and
H’ belong to X.

Lemma 2.5. Let MeS,(H).

(1) The elements h_, hy and h in formulae (5) and (6) can be chosen from L(H).
(ii) Subalgebra M; =M n L(H) has codimension 1 in L(H), (M )=L(H) ~I(M) and
M € S3(L(H)).

Proof. Let M e S;(H). By Theorem 1.1(3)(iii), the elements h"_, hy and h', exist in H
such that H={h"}+M, M={hy}+{h',} +I(M) and elements g_, g, and g, exist in
I(M) such that

(R, ho)=2h"_+g_, [ho, W'\ 1=2\ +g., [N\, h"_]=ho+go. (10)

Put ho=[[ho,h’+], [h_,ho])/4, h_=[[h-,ho), [W+,h_])/4 and h,=[[h\,h_],
[ho,h'.]]/4. By Lemma 2.2, hy, h_ and h, belong to L(H). It follows from (10} that

ho=[2h,+g.,2h_+g_1/4=[H,,h"_]mod I(M)=hymod I(M).
In the same way we can show that
h_=h"_mod I(M)
and that
h, =k, mod I(M).

from which the rest of the proof of (i) follows immediately.
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Let M;=Mn L(H). Since h_eL(H) and h_¢M and since codimM=1, M, is a
closed subalgebra of codimension 1 in L(H). Let I=L(H)~I(M). Then I is a closed
ideal of L(H) contained in M, and, by (i) and by Theorem 1.1(3) (iii),

L) ={h_}+M,
and
My={ho}+{h,}+1.

Since h_, hy and h, belong to L(H), all identities in (6) hold modulo I. Therefore the
quotient algebra L(H)/I is isomorphic to sl(2,C). From this it follows easily that I is the
maximal ideal of L(H) contained in M/, that is, I=I(M,). Thus M, e S,(L(H)) and the
proof is complete.

Theorem 2.6. (i) R(H) is the radical of H and R(H);,=0. (ii) L(H) is semisimple.

Proof. It follows from Lemma 2.2 that R(H),,< L(H). Since R(H) is a Lie ideal of H,
we have that R(H),,<R(H). But L(H) n R(H)=0. Hence R(H);,=0. Therefore R(H) is
a solvable ideal in H.

Now suppose that R is another closed solvable ideal in H. Let M € S5(H) and let f be
the homomorphism of H onto H/I(M). Then f(R) is a solvable Lie ideal in H/I(M).
But, by Theorem 2.1 H/I(M) is isomorphic to si(2,C) which is simple, Therefore every
solvable ideal in H/I(M) is trivial. Hence R< I(M). Since M is an arbitrary subalgebra
in S;(H), we obtain that

Rc () I(M)=R(H)
MeS,(H)

and (i) is proved.

It follows from the definition of the radical and from Lemma 2.5 (ii) that

RILH)= [ M<c () ML=L(H)n< N M)=L(H)nR(H)=0.

M'eS,(L(H) MeS,(H) MeS, (H)

Therefore L(H) is semisimple.

Remark. If H is finite-dimensional, then it was proved in [4] that H= L(H)+ R(H)
and that L(H)=L, + --- + L, where all L; are Lie ideals of H and isomorphic to si(2,C).

Now we shall consider an example of a normed infinite dimensional Lie algebra H
from X such that R(H)=0 but L(H)+H.

Example 1. Let H={A={A4,}2,: (i) 4,€sl(2,C), (ii) there exists a matrix 4o=(§ _5)
such that lim 4,= A,}.
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Set ||4||=sup,||4,|| and set [4, B1={[A,, B,]}:,. Then H is a normed Lie algebra.
It is well-known that sl(2, C)e X and that S(sl(2, C))=S;(sl(2, C)). For every subalgebra
A of codimension 1 in sl(2,C) and for every positive integer k let

M, ={A={A,},eH: A e M}.

Then M, are subalgebras of codimension 1 in H and

Mg ﬁ Mk=0'

MeS(H) k=1

MeS(sl(2,C))

Thus HeX. Let I,={AeH:4,=0}. Then I, are ideals of H and I(M,)=1I, for every
subalgebra .# € S(sl(2, C)). Every ideal I, has codimension 3 in H and H/I, is isomorphic
to si(2, C). Therefore all M, belong to S;(H). Then we have that

RHE)= () I(M)gkfjl 1,=0.

MeS,(H)

Now let I ,={AeH:lim A,=0}. By G we shall denote the two-dimensional solvable
Lie algebra of all complex matrices (§ -5). Then GeX and S(G)=S$,(G) ) S,(G). For
every A €S(G) let M ,={AeH:limA,e.#}. Then M, are subalgebras of codimension
lin H and I,=M_. If I(M_) is the corresponding maximal ideal of H in M, then
I,cIM,). Since codiml, =2 we have that codimI(M_ )<2.  Hence
M, €S,(H) v S,(H). Therefore

LH= () I00s () (M)=1,
MG

MeS (H)US,(H)

In fact one can easily prove that L{(H)=I,. Thus L(H)#H, R(H)=0 and H/L(H) is
isomorphic to G. It can also be proved easily that H,,=L(H) and that L(H),=L(H).

Remark. If H is a finite-dimensional semisimple Lie algebra, then H,=H. In the
example above H is infinite dimensional and, although it is semisimple, we have that
H,,#H. But we also have that L(H),,=L(H). The question arises as to whether
L(H),=L(H) for every He X.

By T we shall denote the set of all ideals I(M) such that codim I(M)=3. Let t be any
subset in T. Put I(7)=(\sane. [(M) and put T={I(M)eT:I(r)=I(M)}. Now suppose
that 7, and J, are Lie ideals such that 7, n 7, <I(M) where I(M)eT. Let f be the
homomorphism of H onto H/I(M). Then f(7,) and f(Z,) are Lie ideals in H/I(M).
But since H/I(M) is simple, we have that f(Z,) and f(Z,) are either trivial ideals or
coincide with H/I(M). Taking into account that [hy,h,]Je T, nT,<I(M) for every
h,eJ, and for every h,eJ, we obtain that [f(h,), f(h,)]=f([h,,h,])=0. Since
H/I(M) is not commutative we obtain that at least one of these ideals is trivial. Thus if
7, and 7, are ideals such that 7, n 7, <I(M)e T then either 7, I(M) or 7 , = I(M).

Using this argument and repeating the proof of Lemma 3.1.1 [3] we can easily prove
the following lemma:
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Lemma 2.7.
() = and t=7 for every 1T
(ii) T=1foreveryrcTand t,ut,=7,U7,if 1,,1,cT.
From Lemma 2.7. it follows that there exists a unique topology (Jacobson’s topology)

on Tsuch that for every 1< T the set 7 is its closure in this topology. Since every I{(M)
in T is maximal we have that it is closed.

3. The structure of normed solvable algebras from X

We shall start the section with a well-known lemma.
Lemma 3.1. Let N be a normed nilpotent algebra from X. Then N is commutative.

Let R be a normed solvable algebra from X and let N be its nil-radical. It follows
from Theorem 2.6 that R(;,=0. Hence R;, is a commutative ideal of R. Therefore
R;)EN. By Theorem 2.3(i), N belongs to X and hence, by Lemma 3.1, N is
commutative.

By R* we shall denote the dual space of R which consists of all bounded functionals
on R. For every reR we denote by A, the operator on R* which is defined by the
formula

(A, N)r)=f([r,r.]). (11)

Then A, is a linear operator and it is bounded since
l4.11I= sup [(ANCOISIS sve [T r < CllA AL
rll= rli=

By R{,, we denote the polar of R, which consists of all functionals f in R* such that
S IR(”:O'

Lemma 3.2.
(i) A,f =0 for every reR if and only if f Ry,
(i) If A,f =g(r)f for every reR, where g is a functional on R, then feR{, and
g(r)=0.

(iii) Every operator A, is continuous in o(R*, R)-topology

Proof. If feR{,, then, by (11), (4, f)(r,)=0 for all , r;eR. Hence 4,f =0. If, on
the other hand, we have that A,f =0 for all reR, then, by (11), f([r,r;])=0 for every
ry€R. Hence Ry, Ker f and therefore f € R{,,. Thus (i) is proved.

Now let A, f =g(r)f for every re R and let r, eKer f. Then

S(Cr.r d=(A,1)r,)=g(r) f(r,)=0.
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Hence [r,r;]eKer f. Therefore Ker f is an ideal in R. Let roeR be such that R=
{ro}-i—Ker f and that f(ro)=1. Then for every re R there exists a complex ¢ such that
r=tryo+r, where r, eKer f. Then

(A f)ro)=g(") f(ro)=f([r,roD)=f([r1,70D) =0,

since [r,,r]eKer f. Hence g(r)=0 for all re R. Therefore it follows from (i) that feR,,
and (ii) is proved.

Let reR and let (f,) be a directed set of elements in R* converging to 0 in o(R*, R)-
topology. For every finite set (r;)7-, put ri=[r,r;]. Let £>0 and let us choose o, such
that |f,(r})| <& for all i and for a>a,. Then

IArfa(ri)l = |fa([r’ ri]) <e

and (4,f,) converges to 0 in o(R*, R)-topology. Hence (iii) is proved.

Lemma 3.3. Let r_eR, and let MeS(R) be a subalgebra such that r_¢ M. Then
MeS,(R) and there exist ro€ M and functionals g€ R,y and f ¢ RY, such that ro¢ Ry,
&lrg) #0, f(r-)#0, [ro,r-]=r_ mod I(M) and for every re R

A f =g f—f(rg.

Proof. Since Re X, there exists a subalgebra M e S(R) such that r_¢M. If M is an
ideal in R, then R;,&M which contradicts the fact that r_ does not belong to M.
Hence M ¢S,(R). Since R is solvable, we have that S,(R)=¢5. Hence MeS,(H). By
Theorem 1.1(2), an element roeM exists such that M={r,}+I(M) and that
[ro,r-]1=r_mod I(M). Therefore R;,<{r_}+I(M). Hence r, does not belong to R;,.

Since M is closed and codim (M) =1, there exists a functional f such that Ker f=M.
Hence f(r_)#0 and therefore f¢R{, The subspace {r_}+I(M) is closed and has
codimension 1 in R. Therefore a functional f; exists such that Ker f;={r_}+I(M).
Hence f,(ro)#0. Since R, <{r_}+I(M), we have that f; eR{),.

Let I%M)={f €R*: f|;4=0} be the polar of I(M) in R*. Since codim I(M)=2, we
have that dim I°(M)=2. The functionals f and f, belong to I°(M) and, since f(r_)+0
and f,(r_)=0, they are linearly independent. Hence f and f, form a basis in I°(M).
Since I(M) is an ideal in R, it follows from (11) that I°(M) is invariant under all
operators A,,r€ R. Hence

A f =g f +h(Nf

where g and h are linear bounded functionals on R. Then, since f(r,)=0 and since
f1(r-)=0, we have that

(A, N)ro) = f([r,rod) =g(r) S (ro) + h(r)f1(ro) = h(r) f(ro), (12)
(A N)r)=1(lr,r-D=gn)S(r)+h(Nf1(r-) =g f(r-). (13)
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If rel(M), then [r,rgle (M) and f([r,ry])=0. Since f,(ro)#0, we get from (12) that
IM)=Kerh. If r=rq, then, by (12), h(rs)=0. Hence M ={ry}+I(M)=Ker f <Kerh.
Therefore h=af where a is a complex number. If r=r_ then [r_,r,]= —r_mod I(M)
and, by (12),

—fr)=af(r-)f1(ro).
Hence a= —1/f,(r,).
Now if rel(M), then [r,r_]eI(M) and f([r,r_])=0. Since f(r_)#0, we get from
(13) that I(M)cKerg. If r=r_, then, by (13), g(r_)=0. Hence {r_}+I(M)=

Ker f, =Kerg. Therefore g=bf, €R{, where b is a complex number. If r=r,, then
[ro,7-]=r_ mod I(M) and, by (13),

Sr-)=bfi(ro) f(r-).
Hence b=1/f,(r,) = —a. Therefore
h(r) fi=af(r) fi=—=bf(")fi=—f(rsg.

Hence A, f =g(r)f — f(r)g which concludes the proof of the lemma.
Let ge RY,,. By T, we shall denote the set of all functionals f such that for every reR

A f=g(nf~f(ng. (14
Then Ag e T,, where 4 is complex, since, by Lemma 3.2,
A,g=0=g(r)Ag—Aglr)g.
For some ge Ry, T,={g} where {g} is one-dimensional subspace generated by g.

Let

T=U T

)
9eRy,

and let

T={geRY, T,#{g}}-

We shall denote by [T7] the linear span of T closed in the norm topology and by [T1],
the linear span of T closed in o(R*, R)-topology.

Lemma 3.4.
(i) T, is a o(R*, R)-closed linear subspace in R*, and T, R?1,={g}.
(i) ,nT,={ghand T, nT,,=0if g, ¢{g,}.
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(ili) If g€Z, then ge N° where N° is the polar of N in R*.

(iv) The quotient subspaces T,/{g}, for g€ X, are linearly independent in the quotient
space R*/RY,,.

Proof. Let (f,) be a directed set of elements in T, converging to f € R* in o(R* R)-
topology. Since, by Lemma 3.2(iii), 4, is continuous in o(R*, R)-topology, we have that
A, f,— A, f. But, by (14),

Arfa=g(r)fa_fa(r)g

converges to g(r)f — f(r)g. Hence A,f =g(r) f — f(r)g, so that fe T,
If f €T, R, then, by (11) and by (14), for every r,r, €R

(A= f(r,rD=0=g(r) f(r))— f(r)g(r1),

since [r,r;] € R(y,. Hence Ker f =Kerg and therefore f =tg where t is complex. Thus (i)
is proved.
If feT, nT,, then for every reR

A S =800 —f(Ng1 =8 f = f(n)g..

Hence g(r)f — f(r)g=0 where g=g, —g,. Hence Ker f=Kerg and therefore f=tgeR{,
where ¢ is complex. By (i), there exist complex A, and A, such that f=21,g,=1,g,.
Hence g,=(4;/4,)g,. Thus if g,¢{g,}, then T, " T,,=0. If g,=Ag,, then T, N T, =
{g,} and (ii) is proved.

Since R;)S N, we have that N° < R{},. Now suppose that geR{, but g¢N°. Then
there exists ne N such that g(n)#0. By (14), for every feT, and for every re R, we
have

(4. ()= f([r,n]) =0=g(r) [ (n) — [ (r)g(m) = — f(")g(n).

Hence f(r)=0 and feR},,. By (i), f =tg. Hence T,={g} and g¢Z so (iii) is proved.

Let feT, for geZ, and let 7 be its image in the quotient space R*/RY,,. Then, by
(14), for every reR we have that (M:g(r)f and the rest of the proof of (iv) is
obvious.

Let geRY;,. Put

Let (T;)° be the polar of Ty in R. Put RY,=(T;)°. By [T;], we shall denote the
o(R*, R)-closed span of T} in R*.

Theorem 3.5.

(i) A solvabie normed Lie algebra R belongs to X if and only if [T],=R*.
(i) Let Re X. The following conditions are equivalent:
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(@) there exists a closed commutative subalgebra G in R such that G A R,=0 and
that linear combinations of elements from G and Ry, are dense in R,

(b) there exists a o(R*,R)-closed linear subspace S in R* such that S ~RY,=0
and that S N T, has codimension 1 in T, for every ge X.
(iii) R{,)#0 if and only if [T;],# R*; R}y, is a closed ideal in Ry, such that for every
r'e R{,, and for every re R

[r.r]=g()r.
RN RE=0if g,#g,, and if g¢ X, then Rf,,=0.

Proof. We shall consider R* in a(R*, R)-topology. Then R is the dual space of R*.
Let Re X. By definition we have that R}, T. Let T° be the polar of T in R which
consists of all re R such that f(r)=0, for all feT It follows from Lemma 3.3 that, if
reR,y,, then there exist geRY) and f e T, such that f(r)#0. Hence T° n R;,=0. Now
let r¢ R;,. Then there exists ge R{,, such that g(r)#0. Hence r¢ T°. Thus T°=0. If T°°
is the bipolar of T in R*, then T°°=R*, But T°°=[T],. Hence [T],=R*.

Now suppose that R is solvable and that [T],=R*. Let fe T, If r,reKer f then, by
(14),

S, rD =g f(r)—f(r)g(r)=0.

Hence [r,7]eKer f. Thus we obtain that Ker f is a subalgebra and hence Ker f € S(R).
Let re( ) erKer f. Since [T],=R*, we obtain that f(r)=0 for every feR*. Hence
r=0. Therefore

Mg [ Ker f=0.

MeS(R) JeT

Hence Re X and (i) is proved.

Now let us prove that (b) follows from (a). Put S=G° Then § is a o(R*, R)-closed
linear subspace in R*. If fe€SARY,, then f|c=0 and f|g, =0. Hence f=0. Thus
SN RY,=0.If geZ, then geR{, and hence g¢S. Now let fe T,. Since g¢S, there exists
re G such that g(r) #0. Then, by (14),

gnNf=/Ng+A.f. (15)

But, by (11), (4, /)()=f([r,r])=0 for every reG, since G is commutative. Hence
A, f €8S. Since g(r)#0, it follows from (15) that f=tgmodS where t=f(r)/g(r). Hence
§ N T, has codimension 1 in T,.

Now let us prove that (a) follows from (b). Let S° be the polar of S in R. Put G=S°.
Then G is a linear subspace in R closed in the norm topology. Let r,,r,eG. Put
r_=[ry,r,]. Then r_eR,). If r_#0, then, by Lemma 3.3, there exist functionals ge R},
and feT, such that f(r_)#0. Since S T, has codimension 1 in T, and since g¢§,
there exists a complex ¢ such that f, = f —tgeSn T,. Then f,(r,)= f,(r,)=0 and

Silr)=f(r)—1g(r-)=f(r-)#0. (16)
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But, by (11) and by (14),

(Ar,fl)(r2)=fl([’l,"z])=f1(r—)=g(’1)f1(r2)_fl("l)g("z)=0

which contradicts (16). Hence r_ =0 and G is commutative.

Now let reGn Ry, If r#0, then repeating the argument which preceded (16) we
obtain that there exist functionals geR{), and f,e€Sn T, such that f,(r)#0. But this
contradicts the fact that re G and that f; e S=G° Hence G n R;,=0.

Let L be the closed linear span of G and Ry, and let L® be the polar of L in R*.
Then L°=G°n R{,,. Since G is the polar of S in R, we have that G° is the bipolar of §
in R* and hence G°=[S],=S. Therefore L°=S n R{,=0. Hence L =R which concludes
the proof of (ii). .

Let (R{;))° be the polar of Rf,, in R* and let (T;)°° be the bipolar of T in R*. Then

(R?u)o =(T;)00 = [Tgl]a'
If R§,,=0, then (RY))°=R*=[T;],. If, on the other hand, [T;],=R*, then (R},)®=R*
and hence R{;,=0.

We have that R),< T. Since T, n R;,={g}, we have that

R \{g}=T\T,=T;. an

Hence R?,=(T})° <(RY,\{g})°. But since the closure of R{},\{g} in the norm topology
is R{,), we obtain that

(RN {g))°=(R{))°=R ).

Hence R{;,SR,,.
Now let Rf;,#0, let ¥ e R, and let re R. Put

ri=[r,r1—g)r.
Then r, € Ry, and hence g'(r,) =0 for every g'e R,,. For every functional f e T,, by (14),
Sr)=f([r,r)—g0)f()=—f(r)e(r)=0,

since g(r)=0. Let feT,, where geRY, and g'#g, and let f+#tg". Then feT; and
hence f(r')=0. Therefore, by (14),

Se)=f(r,r D= f()=f[r.,rD)=gW0f()—f(Ng(r)=0,
since g'(r')=0. Hence f(r,)=0 for every f € T. Therefore, by (i), r, =0 and
[r,r]=g(r)r. (18)

If g, #&,, then it follows from (18) that Rf},n R{3=0.
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If g¢Z, then T,={g}. Since the closure of R},\{g} in the o(R*, R)-topology is R{}), we
have, by (17), that

T,={g} =R =[RY\{g}1,=[T; 1.

Since T,=[T;],, we get that [T,],=[T],. Hence, by (i), [T;],=R* and therefore
R{;,=0 which concludes the proof of the theorem.

The case when dim R < oo was considered in [4]. It was proved there that R is the
direct sum of G and Ry, and that Ry, is the direct sum of Rfj,, where T={g;}}- is a
finite set. We shall consider the case when dimR=o00 and X is a finite set later on but
now we shall consider an example when dimR=00 and X is an infinite set. We shall
show that, although dim (R/R;))=2 in the example, there does not exist a commutative
subalgebra G such that G N R;,=0 and that linear combinations of elements from G and
Ry, are dense in R. We shall also prove that R{;,=0 for all ge X.

Example. Let R be a Hilbert space with a basis (¢;)i2 _,, let N be the subspace
generated by (e;){2, and let A be the bounded operator on R such that

Ae_;=Aey=0 and Ae;=ae;+e;,, for 1Zi, (19)
where g; are complex numbers such that a,#a;, 4;#0 and sup; |a;| <3. Put
[x,y]1=0, for x,yeN; [eo,e0]=[e-y,e_11=0;
Leg,e;]=Ae;, [e_1,e;]=A%e;, for 1<, (20)
and [e_,,eq,]=e€,;.
It is easy to check that R is a Lie algebra and that
X, y]=(x_1Yo—y-1Xo)ey +x_ 1 A2y —y_1 A*x + X0 Ay~ yo AX, (21)
for x=Z2 _,xe; and y=> 2 _,y;e;. Then
(1 2= 20 el + lla?(1+ 4Dl 1
Hence R is a normed Lie algebra. By (20), N is a commutative ideal in R and R(;,SN.
Thus R is solvable, N is the nil-radical of R and R(;,=0. If R(;,# N, then there exists an
element Z=) 2, Z.e; in N such that for every i20
(Z,[e0,e1)=(Z, [e-,,e])=0.
Since [eg,e;]=a;e;+e;4,, for i=1, we obtain that Z;a,+2Z;,,=0. Since [e_,,eq]=¢,,

we obtain that Z, =0 and hence all Z;=0, for i21. Thus Z=0 and therefore R(;,=N.
For every feR* there exists an element y, in R such that f(x)=(x,y,) for every
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xeR. ForreR put f,=A,f. Then
(A.N)x)=f([r,xD=([r,x], y;)=(x, ;).
From (21) it follows that
([r, x]a}’f)=(r—1xo—x—1"0)(31,)7)‘*"'—1(/123"}’])
—x_ (A1, y;) +1o(Ax, y,) — xo(Ar, y;).
Therefore from the two preceding formulae we obtain that
V5, =(F-((A*) +FoA*)y,—(ys. roes + APre_ +(y . r— e, — Ar)eg. (22)
For every ge R}, we have that yy=He_+e. If f €T, then, by (14), we have that
V5, =80y, — F (Y=o Ny, —(01:1)y (23)
Let re N. Then r_; =ry=0. From (22) and from (23) we get that
Ve, ==y, A’r)e_, —(ys, Ar)eg= —(ys, r)(ue - 1 + Aey),
since (y,,r)=0. Hence
(yy, A)=MUysr) and (v, Ar)=p(ys,7). (24)

Let y,=y_.,e_;+yoeo+y, where p,eN. Since N is invariant under 4, we obtain from
(24) that for every re N

(9r, A)=2Fpr) and (§y, A% =p(Py, 7).
SincezN is invariant under A4*, we get that A*j, =419, and that (A*)29,=uj)f. Hence
#=Itlfc'>llows from (19) that
A*e,=a,e, and A*e,=ae;+e;_,, for i=2.
If p,=3{,y:e;, then, since A*),=A),, we get that
(@ —Ayit+yi+1=0,

for i>1. Hence we obtain that for i=2

y=n [ 0-a). 25)
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Now let r_#0 and r,#0 in (22) and in (23). Then after some calculations we obtain
from (22) and from (23) that

MAyo—y-1)=0r.€1)=y;. (26)

But the element y,, of which coordinates y; satisfy (25) and (26), belongs to R if and
only if

Sk 8 ([ i-a )< en

From all these considerations it follows that

(i) T={g(A)eRy, Voy=4%e_, +Aey, where 1#0 and satisfies (27)},
(i) any functional f such that y, =Y _, y;e;,, where y; satisfy (25) and (26), belongs

It follows from (i) and (ii) that dim T,;=2. Since sup;|a;|<3, then (27) uniformly
converges for all |l|§q<%. Now suppose that there exists a g(R*, R)-closed subspace S
in R* such that SN RY,=0 and that S T, has codimension 1 in T, for every
g(A)eXZ. Then § is a Hilbert subspace in R* and, for every g(4) e Z, there exists a unique
element y(1)=Y 72 _,yi(A)e; such that y(4)e S Ty, that y,(A)=1 and that y,(4) satisfy
(25) and (26). Then, by (26),

1/A=2yo(A)—y-1(4)- (28)

Now let S* be the subspace orthogonal to S. Since S~ R{,=0, it is easy to see that

dim S*>2. Suppose that St " N+#0 and let ZeS* n N. For every 1=a; the series (27)

converges and it follows from (25) that the coordinates y/(a;) of the corresponding
elements y(a;) satisfy the following conditions:

yda)#0, if 1<i<j, and yf(a)=0, if j<i (29)

Since (Z,y(a;)=0 for every a; we obtain easily that Z=0. Hence S*nN=0. Then
there exist elements Z! and Z2 in S* such that

Zl=e +YR,Zle, Z*=eq+y 2, Z2e,
Since (y(4), Z¥)=0 for K=1,2, we get that
Y1) ==Y 2 Z1yiA), oW = — 221 Z yi4)

for all y(2)eS. By (28),

3] . 1/2 / o 1/2
=|§, @ -aznmo|s( £ 1zi-azir ) (5 o)

i
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Earlier we observed that for all |,1|§q<% (27) converges uniformly. Hence the expression
on the right-hand side of the inequality above is bounded for all |1|<g. But 1/A—o0.
This contradiction shows that S does not exist. Hence, by Theorem 3.5(ii), there does
not exist a commutative subalgebra G such that G R;,=0 and that linear combina-
tions of elements from G and R, are dense in R.

Now we shall prove that R{,,=0 for all geX. Let g(4,) € Z. By definition,

Taw= U T
g(A)eZ
oD %atiy)

It follows from (17) that R®, [Tl Hence [T;i,], contains e_,, e, and all

T,y for A#4,. Suppose that [T}u yJ.#R*. Then there exists ZeR* which is
orthogonal to [Tmo)], Since e, and e, belong to [Ty;,],, we have that Z_, =Z,=0,
so that Ze N.

Let A, #a;. Then, since all g(a;)eZ, we get that (Z, y(a;))=0 for every a;. Using (29)
as above we obtain that Z=0 and, hence, that [T,,,],=R* Hence, by Theorem
3.5(iii), R} =0.

Now let io=4a; Then (Z,y(a))=0 for every a,#a; Using (29) we obtained by
induction that

Z;=0, for i=1,...,j—1; andthat Z;=Z; H (a;—ag)™", for izj+1.

K=j+1
Taking into account that sup|a;|<3 we get that |a; —ak|<1 and therefore |Z;|=|Z].
Hence the element Z does not belong to N. Therefore [Tg(a yJo=R* and, by Theorem
3.5(iii), R{{‘;J)—O
Thus in the example Rf,,=0, for every geX, and, although dim(R/R))=2, Z is
infinite as was shown in (i). In the theorem below we shall consider the case when X is
finite.

Theorem 3.6. Let ReX and let 2={g;}_, be a finite set. Then

(i) there exists a finite-dimensional commutative subalgebra T" in R such that dimT'<n
and that R is the direct sum of T and the nil-radical N;

(ii) N is the dlrect sum of R, and the centre Z, and R, is the direct sum of R{,, for
i=1,.
Proof. Let S, for i=1,...,n, be o(R* R)-closed subspaces in T, of codimension 1
such that T, =S, +{g;}. First we shall prove that if a directed set f@4+g9 where
g9eRy,, j“"’—z, 1S and fPeS,, converges to an element from R* in o(R*,R)-
topology, then the directed set g® and all directed sets (f®)’., converge to some

elements from R*.

Suppose that there exist directed sets f®+g® which converge to elements from R*
but such that at least one of the corresponding directed sets f{ does not converge. For
every such set let p(f®,g™) be the number of the sets f which do not converge and
let p be the smallest of all p(f®,g®). Then 1 <p<n. Suppose that p>1. Let us choose

EMS—D
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one of the directed sets f®+g® which converges to h with exactly p sets (f{)i-,
which do not converge. Then for every re R, by Lemma 3.2 and by (14),

AL O+EN=ALO= Y (8,001~ S0)g,)

converges to A4,h. Hence the directed set

&, (N(f @+ —A(f@+g%)= g.,,(r)g‘“’+ Z [2g,
+ Z (g:,(N—g (ST

converges to g; (Nh—A,h. Put f@=32-1 J and

P
#=a, 0%+ £ 1108,

where f{®=(g; () —g; (1) f{". Then £¥ € R, and the directed set 7 +Z® converges to
&, (r)h— A h. Since afl functionals (g, )?_, are different, we can choose such r that
g, “(r) — g; ()#0. Then at least the  directed set f{® does not converge. Hence
1<p(]"“’ £ <p—1 which contradicts the assumption that p>1 is the smallest of such
numbers.

Now suppose that p=1. Then there exist directed sets [ (“)ES _and g‘“’eRm such that
the directed set f{®+g® converges to an element he R* and that the directed set f@
does not converge. Since S, is o(R*, R)-closed in R* and since g;¢S,, there exists re R
such that g(r)=1 and that f(r)=0 for all feS,. Then, since all f®eS,, we obtain
from Lemma 3.2 and from (14) that the directed set

A(fP+g)=A, fP =g fP—fP(Ngi= S

converges to Ah. This contradiction shows that p+# 1.

Thus from all these considerations we obtain that, if a directed set Y 7., f{®+g®,
where fPeS, and g® e RY,), converges to an element h in R*, then all the directed sets
[ converge to elements h;e S, and, hence, the directed set g‘“) converges to an element
gin Rm

From this fact, from Lemma 3.4 and from Theorem 3.5(i) it follows that R* is the
direct sum of R{, and §,, for i=1,.

Put §S= Sl+ +S Then S is a(R* R)-closed, San—O and SN T, =S, has

codimension 1 in T, Hence by Theorem 3.5(ii), G=S5° is a commutative subalgebra of
R such that Gan—O and that linear combinations of elements from G and R, are
dense in R.

For every i=1,...,n we have that
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=R{)\{g:} + Z +8,,-

k#l

Hence

[T;'i]‘,:R?l):l—kZl-i-Sgﬁ’: R*. (30)

k#i

Hence, by Theorem 3.5(ii), R(lﬁéO Let L be the closed linear span of all Rfj), for
i=1,...,n, and let L° be its polar in R*. Since R%,=(T,)°, we have that

= ) ey = () raeo= A (720,
It follows from (30) that L°=RY,,. Hence L=R,,. Thus Ry, is the closed linear span of
RE,, fori=1,...,n

Now suppose that there exist sequences r®=Y7_, r®+s%, where r?eRf, and
s®e G, which converge to elements from R but some of the sequences r*) do not
converge. For every such sequence let p(r®) be the number of the sequences r* which
do not converge and let p be the smallest of all p(r®).

Suppose p>1. Then there exists a sequence r¥=3"_, ri¥ +s®, where r{?eR?) and
s® e G, which converges to an element r and none of the sequences e, for j=1,...,p,
converge. Then, by (18), for every r € G the sequence

P
[, = 3 g,
=1
converges to [r,r] e R;,. Hence the sequence
k Pt k k
PO, ] =g, ()9 = 3 (8,(r) =, )y — ()5
i=

converges to [r',r]—g; (r')r. Since all functionals g; are different, there exists ' € G such
that at least g; () —g: (') +0. Hence 1< p(f®)<p—1 which contradicts the assumption
that p>1is the smallest of such numbers.

Let p=1 and let a sequence r® =r{® +s®, where r® e R%, and s eG, converges to
reR and let the sequence r not converge. Then, by (18), for every r'e G the sequence

tr’: r(k)] = [r/’ r}k)] =gi(r,)r$'k)

converges to [r,r]. Choosing » such that g(r)#0 we get that r® converges which
contradicts the assumption that r® does not converge.

Therefore we obtain that, if a sequence r®=Y7_,r®+ 5%, where rP e Rf, and s¥ G,
converges, then all sequences r{¥ converge to clements in R%, and, hence, s converges
to an element in G. Hence R is the direct sum of R(;, and G, and R, is the direct sum
of Rfj), fori=1,...,n.
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Now let Zz(ﬂ,f‘=1 Kerg)nG. If r=Z:~'=l ri, where r;e Rfj), then for every zeZ, by
(18),

[2.1]= ¥, &(@r=0.

Since Z = G and since G is commutative, we obtain that Z is the centre of R. Z is closed
and has finite codimension in G. Therefore there exists a finite commutative subalgebra
I' in G such that G=T+Z and that dimI'<n. It is easy to see that Z+ Ry, is the nil-
radical in R which concludes the proof of the theorem.
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