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SUBALGEBRAS OF CODIMENSION 1
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0. Introduction

Let H be a finite or infinite dimensional Lie algebra. Barnes [2] and Towers [5]
considered the case when H is a finite-dimensional Lie algebra over an arbitrary field,
and all maximal subalgebras of H have codimension 1. Barnes, using the cohomology
theory of Lie algebras, investigated solvable algebras, and Towers extended Barnes's
results to include all Lie algebras. In [4] complex finite-dimensional Lie algebras were
considered for the case when all the maximal subalgebras of H are not necessarily of
codimension 1 but when

S(H)

where S(H) is the set of all Lie subalgebras in H of codimension 1. Amayo [1]
investigated the finite-dimensional Lie algebras with core-free subalgebras of codimen-
sion 1 and also obtained some interesting results about the structure of infinite
dimensional Lie algebras with subalgebras of codimension 1.

By X we shall denote the class of complex finite or infinite dimensional normed Lie
algebras for which (1) holds. In Section 2 the results of Amayo will be applied in order
to prove that for every complex normed Lie algebra H and for every subalgebra
M e S(H) the largest Lie ideal /(M) of H contained in M has codimension less or equal
to 3. Using this result for the case when HeX we shall show that, if Sk(H) =
{MeS(H):codim/(M) = /c}, for fc = l,2,3, then L{H) = f]MsSi(H)uS2ml{M) is a semi-
simple ideal in H and R(H) = f)Mes3(H)I(M) is the radical of H. We shall also prove that
H(2)£L(H), so that i?(H)(2)=0. If H is finite-dimensional, then it was proved in [4] that
H = L{H) + R{H) and that L{H) = Ll+ ••• +Ln, where all Lt are Lie ideals in H and
isomorphic to s/(2, C). If H is infinite dimensional, then this does not necessarily hold
any longer. We shall consider an example of a normed Lie algebra H from 3E such that
R(H) = 0 but L(H)^H. We shall also show that the property of belonging to X is
inherited by all closed subalgebras of H and by all quotient algebras H/Srs where S is
any subset of S(H) and where ys = f)Mssl(M)- Finally, we shall consider the set T of
all ideals /(M) such that codim /(M) = 3 and shall introduce a Jacobson's topology on T.

In Section 3 the. structure of solvable algebras from X is investigated. For every R e X
we consider a special set £ of functionals on R from R°l} (Rft) is the polar of R(1)) and
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200 E. V. KISSIN

the corresponding set of ideals Rfl) = {r'eR:[r,r'~\=g(r)r' for every reR} in R(l)(gsY). If
R is a finite-dimensional solvable Lie algebra from 3E, then it was shown in [4] that

(Tt) the nil-radical TV of R is commutative and a commutative subalgebra F of R
exists such that R =

(T2) N = Z + RW, where Z is the centre of R, and R(1) = YdU i + Rih' where

For the case when R is infinite dimensional but £ is a finite set, we shall prove in
Theorem 3.6 that (Tt) and (T2) hold. (This is the main result of the section). If £ is not
finite, then the structure of R is more complicated. In particular, (7\) and (T2) may no
longer hold. To illustrate this we shall consider a solvable algebra R such that N = R{1),
that dim (R/R(1)) = 2 and therefore dim(i?(°1)) = 2, but £ is infinite. We shall show that in
this case (TJ and (T2) do not hold and that there is not even a commutative algebra F
such that F n N = 0 and such that linear combinations of elements from F and N are
dense in R. We shall also prove that Rfi} = 0 in this example for all geZ.

Finally, I would like to thank the referee for the many helpful suggestions which have
helped me to improve the article.

1. Preliminaries and notation

Let m and n be arbitrary integers. Then (") is the usual binomial coefficient with the
understanding that (™)=0 if m<0 or «<0 or m<n. But we take (") = 1 if m^ — 1. As in
[1] we define, for arbitrary integers,

aC:'}
If a linear space B is the direct sum of its subspaces Bt, for i = l,...,n we shall denote

it by

B = Bt+ •+Bn.

Let H be a complex Lie algebra of finite or infinite dimension and let there exist a
subalgebra M of codimension 1. By I(M) we denote the largest Lie ideal of H contained
in M. Then I(M) contains any Lie ideal of H contained in M. Now put lo = M and let
/j_ be an element in H which does not belong to M. For every i^O let us define by
induction

(3)

If h e H by {h} we shall denote the one-dimensional subspace generated by h.

Theorem 1.1. [1] (Amayo) / / M is a Lie subalgebra in H of codimension 1 then three
possibilities exist:

(1) I(M) = M;
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ON NORMED LIE ALGEBRAS 201

(2) dim (H/I(M)) = 2, H/I(M) is solvable but not commutative and there exist elements
/J_ and h0 in H such that

and

[ft_,/jo]=/i_ mod/(M); (4)

(3) (i) all 7, are Lie ideals of M, Ii + 1 £ / , and

I{M)=f\Ih
i = O

(ii) there exist elements hh possibly zero, such that

It+i and [hi,hj] = lijhi

(iii) (/"/, = /,+ ! for some i, then Ij = Ij+1 for all j^2, 7(M) = / 2 and there exist
elements /J_, h0 and h+ in H such that

(5)

and

[/i_,h0] = 2h_ modI{M), [ho,h+'\ = 2h+ modI(M),

(6)

Now let a complex Lie algebra H be a Banach space. We shall call H a normed Lie
algebra if a constant C exists such that

for every hl,h2eH. We say that a closed subalgebra M of a normed Lie algebra H has
codimension 1 if there exists heH such that h$M and that H = M + {h). By S(H) we
denote the set of all closed Lie subalgebras of codimension 1 in H. We shall often make
use of the following property of Lie algebras from 3E which follows easily from (1): for
every heH there exists MeS(H) such that H = M -f {h}.

By H2 = [//,//] we shall denote the closed Lie subalgebra of H spanned by all Lie
products of pairs of elements of H. Hk, for k> 1, is the closed Lie subalgebra which
is defined inductively by the rule Hk = [Hk~1,H~]. H is said to be nilpotent if Hk = 0
for some k. The closed subalgebras H{k) are also defined by the inductive rule that
H{i) = H2 and H ( t + 1 ) = [H( t ) , / / ( t ) ] for fc^l. H is called solvable if H{k) = 0 for some k.
A solvable (nilpotent) ideal R{N) is called the radical (nil-radical) of H if it contains
every solvable (nilpotent) ideal of H. If R=0 , then H is called semisimple.
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For every linear subspace G in H let G be its closure. Using (7) one can easily prove
that [G1,G2] = [G1,G2] for all subspaces Gt and G2 in H and that, if G is a subalgebra
of H, then G is also a subalgebra of H. Therefore, if G is a solvable (nilpotent)
subalgebra of H, then G is also a solvable (nilpotent) subalgebra of H. Thus J? and JV
are closed ideals of H.

The simple Lie algebra of complex matrices (° _„) is denoted by s/(2, C). Set /i = (? %),
fco = (o - i ) and fc+=(gj). Then

[fco,fc+] = 2fc+, [ * o , f c _ ] = - 2 * _ , [ * + , / i_] = fco. (8)

2. The structure of normed Lie algebras from X

Theorem 2.1. Let H be a complex normed Lie algebra and let there exist a closed Lie
subalgebra M of codimension 1. Then

(i) I(M) is closed,
(ii) if dim(H//(M))>2, then dim (H//(M)) = 3, H/I(M) is isomorphic to 5/(2, C) and

there exist elements /i_, h0 and h+ in H such that formulae (5) and (6) hold.

Proof. Since I(M) is the largest Lie ideal of H contained in M, the proof of (i)
follows from the fact that, if G is a Lie ideal of H, then G is also a Lie ideal of H.

If H is finite-dimensional, then the proof of (ii) follows immediately from Theorem
1.1 (3) (iii). Now let H be infinite dimensional. First we shall show by induction that all
/,- are closed. I0 = M is closed. Suppose that Ik is closed. Let elements h(p) belong to Ik+1

and converge to h. By (7),

Hence the elements [h{p),h-1~] converge to [ M - J - By (3), \_hlp),h-i] belong to Ik and,
since Ik is closed, we have that \_h,h-t2 belongs to Ik. Therefore helk + 1 and Ik+l is
closed.

It follows from Theorem 1.1 (3) (ii) and from (2), that for ; ^ 0

where aj+1elj+1. Since, by Theorem 1.1 (3) (i), all /, are ideals of M and since hosM,
we have that \ho,h~]elj+1 for every helj+l and that

[fc0, hj+h] = [h0, hj] + [ V h] = jhj + W

where h' = aj+l + [h0,h] belongs to IJ+l. By (7),

Dividing by j we get that for every helj+1 the element f(h) = h'/j in IJ+l exists such
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that

Whj+mw^CiWhj+hW (9)

where C1 = C||/i0||/j. Let us choose an element hw in Ij+1 and let us put by induction
fcW = /(fc»-1>). Then, by (9),

2»||̂  ••• =gcr'Ugl-
ify is large enough so that Ct < 1, then we obtain that H^.+h^H-^O. Since all hik) belong
to Ij+l and since Ij+l is closed, we have that hjelj+i. Hence, by Theorem 1.1 (3) (ii),
Ij = {hj} + Ij+l=Ij+l and the proof of the theorem follows from Theorem 1.1 (3) (iii)
and from formula (8).

For k= 1,2 and 3 we put

Sk{H) = {M e S(H): codim I(M) = k).

Then S(H) = {Jl=1 Sk(H). Now put

f] I(M) and R{H)= f]

If S1(H)uS2(H) = 0 , then put L(H) = H. If S3(H) = 0, then put R(H) = H. If HeX, then
it follows from (1) that

L(H)n/?(if)= 0 7(M)£ Q M = 0.
MeS(H) MeSiH)

Since all /(M) are closed, L{H) and /?(H) are also closed.

Lemma 2.2. If HeX, then H(2)£L(H).

Proof. Let MeS^H). Then /(Af) = M and an element h_ exists such that H =
{h_} + M. Therefore #(1) = [tf,//]£/(Af). Since M is an arbitrary subalgebra in S^H),
we obtain that

MeS,(H)

Now let MeS2{H). Then, by Theorem 1.1(2), the elements /i_ and /i0 exist such that

and

[/J_,/IO] = / I . mod/(M).
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Therefore H(1)£{/i_} + /(M) and #( 2 ) = [//(1))H(1)]c/(M). Since M is an arbitrary
subalgebra in S2(H)> w e obtain that

Thus H(2)£f)MeSi(H)uS2(H)/(M) = L(//) which completes the proof.
For every closed subalgebra G of H set

SG(H) = {M GS(H): G<£ M) and SG{H) = {M e S(H): G £ M}.

Then S(H) = SG(H) u SG(tf). Now let S be a subset in S(#)- Set

MeS

Then &~s is a closed ideal of H.

Theorem 2.3. LetHeX.

(i) If G is a closed subalgebra of H, then GeX.

(ii) For every subset S in S(H) the quotient algebra H/^s belongs to X.

Proof. Let G be a closed subalgebra of H. For every M e SG(H) set MG = G nM.
Then all MG are closed subalgebras in G of codimension 1 and

P) M'£ p| MG = Gn( P) M)= P) M = 0.
<=S(G) MGeS(G) \MeSG(H) J MeS(H)f)

M'eS(G)

Therefore GeX and (i) is proved.

Now let SsS{H) and let / be the homomorphism of H onto H/37~s. If MeSTs{H),
then /(M) is a closed subalgebra of codimension 1 in H/$~s. Therefore in order to
prove (ii) it is sufficient to prove that

(a) if h$3Ts, then there exists MeS^s(H) such that h$M.

Since h $ 3~s, there exists Mo e S such that h 4 /(Mo).
If MOGS^H), then I(M0) = M0 and therefore h$M0. Since MoeS^t f ) , we obtain

that (a) holds for h.
If M0eS2(H), then there exist elements /i_ and /J0 such that (4) holds. Therefore

h = ah-+bho + i where a and b are complex and where ieI{M0). If a^=0, then h$M0

and (a) holds for /j. Let a = 0, that is, h = bho + i and £=/=(). Then heM0. Set x = /i_ +/i0

and M = I(M0) + {x}. We have that M is a Lie subalgebra of H and that h$M. Since
7(M0) is closed and since dim (H/I(M0)) = 2, we obtain easily that M is closed and that
codimM = l. Since f s g / ( M 0 ) c M , (a) holds for h.
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Finally, let MosS3(H). Then there exist elements /i_, h0 and h+ such that (5) and (6)
hold. Therefore /i = a/i_ +bho + ch+ +i where a, b and c are complex and where
ieI(M0). If aj=0, then h$Mo and (a) holds for h. Let a = 0, that is, h = bho + ch+ +i and
|fc| + |c|=/=0. Then / JEM 0 . If c f 0, then set M = /(M0) + {/i_} + {/i0}. Since /(Mo) is closed
and since dim (H/I(M0)) = 3, we obtain easily that M is closed. It follows from (5) and
(6) that M is a Lie subalgebra of H, that h$M and that codimM = l. Since
f s S / ( M 0 ) c M , (a) holds for h. Now let c = 0, so that h = bho + i and b±0. Set

x = fc_ + fco.y=*-+2fco-4fc+ and M = I(M0) + {x} + {y}.

It follows from (6) that [x,y] = 2ymod/(M0). Therefore M is a closed Lie subalgebra of
codimension 1 in H and h does not belong to M. Thus (a) holds for h and the proof of
(ii) is complete.

From Lemma 2.2 and from Theorem 2.3 we obtain immediately the following
corollary.

Corollary 2.4. / / HeX and ifH' = H/L(H), then H' is solvable, H'(2) = 0 and L(H) and
H' belong to X.

Lemma 2.5. Let MeS3(H).

(i) The elements fi_, h0 and h+ in formulae (5) and (6) can be chosen from L{H).
(ii) Subalgebra ML = MnL(H) has codimension 1 in L{H), I(ML) = L(H) n I(M) and

MLeS3(L(H)).

Proof. Let MeS3(H). By Theorem 1.1 (3)(hi), the elements hL, h'o and h'+ exist in H
such that H = {/i'_} + M, M = {/io} + {'''+} + ^(M) and elements g_, g0

 a n d £+ e x i s t m

I(M) such that

(10)

Put fc0 = [[*o.*'+], [fc'-.fc'o]]/^ A-=[[fc'-,fc'o], [*'+,*'-]]/4 and A+=[[h'+,
[''o,'«'+]]/4. By Lemma 2.2, /i0, /i_ and ft+ belong to L(H). It follows from (10) that

h0 = [2h'+ +g+,2hL +g_]/4 = [/j'+, *'_] mod /(M) = *'o mod I(M).

In the same way we can show that

and that

h+=h'+ mod

from which the rest of the proof of (i) follows immediately.
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Let ML = Mr\L(H). Since li.eL(H) and h-£M and since codimM = l, ML is a
closed subalgebra of codimension 1 in L(H). Let I=L(H)nI(M). Then / is a closed
ideal of L{H) contained in ML and, by (i) and by Theorem 1.1 (3)(iii),

and

Since /i_, h0 and h+ belong to L{H), all identities in (6) hold modulo I. Therefore the
quotient algebra L(H)/I is isomorphic to s/(2, C). From this it follows easily that / is the
maximal ideal of L{H) contained in Mt , that is, I = I(ML). Thus MLeS3(L(H)) and the
proof is complete.

Theorem 2.6. (i) R(H) is the radical of H and R(H)(2) = 0. (ii) L(H) is semisimple.

Proof. It follows from Lemma 2.2 that R(H\2)^L(H). Since R(H) is a Lie ideal of H,
we have that R(H){2) £ R(H). But L(H) n R(H) = 0. Hence K(H)(2) = 0. Therefore R(H) is
a solvable ideal in H.

Now suppose that R is another closed solvable ideal in H. Let MeS3(H) and let / be
the homomorphism of H onto H/I(M). Then /(/?) is a solvable Lie ideal in H/I(M).
But, by Theorem 2.1 H/I(M) is isomorphic to sl(2, C) which is simple, Therefore every
solvable ideal in H/I(M) is trivial. Hence R^I(M). Since M is an arbitrary subalgebra
in S3(H), we obtain that

RZ f)
M S (

and (i) is proved.
It follows from the definition of the radical and from Lemma 2.5 (ii) that

R(L(H))= f] M'c f] ML = L(H)n( f] M) = L{H) r\R(H) = 0.
M'eS3(L(H» MeS3(H) \MeS3(H) j

Therefore L{H) is semisimple.

Remark. If H is finite-dimensional, then it was proved in [4] that H = L(H) -i- R(H)
and that L(H) = L1+ ••• +Lk where all L, are Lie ideals of H and isomorphic to sl(2,C).

Now we shall consider an example of a normed infinite dimensional Lie algebra H
from X such that R(H) = 0 but U,H)±H.

Example 1. Let H = {A = {An}™=l: (i) Anesl(2,C), (ii) there exists a matrix /40=(S _*)
such that lim An = A0}.
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Set ||/4|| = supn||-4n|| and set [A,B] = {[An,Bn]}Z>
=1. Then H is a normed Lie algebra.

It is well-known that s/(2,C)e£ and that S(si(2,C)) = S3(s/(2,C)). For every subalgebra
Ji of codimension 1 in sl(2, C) and for every positive integer k let

Mt = {A = {An}?=1eH:AkeJt}.

Then M* are subalgebras of codimension 1 in H and

n Me n Mk=o.
S(H} k l

Thus He3£. Let / t = {y4 6H:Xk=0}. Then Ik are ideals of H and I(Mk) = Ik for every
subalgebra M e S(sZ(2, C)). Every ideal Ik has codimension 3 in H and /f//ft is isomorphic
to s/(2, C). Therefore all Mk belong to S3(H). Then we have that

R(H)= H /(M)sf)/ t = 0.
MES 3 (H) t = l

Now let I x = {AeHAim An = 0). By G we shall denote the two-dimensional solvable
Lie algebra of all complex matrices (S _*). Then GeX and S{G) = Sl(G){J S2(G). For
every J?eS(G) let Mao = {AeH:limAneJ?}. Then MM are subalgebras of codimension
1 in H and I^cM^. If /(M,,) is the corresponding maximal ideal of H in M^ then

Since codim/00 = 2 we have that codim/(M00)^2. Hence
u S2(H). Therefore

L(if)= f) (̂AOE f)
MSIfllSffl) «

In fact one can easily prove that UH) = lra. Thus L(H)j=H, R{H) = 0 and #/L(//) is
isomorphic to G. It can also be proved easily that H(2) = L{H) and that L(H)(1) = L(H).

Remark. If H is a finite-dimensional semisimple Lie algebra, then H(1) = H. In the
example above H is infinite dimensional and, although it is semisimple, we have that
H{1)^H. But we also have that L(H){1) = L(H). The question arises as to whether
L{H)W = L(H) for every HeX.

By T we shall denote the set of all ideals /(M) such that codim I(M) = 3. Let z be any
subset in T. Put /(T) = f)/(M)et/(M) and put f={/(M)eT:/(i)£/(JW)}. Now suppose
that Fv and 5~2 are Lie ideals such that 9~x n^2^I(M) where I(M)eT. Let / be the
homomorphism of H onto H/I(M). Then / (^"J and / ( ^ 2 ) are Lie ideals in H/I(M).
But since H/I(M) is simple, we have that f{ST^) and / ( ^ 2 ) a r e either trivial ideals or
coincide with H/I(M). Taking into account that \huh1'\&9'lr^3'2<=,l{M) for every
hxe^'l and for every h2e3~2 we obtain that [/(/h), / ( M i N / f l T ' i , ^ ] ^ 0 - Since
H/I(M) is not commutative we obtain that at least one of these ideals is trivial. Thus if
$~i and ST2 are ideals such that ̂  n y 2 s /(M) e T then either 2Ty s /(M) or F2 £ /(M).

Using this argument and repeating the proof of Lemma 3.1.1 [3] we can easily prove
the following lemma:
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Lemma 2.7.

(i) 0 = 0 and z<=z for every

(ii) z = z for every zcT and zt u z 2 =zt uf2 if zu z2czT.

From Lemma 2.7. it follows that there exists a unique topology (Jacobson's topology)
on T such that for every z <= T the set z is its closure in this topology. Since every I(M)
in T is maximal we have that it is closed.

3. The structure of normed solvable algebras from X

We shall start the section with a well-known lemma.

Lemma 3.1. Let N be a normed nilpotent algebra from X. Then N is commutative.

Let R be a normed solvable algebra from X and let N be its nil-radical. It follows
from Theorem 2.6 that R(2) = 0. Hence R(1) is a commutative ideal of R. Therefore
i?(1) = AT. By Theorem 2.3 (i), N belongs to X and hence, by Lemma 3.1, N is
commutative.

By R* we shall denote the dual space of R which consists of all bounded functionals
on R. For every reR we denote by Ar the operator on R* which is defined by the
formula

r1l). (11)

Then AT is a linear operator and it is bounded since

|Kf | |= sup \(Arf)(ri)\s\\f\\ sup IICr.rJll^Cll/Hllrll.
llrj || = 1 l l ' j l ^ l

By R°t) we denote the polar of i?(1) which consists of all functionals / in R* such that

Lemma 3.2.

(i) ATf =0for every reR if and only if f e Rfiy

(ii) / / Arf=g(r)f for every reR, where g is a functional on R, then feR°±) and
g(r) = 0.

(iii) Every operator Ar is continuous in a(R*, R)-topology

Proof. If feRh, then, by (11), (ylr/)(r1)=0 for all r, rieR. Hence Arf = 0. If, on
the other hand, we have that Arf = 0 for all reR, then, by (11), /([r,rj]) = O for every
rteR. Hence i? ( 1 )cKer/ and therefore feR°iy Thus (i) is proved.

Now let Arf=g(r)f for every reR and let rxeKer/ . Then
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Hence [r .r^EKer/ . Therefore Ker/ is an ideal in R. Let roeR be such that R =
{ro} + Ker/ and that /(ro) = l. Then for every reR there exists a complex t such that
r=tro + rl where r ^ K e r / . Then

(AJ){ro)=g(r)f(r0) = /([r, r0]) = /([rx, r0]) = 0,

since [r1,r~\eKer f. Hence g(r) = 0 for all reR. Therefore it follows from (i) that feRw

and (ii) is proved.
Let reR and let (/„) be a directed set of elements in R* converging to 0 in a(R*,R)-

topology. For every finite set (r,)"=1 put rj = [r,r,]. Let e>0 and let us choose <x0 such
that |/a(r;-)|<a for all i and for <x>a0. Then

and (Arfx) converges to 0 in o(R*, R)-topology. Hence (iii) is proved.

Lemma 3.3. Let r_eR(1) and let MeS{R) be a subalgebra such that r_$M. Then
MeS2(R) and there exist roeM and functionals geRft) and f^R^ such that ro$R{1),
g(ro)£O, /('•-) fO, [r0, r^ = r_ mod I(M) and for every reR

AJ=g{r)f-f(r)g.

Proof. Since ReX, there exists a subalgebra MeS(R) such that r^$M. If M is an
ideal in R, then R( 1 )sM which contradicts the fact that r_ does not belong to M.
Hence MtS^R). Since R is solvable, we have that S3{R) = 0. Hence MeS2(H). By
Theorem 1.1(2), an element roeM exists such that M = {ro} + I(M) and that
[ro , r_]sr_ mod/(M). Therefore /?(1)s{r_}4-/(M). Hence r0 does not belong to R(1).

Since M is closed and codim(M) = 1, there exists a functional / such that Ker / = M.
Hence /(r_)^=0 and therefore f4R°iy The subspace {r_} + I(M) is closed and has
codimension 1 in R. Therefore a functional fl exists such that Ker/1 = {r_}4-/(M).
Hence /!(ro)=/=0. Since R(1)s{r_}-i-/(M), we have that f^Rfiy

Let /°(M) = {/eK*:/|/(M) = 0} be the polar of 1{M) in R*. Since codim 7(M) = 2, we
have that dim/°(M) = 2. The functionals / and / t belong to I°(M) and, since /(r_)=/=0
and /1(r_)=0, they are linearly independent. Hence / and fl form a basis in I°(M).
Since /(M) is an ideal in R, it follows from (11) that 7°(M) is invariant under all
operators Ar,reR. Hence

where g and h are linear bounded functionals on R. Then, since /(ro) = 0 and since
/,(r_) = 0, we have that

= /([>, r0]) =«(r)/(r0) + W i (r0) = A(r)/, (r0), (12)

/1(r_) = g(r)/(r_). (13)
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If rel(M), then [r,ro]e/(M) and /([r,ro])=O. Since / i M f O , we get from (12) that
I(M)<=Kerh. If r=r0, then, by (12), /i(ro)=O. Hence M = {roj + /(M) = Ker / sKerh .
Therefore /i = a/ where a is a complex number. If r = r_ then [r_,ro]s—r_ mod/(M)
and, by (12),

Hence a = - l / / i ( r 0 ) .
Now if re/(M), then [r,r_]e/(M) and /([r,r_])=O. Since / ( r_ )^0 , we get from

(13) that /(M)sKerg. If r = r_, then, by (13), g(r_) = O. Hence {r_}-i-/(Af) =
K e r / ^ K e r g . Therefore g=bf1eRf1) where b is a complex number. If r = r0, then
[r0 )r_] = r_mod/(M) and, by (13),

/ ( r - ) = &A(ro)/(r_).

Hence b = l//i(ro)= —a. Therefore

Hence Arf=g(r)f — f(r)g which concludes the proof of the lemma.

Let geRfiy By Tg we shall denote the set of all functionals / such that for every reR

AJ=g(r)f-f(r)g. (14)

Then kg e Tg, where X is complex, since, by Lemma 3.2,

Arg = 0 =g(r)Xg—kg{r)g.

For some geRfip Tg = {g] where {g} is one-dimensional subspace generated by g.

Let

T= [) Z

and let

We shall denote by [T] the linear span of T closed in the norm topology and by [T]o

the linear span of T closed in o{R*, R)-topology.

Lemma 3.4.

(i) Tg is a a(R*, R)-closed linear subspace in R*, and Tg n Rfl} = {g}.

(ii) Tgn TAg = {g}, and Tty n Tg%=0 ifg2
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(Hi) If gel,, then geN° where N° is the polar of N in R*.
(iv) The quotient subspaces Tg/{g}, for gel, are linearly independent in the quotient

space R*/R°iy

Proof. Let (/„) be a directed set of elements in Tg converging to feR* in a{R*,R)-
topology. Since, by Lemma 3.2 (Hi), Ar is continuous in a(R*, R)-topo\ogy, we have that
AJ.-*Arf. But, by (14),

Arfa = g(r)fa-fx(r)g

converges to g{r)f -f{r)g. Hence AJ=g(r)f- f(r)g, so that fe Tr

If /eTgnRfl}, then, by (11) and by (14), for every r,rteR

since [r,C]]eR(1). Hence Ker / = Kerg and therefore f = tg where t is complex. Thus (i)
is proved.

If fe T9i n TB2, then for every reR

Arf=g1(r)f-f(r)g1=g2(r)f-f(r)g2.

Hence g(r)f — f(r)g=0 where g=gt— g2- Hence Ker/=Kerg and therefore f = tgeR®1)

where t is complex. By (i), there exist complex Ax and X2
 s u c n t n a t f — ̂ vgv — ̂ igi-

Hence g2 = (A1/l2)g1. Thus if g24{gi}, then T9inT92 = 0. If gl = Xgu then Tg>nTg2 =
{gi} and (ii) is proved.

Since R(l)sN, we have that N'sRf,,. Now suppose that geR°t) but g£N°. Then
there exists neN such that g(n)^0. By (14), for every feTg and for every reRw we
have

(AJ)(n) = /([r, n]) = 0 = g(r)/(«) - f(r)g(n) = - f(r)g(n).

Hence /(r)=0 and /Ei?,0!). By (i), f = tg. Hence 7̂  = {g} and g$T. so (Hi) is proved.
Let / e7^ , for geS , and let / be its image in the quotient space R*/R°iy Then, by

(14), for every reR we have that (A^f)=g(r)J and the rest of the proof of (iv) is
obvious.

Let geRfiy Putfiy

TL=T\T = I I T.1 g l \1g U V-

Let (Tfi0 be the polar of Tj in i?. Put Rf1) = (rj-)°. By [7^]ff we shall denote the
a[R*, R)-closed span of T^ in R*.

Theorem 33.

(i) A solvable normed Lie algebra R belongs to X if and only if [T]a = R*.

(ii) Let ReX. The following conditions are equivalent:
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(a) there exists a closed commutative subalgebra G in R such that G n R(l) = 0 and
that linear combinations of elements from G and R(1) are dense in R,

(b) there exists a a{R*,R)-closed linear subspace S in R* such that Sn/?(°1)=O
and that S nTg has codimension 1 in Tgfor every gel,.

(iii) Rfu^O if and only if [Tg]a±R*; Rfl} is a closed ideal in Ra) such that for every
r'eRfl} and for every rek

lr,r'-\=g{r)r'.

Rfa n Rff^O if g,. ±g2, and ifgtZ, then Rg
(1) = 0.

Proof. We shall consider R* in <j(J?*,K)-topology. Then R is the dual space of R*.
Let Ke3E. By definition we have that Rf^zT. Let T° be the polar of T in R which
consists of all reR such that /(r) = 0, for all feT. It follows from Lemma 3.3 that, if
reR(1), then there exist geR?1} and feTg such that / ( r ) f 0. Hence T°n.R(1) = 0. Now
let r$Rw. Then there exists geR°w such that g{r)^0. Hence r$T°. Thus T° = 0. If T00

is the bipolar of T in R*, then T00 = R*. But T0 0 = [T]<7. Hence [T]o = i?*.
Now suppose that R is solvable and that [T]a=R*. Let feTg. If r , r 'eKer/ then, by

(14),

/d>,r']) =g(r)f(r')-f(r)g(r')=0.

Hence [r, r'] 6 Ker /. Thus we obtain that Ker / is a subalgebra and hence Ker / e S(R).
Let r e f ) / e T K e r / . Since [T]<7 = i?*, we obtain that /(r) = 0 for every feR*. Hence
r = 0. Therefore

f) Ms f] Ker/ = 0.
eS(R) feT

Hence ReX and (i) is proved.
Now let us prove that (b) follows from (a). Put S = G°. Then S is a a(R*,R)-closed

linear subspace in R*. If feSnRf^, then / | G = 0 and /|R(1) = 0. Hence / = 0. Thus
S n R°D = 0. If gel., then geR^, and hence g$S. Now let / G Tg. Since g^S, there exists
reG such that g(r)^=0. Then, by (14),

g(r)f = f(r)g + Arf. (15)

But, by (11), (v4r/)(r') = /([r,r']) = 0 for every r'eG, since G is commutative. Hence
ArfeS. Since g(r)^0, it follows from (15) that f = tgmodS where t=f(r)/g(r). Hence
S n T s has codimension 1 in Tg.

Now let us prove that (a) follows from (b). Let S° be the polar of S in R. Put G = S°.
Then G is a linear subspace in R closed in the norm topology. Let r1,r2eG. Put
r_ =[r i , r 2 ] . Then r_ eRar If r_ ^=0, then, by Lemma 3.3, there exist functionals geR°l}

and feTg such that /(r_)^=0. Since Sn7^ has codimension 1 in T9 and since g$S,
there exists a complex t such that fl=f — tgeSnTg. Then /1(r1) = /1(r2) = 0 and

(16)
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But, by (11) and by (14),

which contradicts (16). Hence r_ =0 and G is commutative.
Now let reGni?(i). If r^O, then repeating the argument which preceded (16) we

obtain that there exist functionals geR°1} and fieSr\Tg such that fi(r)i=O. But this
contradicts the fact that reG and that f1eS = G°. Hence Gn/?(1) = 0.

Let L be the closed linear span of G and /?(1), and let L° be the polar of L in /?*.
Then L° = G°n R^ly Since G is the polar of S in /?, we have that G° is the bipolar of S
in R* and hence G° = [S]ff = S. Therefore L° = SnR(°1)=0. Hence L = /? which concludes
the proof of (ii).

Let (Kfi,)0 be the polar of Rg
n) in /?* and let (Tj)00 be the bipolar of T$ in /?*. Then

If RB
(1) = 0, then (/?f1))

0 = R* = [T^-](T. If, on the other hand, [T^]a = «*, then (Uf1))° =
and hence /?*!) = 0.

We have that R°U<=T. Since Tg n /{^^{g}, we have that

T,1. (17)

Hence /?fi)=(Tx)0<=(Kj)
1)\{g})0. But since the closure of/?^,\{g} in the norm topology

is R°1)t we obtain that

Hence Re
(1)S:R(1).

Now let Ra
n)j=0, let r'eRg

(1) and let re/?. Put

Then rj e/?(1) and hence g/(ri)=0 for every g'e/?^,. For every functional / e Tg, by (14),

/(ri) = /([r, r']) -g(r)/(r') = - /(r)g(r') = 0,

since g(r') = 0. Let feTg., where g'e/?,0!, and gf^g, and let /^=^ ' . Then f eT^ and
hence /(r') = 0. Therefore, by (14),

fin) = /([r, r']) -g(r)/(r') = /([r, r']) =g'(r)f(r') - /(r)g'(r') = 0,

since g'(r') = 0. Hence / ( r , ) = 0 for every fe T. Therefore, by (i), rl = 0 and

[r,r']=g(r)r'. (18)

If gi+gi, then it follows from (18) that /?fi,nZ?^2, = 0.
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If g$Z., then Tg = {g}. Since the closure of K°i>\{g} in the a(R*,R)-tapo\ogy is R^, we
have, by (17), that

Tg = {g} <=*<>,= LR^\{sUa £ IT,1].-

Since Tg^\_T^a, we get that [T^]<r = [T](,. Hence, by (i), \Tf]a = R* and therefore
R»1) = 0 which concludes the proof of the theorem.

The case when dimR<co was considered in [4]. It was proved there that R is the
direct sum of G and Ra), and that Ra) is the direct sum of Rf'i)t where ^ = {gt}"=i is a
finite set. We shall consider the case when dim R = co and £ is a finite set later on but
now we shall consider an example when dimR = oo and L is an infinite set. We shall
show that, although dim(R//?(1)) = 2 in the example, there does not exist a commutative
subalgebra G such that G n Ra) = 0 and that linear combinations of elements from G and
Rw are dense in R. We shall also prove that R9

a) = 0for all

Example. Let R be a Hilbert space with a basis (e^fL-i, let JV be the subspace
generated by (c,),^! and let A be the bounded operator on R such that

Ae-l=Aeo = 0 and Aei = aiei-\-eiJrl for l ^ i , (19)

where a, are complex numbers such that a^aj, a^O and sup,|a;|<^. Put

[x,y]=0, for x,yeN; [eO)eo] = [e_1,e_1]=0;

leo,ei]=Aei>le-1,ei] = A2eh for l^i, (20)

and [e- i ,e o ] = e1.

It is easy to check that R is a Lie algebra and that

[x,y]=(x-1y0-y-ix0)ei + X-lA
2y-y-1A

2x + x0Ay-y0Ax, (21)

for x = Z1^=_1xiei and y = Y^=-\.yiei- Then

Hence R is a normed Lie algebra. By (20), N is a commutative ideal in R and R(l)zN.
Thus R is solvable, N is the nil-radical of R and i?(2) = 0. If Rn)=fcN, then there exists an
element Z = ££L1 Z;e; in N such that for every i^O

Since [eo,ef] = aiCi + c, + 1, for i ^ l , we obtain that Z,a, + Z, + 1 =0. Since [e_i,co] = e1,
we obtain that Z t = 0 and hence all Z(=0, for i^. 1. Thus Z = 0 and therefore R{1) = N.

For every fsR* there exists an element yf in R such that f(x)=(x,yf) for every
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xeR. For r e R put fr = Arf. Then

(Arf)(x) = /([r , x]) = ([r, x], 37) = (x, yf).

From (21) it follows that

Therefore from the two preceding formulae we obtain that

y^ = (f_1(/4*)2 + rO/4*)yy — (yj-, rQe± + /l2r)e_1 +{yj, r_le1 — Ar)e0. (22)

For every geR^ we have that yg = fxe-1 + ke0. If / e Tg, then, by (14), we have that

Let reN. Then r_1 = ro = 0. From (22) and from (23) we get that

3Vr
= ~(y/> A2r)e_y—iy/,Ar)eo= — (yj-,r)(fie-1+Xe0),

since (yg,r)=0. Hence

(yf,Ar) = X(yf,r) and (yf, A
2r) = n(yf, r). (24)

Let yf = y-ie-1+yoeo + yf where yfeN. Since iV is invariant under /I, we obtain from
(24) that for every reN

(yf,Ar) = l(yf,r) and {yf,A
2r) f

Since N is invariant under A*, we get that A*yf = Xpf and that (/l*)2y/ = /z>'/. Hence
/i = A2.

It follows from (19) that

A*el = d1e1 and A*ei = diei + ei-1, for i^2 .

I f P/=E^i3'ie.-' then, since A*yf = APf, we get that

for i ^ l . Hence we obtain that for i ^2

y.-y/fl^-a;)- (25)
7 = 1
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Now let r_ =/=O and ro£0 in (22) and in (23). Then after some calculations we obtain
from (22) and from (23) that

^yo-y-i)=iPf,e1)=y1. (26)

But the element yf, of which coordinates yt satisfy (25) and (26), belongs to R if and
only if

(27)

From all these considerations it follows that

(i) 2 = {g(A) e Rfty ygW = A2e_ y + Xe0, where A f 0 and satisfies (27)},

(ii) any functional / such that yf = YJL -1 yfiu where yt satisfy (25) and (26), belongs
t o Tow

It follows from (i) and (ii) that dim 7 ^ = 2. Since sup, |a,-| ^-J, then (27) uniformly
converges for all |A|^q<^. Now suppose that there exists a a(R*, /?)-closed subspace S
in R* such that Snl?(

0
1 )=0 and that SnTgW has codimension 1 in Tg{X) for every

g{X) e 2. Then S is a Hilbert subspace in R* and, for every g(A) e 2, there exists a unique
element y(A)=^l^_1yj(A)e( such that y(A) e S n 7^(i), that y1(A) = l and that y;(A) satisfy
(25) and (26). Then, by (26),

l/A = A>'0(A)-y_1(A). (28)

Now let S1 be the subspace orthogonal to S. Since Sni?(°1) = 0, it is easy to see that
dimS1 ^ 2 . Suppose that S ± n i V ^ 0 and let ZeS1nN. For every A = dj the series (27)
converges and it follows from (25) that the coordinates y^a,) of the corresponding
elements y(dj) satisfy the following conditions:

y^dj) ^ 0 , if 1 ^ i: ̂  j , and yiidj) = 0, if j < i. (29)

Since (Z,y(a,)) = 0 for every dj, we obtain easily that Z = 0. Hence S1nN = 0. Then
there exist elements Z1 and Z2 in S1 such that

Since (y(A),ZK) = 0 for /C = 1,2, we get that

for all y(A)eS. By (28),

.1/2/ oo \ l /2
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Earlier we observed that for all |A|^g<-j (27) converges uniformly. Hence the expression
on the right-hand side of the inequality above is bounded for all |A|<<?. But I/A-+00.
This contradiction shows that S does not exist. Hence, by Theorem 3.5 (ii), there does
not exist a commutative subalgebra G such that GnR ( 1 ) =0 and that linear combina-
tions of elements from G and Ra) are dense in R.

Now we shall prove that Rg
(1) = 0 for all gel,. Let g(A0)e£. By definition,

Tk>= U \-

It follows from (17) that R^ciTju >>• Hence [T^Uo)]ff contains e_u e0 and all
ytTgW, for X±X0. Suppose that [ T ^ , ] , =/=/**. Then there exists ZeR* which is
orthogonal to [Tg^0{]<,- Since e_x and e0 belong to [7^)] , , , we have that Z^l = Zo = 0,
so that ZeN.

Let X0 + dy Then, since all g(dj)e£, we get that (Z,y(a~j))=Q for every ay Using (29)
as above we obtain that Z = 0 and, hence, that [TgiX())']a = R*. Hence, by Theorem

0
Now let X0 = dj. Then (Z,y(di))=0 for every a^aj. Using (29) we obtained by

induction that

Z,= 0, for i=l, . . . , . /—1; and that Z{ = Zj f\ (aj-aK)~l, for i^j+l.

Taking into account that sup,|a,|^i we get that |ay—at|^l and therefore |Zj|^|Z_,-|.
Hence the element Z does not belong to N. Therefore [Tg-{e)~\a = R* and, by Theorem
35(iii)/?f{f °

Thus in the example ^ , = 0 , for every gel,, and, although dim(R/R(1)) = 2, E is
infinite as was shown in (i). In the theorem below we shall consider the case when E is
finite.

Theorem 3.6. Let ReX and let £ = {gJJL x be a finite set. Then

(i) there exists a finite-dimensional commutative subalgebra F in R such that dim T ^ n
and that R is the direct sum of T and the nil-radical N;

(ii) N is the direct sum of R(l) and the centre Z, and R(1) is the direct sum of Rf[}, for

Proof. Let S9i, for i=l , . . . ,n , be a(R*,K)-closed subspaces in Tg. of codimension 1
such that Tgi = Sgi + {gi}. First we shall prove that if a directed set /(a>+g(a), where
g^eRfv, / " ^ E f o i / j " and f{?eSg., converges to an element from R* in a(R*,R)-
topology, then the directed set gix) and all directed sets (/ia))?=i converge to some
elements from R*.

Suppose that there exist directed sets Z^+g*"' which converge to elements from R*
but such that at least one of the corresponding directed sets /J-a) does not converge. For
every such set let p(f{a),g(x)) be the number of the sets / | a ) which do not converge and
let p be the smallest of all p{f(x),gia)). Then l g p ^ n . Suppose that p>\. Let us choose

E.M.S.—D
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one of the directed sets / (a )+g<a) which converges to h with exactly p sets
which do not converge. Then for every reR, by Lemma 3.2 and by (14),

converges to Arh. Hence the directed set

gt,(r)(flai +glx)) - AXf^+g") =gdr)g*) +

7 = 1 '" 'J

converges to gt (r)h — Arh. Put ]'l") = Ydj=t J\x) and

.1

} jV{r)gij,

where ?\x) = (gip(r)-gi.(r))f(?). Then g^eRf^ and the directed set pa)+gix) converges to
g{ (r)h — Arh. Since all functionals (g,-.)J=i are different, we can choose such r that
gt (r)—giXr)^z^- Then at least the directed set / j " ' does not converge. Hence
l^p(/( a ) ,£(° l ))^P~ 1 which contradicts the assumption that p > l is the smallest of such
numbers.

Now suppose that p= 1. Then there exist directed sets f\a)eSg. and g ^ e / ? ^ such that
the directed set f\x)+g(x) converges to an element heR* and that the directed set ff]

does not converge. Since Sg. is a(R*,i?)-closed in R* and since gi4Sg., there exists reR
such that g,-(r) = l and that /(r) = 0 for all feSg.. Then, since all f(x)eSg., we obtain
from Lemma 3.2 and from (14) that the directed set

g in Rf

converges to Arh. This contradiction shows that
Thus from all these considerations we obtain that, if a directed set X?=i/i°')+^<°l)'

where f^eSg. and f'^EJ?^), converges to an element h in R*, then all the directed sets
converge to elements ht e S9( and, hence, the directed set g(°° converges to an element

From this fact, from Lemma 3.4 and from Theorem 3.5(i) it follows that R* is the
direct sum of Rf^ and Set, for i=\,...,n.

Put S = S9i+--- +Sgn. Then S is a(R*,R)-c\osed, SnRfn = 0 and SnTg. = Sg. has
codimension 1 in 7 .̂. Hence, by Theorem 3.5(ii), G = 5° is a commutative subalgebra of
R such that Gnfi ( 1 ) =0 and that linear combinations of elements from G and Ra) are
dense in R.

For every i = 1,..., n we have that
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i
k=l
k*i

Hence

(30)

Hence, by Theorem 3.5(iii), i?fj,=/=O. Let L be the closed linear span of all Rf'u, for
i = l , . . . ,n, and let L° be its polar in /?*. Since £?{) = (T£)°, we have that

i = 1 i = l i = l

It follows from (30) that L° = R°U. Hence L = R{1). Thus R(1) is the closed linear span of

f ,
Now suppose that there exist sequences r(k)=X"=i rjk) + s(i), where r^eRf'^ and

s( t )€C, which converge to elements from R but some of the sequences r(k) do not
converge. For every such sequence let p(r(*>) be the number of the sequences r\k) which
do not converge and let p be the smallest of all p(r(k)).

Suppose p>\. Then there exists a sequence r(k) = Yj=i r\k) + s(k), where r[*)6Rfj') and
sik)eG, which converges to an element r and none of the sequences rik), for j=l,...,p,
converge. Then, by (18), for every r'eG the sequence

converges to [r', r] e R{1). Hence the sequence

p-i

£ (g..(

converges to [r',r]— ̂ ; (r')r. Since all functionals g;. are different, there exists r ' eG such
that at least gfl(r')—gf (r')=^0. Hence l ^ p ^ * ' ) ^ ? — 1 which contradicts the assumption
that p > 1 is the smallest of such numbers.

Let p=\ and let a sequence r{k) = r{k) + s{k), where r ^ e R f j , and s(k)eG, converges to
reR and let the sequence rik) not converge. Then, by (18), for every r'eG the sequence

converges to \f,r]. Choosing r' such that gi{r')j=0 we get that rik) converges which
contradicts the assumption that r\k) does not converge.

Therefore we obtain that, if a sequence rw = Yj=ir'i') + s{k)> w h e r e rt)eRBd) a n d slk)eG,
converges, then all sequences r(k) converge to elements in /?f|, and, hence, s(k) converges
to an element in G. Hence R is the direct sum of R(U and G, and Ra) is the direct sum
of Kfj,, for i= ! , . . . , « .
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Now let Z = (p)?=1 Ker g,)nG. If r = £?=1r,-, where r.e^fi,, then for every zeZ, by
(18),

Since Z <= G and since G is commutative, we obtain that Z is the centre of R. Z is closed
and has finite codimension in G. Therefore there exists a finite commutative subalgebra
F in G such that G = F + Z and that dimT^n. It is easy to see that Z + Rw is the nil-
radical in R which concludes the proof of the theorem.
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