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A NOTE ON LEVY'S BROWNIAN MOTION II

SI SI

§ 0. Introduction

The purpose of this paper is to discuss some particular random fields
derived from Levy's Brownian motion to find its characteristic properties
of the joint probability distributions. In [9], special attention was paid
to the behaviour of the Brownian motion when the parameter runs along
a curve in the parameter space, and with this property the conditional
expectation has been obtained when the values are known on the curve.

The present paper deals with the variation of the Brownian motion
in the normal direction to a given curve, in contrast to the case in [9],
where we discussed the properties along the curve. Actually we shall
find, in this paper, formulae of the variation with the help of the normal
derivative of Brownian motion and observe its singularity. We then
discuss partial derivatives of Rd-parameter Levy's Brownian motion and
make attempt to restrict the parameter to a hypersurface so that we obtain
new random fields on that hypersurface. By comparing such derivatives
with those of other Gaussian random fields, we can see that the singu-
larity of the new random fields seems to be an interesting characteristic
of Levy's Brownian motion. Further, we hope that our approach may
be thought of as a first step to the variational calculus for Gaussian
random fields.

§ 1. Variation of conditional expectation

We have discussed, in [9], conditional expectation E[X(P)/C] =
E[X(P)/X(A), AeC] of Levy's Brownian motion X(P) when X(A), AeC,
is known, where P & C and C eC:

(1.1) C = {closed plane curve, C^-manifold}.

We are now interested in its variation δE[X(P)/C] when C varies,
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however variational calculus of random functional (of a curve C) is not

well established yet. So we first obtain a representation of X(A) in terms

of white noise and use ^-transform to have ordinary (non-random) func-

tional of ξ, depending on C.

Following N.N. Chentsov [11] and H.P. McKean [7], Levy's Brownian

motion can be expressed by

(1.2) X(A) = c(d) f \u\-«-wW(u)du; ueRd,
J S(A)

in terms of white noise W, where S(A) = {u; (u, OA) > \u\2} and

Then the ^-transform of X (see [6]) is obtained as

(1.3) (&X)(S) = c(d) J x8U)(u)\ u\-«-wς(u)du.

Let P be fixed. We denote the conditional expectation E[X(P)[C]

by Y(C) to emphasize that it is a functional of C. It is known (see [9])

that Y(C) can be expressed in the form

(1.4) Y(C)= f f(C,s)X(s)ds,
Jc

with sufficiently smooth / for CeC, where X(s) denotes X(A(s))> A(s) e C;

s being the parameter taken as an arc length on C. The ^-transform of

Y(C), denoted by U(C, ξ), is obtained as follows.

(1.6) U(C, ξ) = (<?Y)(ξ) = £ dβftC, s) Jg(s, u)ξ(u)du,

where

Then the variation of U(C, ξ) exists and has the expression:

(1.6) δU(Cf ξ) = J ds{δf(C9 s) - κf(C, s)δn(s)} Jg(s, u)ξ{u)du

dsf(C9 s)δn(s) [4-g(*> u)ξ(u)du.
J dn

Once this formula is established (see [1]), then it guarantees the existence

of the stochastic version, namely the existence of δY(C) which is expressed
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in the form

(1.7) δY(C) = [ {δf(C, s) - κf(C, s)δn(s)}X(s)ds
J c

ί f(C,s)^-X(s)δn(s)ds,
c dn

where stands for the normal differential operator, δn(s) denotes the
dn

distance between C and C + δC at s, δf(C, s) denotes the variation of the

kernel / and K is the curvature of C (see e.g. [3]).

We do not go into details of δY(C), but having been suggested by

the formula (1.7) we investigate, in this paper, the normal derivative
X and observe its singularity which is to be a characteristic of X.

dn

§ 2. The normal derivative of Levy's Brownian motion

Motivated by the variational formula, expressed in the previous

section, we introduce the derived random field < X(A), AeS\ where
Idn J

S is a hypersurface of Rd and where X(A) denotes the derivative of
dn

Levy's Brownian motion to the normal direction at a point A.

PROPOSITION 1. Let {X(θ) = X(t, θ), 0<θ< 2π} be Levy's Brownian

motion on a circle C (czR2) with radius t. Assume that C passes through
cϊX

the origin. Then the normal derivative on C is neither an ordinary
dn

process nor a generalized process, however it is well defined as a generalized

process over R2.

Proof. The normal derivative of Levy's Brownian motion at a point

θ on a given circle C is

(2.1) ^X(t, θ) = lim X « + δt> *> - X ^ θ)

d o
X(t, θ) lim

dn *ί-o δt

Then the covariance of is
dn

γ( ) = cos2a:/2

4tsin\al2\ '

which is not well defined when a tends to zero. So we can see that
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dX
is neither an ordinary process nor a generalized process. Let

dn

(2.2) N(ξ) = if ^ - X ( r , θ)ξ(r9 θ)rdrdθ ,

with £ e y(i?2). Then we can easily prove that N(ξ) is a stationary

Gaussian process. Thus the assertion follows.

It can easily be seen that the same situation occurs for C C i?2, C

being (i) a straight line (or) (ii) a general curve in C. It means that the

covariance function of normal derivative of Levy's Brownian motion on

C has the same singularity of order —1 in the cases (i) and (ii) above.

THEOREM. Let X(A), A e Rd

9 be a Gaussian random field such that

(2.3) E[X(A)] = 0, E[(X(A) - X(B)f] = cP(A, B) + φ(P(A, B)), c > 0 ,

where p is the Euclidean distance in Rd and where φ is a C2(0, oo)-function

with ω(0) = ^'(0) = 0. Let S be a (d — ί)-dimensίonal surface in Rd which

is an analytic manifold (including the case of a (d — l)-dimensional hyper-

plane). Then

(i) for d=2,ψ-
d

is not well defined, however is defined as a
s dn

generalized Gaussian random field over R2,

(ii) for d>2, 3kX

dnk

random fields over S,

< , exist as generalized Gaussian

denotes the restrictionwhere denotes the normal derivative and
dn dn

c)X
of — to the manifold S.

dn

Proof. We can see from actual computation that the covariance
dX

function of has singularity of order —1. Thus for d = 2, the situa-
dn

tion is the same as the above proposition and so the assertion (i) is

obvious. For higher dimensional parameter space (i.e. d > 2), it is clear

that

N(ξ) = f ~^-X(uu . ., ud)ξ(ui9 , ud)du; ξ e <?(Rd),
JR* dn
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is well defined as an i?d-parameter generalized Gaussian random field.

Even we can restrict N(ξ) to a (d — l)-dimensional manifold S, described

dX'in the theorem statement. Thus is defined as a generalized Gaussian
dn

dkXrandom field. We can easily prove that is also a generalized Gauss-

dnk

ian random field for k < ~~2

Here we should note that Levy's Brownian motion is the most

important example for which (2.3) holds. Another interesting example is

the one for which (2.3) holds with

φ(t) = Γ (1 - e-λt2)dσ(λ), Γ λdσ(λ) <
Jo Jo

CO .

§ 3. Comparison with Wiener and Ornstein Uhlenbeck processes

We obtain partial derivatives of Wiener and Ornstein Uhlenbeck

processes and observe their singularities to compare with the Levy

Brownian motion case, where the covariance function has singularity of

order —1. We see that normal derivative over a hypersurface is one of

the significant characteristics of Gaussian random fields, although far

from the complete characterization.

1) Wiener process

Let Y = {Y(u); u = (uu , ud) e (R+)d}9 d > 2, be Wiener process.

Namely, Y is a Gaussian random field such that

(3.1) E[Y(u)) = 0, E[Y(u)Y(υ)] = j j («< Λ vt)

where u = (uu , ud) and v = (vu , υd).

PROPOSITION 2. (i) Let S be {u = (ul9 , ui9 , ud) e (R+)d; ut = c},

for l<i<d. Then the derived process restricted to S, ( Y(u))
V dUv. /

IS
s

(a) not well defined if k = i,

(b) well defined as a generalized Gaussian random field if k Φ i.

(ii) The normal derivative of Wiener process ( Y(u)\
\dn )

, where S

. on

is a spherical surface Sd~x which is a subset of (R+)d> is well defined as

a generalized Gaussian random field.
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Here it is noted that, both Levy's Brownian motion and Wiener
process give us a Brownian motion (up to constant factor) with one
dimensional paramter if the parameter of these processes is restricted to
a straight line. And the derivatives of these fields along a straight line
are white noises. However, if the partial derivatives are taken to be the
normal direction to some (d — l)-dimensional manifolds we can see that
Levy's Brownian motion and Wiener process present entirely different
features.

2) Ornstein Uhlenbeck process
Let {Um(ύ); u = (uu , ud) e Rd}, d > 2, be Ornstein Uhlenbeck proc-

ess with mass parameter m > 0. We know that it is a generalized Gauss-
ian random field with the characteristic functional

(3.2,

in which ξ is the Fourier transform of ξ.

r)TT

PROPOSITION 3. The normal derivative — — is again a generalized

dn

Gaussian random field, but the restriction of which to a hyperplane is not

well defined.

OBSERVATION. The normal derivative dUm can be viewed as a
dn

superposition of mutually independent (d — l)-dimensional known random

fields Ua{m,λ), with a(m, X) = V(m2 + λ2), such as a limit of

(3.3) Γ λUaim,»dλ,
Jo

as N —> oo.

Remarks, (i) The restriction of the normal derivative of i?2-parameter
Ornstein Uhlenbeck process to a circle S is not well defined as in the
case of Levy's Brownian motion, however the awkwardness appears in a
quite different manner.

(ii) Unlike Levy's Brownian motion the singularity always occurs
in Rd-parameter case for every d > 2.
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§ 4. Discussion

As is noted in Introduction, we have discussed movement of Levy's

Brownian motion when the parameter varies in the normal direction to

the specified manifold. Now, in this line, we would like to show one

more class of random fields which has been introduced in [5] and admits

us to take its variation. Namely, it is the class involving such a process

as

(4.1) X(C) = ί g(u) W(u)du = f lm (u)g(u) W(u)du,

where [C] (ci?2) is the domain enclosed by a curve C in C, 1 denotes the

indicator function, g is an L2-function, and where W(ύ) denotes the two

parameter white noise. Then its variation, when a curve C changes to

C + δC (e C), is obtained as

(4.2) δX(C)= f g(s)δn(s)W(s)ds,
Jc

where W(s) and g(s), taking s to be the arc length on C, are white noise

and the value of g at the point parametrized by 5, respectively, and where

δn(s) is the distance between C and C + δC (for detail see [5]). In fact,

the formula (4.2) shows that δX(C) plays a role of, so-to-speak, an innova-

tion of X(C), since the white noise integral extends only over C. In view

of this property, X(C), given by the formula (4.1), may be called an

additive Gaussian process depending on the parameter C

What we have discussed so far on this topic can easily be generalized

to the class of additive Gaussian processes depending on C eC, which is

a class of (d — l)-dimensional C°°-manifolds in Rd without boundary.
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