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Equilateral Sets and a Schiitte Theorem for
the 4-norm

Konrad J. Swanepoel

Abstract. A well-known theorem of Schiitte (1963) gives a sharp lower bound for the ratio of the
maximum and minimum distances between n + 2 points in n-dimensional Euclidean space. In this
note we adapt Bardny’s elegant proof (1994) of this theorem to the space £}. This gives a new proof
that the largest cardinality of an equilateral set in £} is # + 1 and gives a constructive bound for an
interval (4 — ey, 4 + €,) of values of p close to 4 for which it is known that the largest cardinality of an
equilateral setin £f is n + 1.

1 Introduction

A subset S of a normed space X with norm || - || is called equilateral if for some A > 0,
|lx — y|| = A for all distinct x,y € S. Denote the largest cardinality of an equilateral
set in a finite-dimensional normed space X by e(X).

For p > 1 define the p-norm of a vector x = (x1,...,x,) € R" as
n 1/p
lxllp = lGer, - x)llp = (Z |xi|*’> .
i=1
When dealing with a sequence x1, . . ., x,, € R" of vectors, we denote the coordinates
of x; as (xj1,...,%i,). Denote the normed space R” with norm || - ||, by 0. Ttis

not difficult to find examples of equilateral sets showing that e(¢}) > n+ 1. Itisa
simple exercise in linear algebra to show that e(¢5) < n + 1. Kusner [4] asks if the
same is true for Zg, where p > 1. For the current best upper bounds on e(ﬂg), see
[1]. We next mention only the results that decide various cases of Kusner’s question.
A compactness argument gives for each n € N the existence of ¢, > 0 such that p €
(2 — 4,2+ &,) implies e(@?,) = n + 1. However, this argument gives no information
on €,. As observed by C. Smyth (unpublished manuscript; see also [8]), the following
theorem of Schiitte [6] can be used to give an explicit lower bound to ¢, in terms of
n.

Theorem 1.1 (Schiitte [6]) Let S be a set of at least n + 2 points in {;. Then

1/2 o
maxx yes [|x — yl)2 (1 + %) / if n is even,
miny yesxzy [|X —yll2 ~ (1+ W) 2 if nis odd.

The lower bounds in this theorem are sharp.

Received by the editors April 26, 2013; revised August 2, 2013.
Published electronically December 4, 2013.
AMS subject classification: 46B20, 52A21, 52C17.

640

https://doi.org/10.4153/CMB-2013-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2013-031-0

Equilateral Sets and a Schiitte Theorem for the 4-norm 641
Corollary 1.2 (Smyth) If

2log(1+2/n)  4(1+0(1))
log(n+2)  nlogn

lp—2| <

then the largest cardinality of an equilateral set in {7, is e((})) = n + 1.

The dependence of ¢, = 4(”1;:)‘;(}1)) on 1 is necessary, since e({},) > n+1if 1 < p <
2 — (11;"2()121 (see [9]). (These are the only known cases where the answer to Kusner’s

question is negative.)

There is also a linear algebra proof in [9] that e(¢}) = n + 1. As in the case of
p = 2, compactness gives an ineffective €, > 0 such thatif p € (4 —¢,,4 + €,),
then e({}) = n + 1. The question arises whether Schiitte’s theorem can be adapted to
£}, so that a conclusion similar to Corollary 1.2 can be made for p close to 4. Proofs
of Schiitte’s theorem have been given by Schiitte [6], Schoenberg [5], Seidel [7], and
Barany [2]. It is the purpose of this note to show that Barany’s simple and elegant
proof of Schiitte’s theorem can indeed be adapted.

Theorem 1.3 Let S be a set of at least n + 2 points in (). Then

1/4 o
) / if nis even,

maxx yes [|x — yll4 S (1+2
miny yes x4y lx =yl — (1 + %) 14 if nis odd.

n—(n+2

Corollary 1.4 If

4log(1+2/n)  8(1+o(1))

—4 =
p—4l< log(n +2) nlogn

then the largest cardinality of an equilateral set in £} is e((})) = n + 1.

We do not know whether the lower bounds in Theorem 1.3 are sharp. The follow-
ing is the best upper bound that we can show.

Proposition 1.5 There exists a set S of n + 2 points in £} such that

max X — 2
maXxyes e —=ylls - \/>Jr O3/,
MmNy yesxy llx—ylls n

Unfortunately, this bound is far from the lower bound of 1 + i + O(n™2) given
by Theorem 1.3.

2 Proofs

Proof of Theorem 1.3 Consider any x1, . ..,x,4, € R” and let

po=min|x; — xjlls and M = max||x; — x][s.
i#] b
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By Radon’s theorem [3] there is a partition AUB of {x, . .., x4, } such that the con-
vex hulls of A and B intersect. Without loss of generality we may translate the points
so that o lies in both convex hulls. Write A = {a;,...,ax} and B = {b;,...,b.},
where K+ L =n+2and K, L > 1. Then there exist oy, ..., ag, 51, ..., 8. > 0such
that

K K
E a; =1, E a;a; = 0,
i=1 i=1

(2.1)

L L
D Bi=1 D Bibj=o.
=1 j=1

Also, forall i € [K] and j € [L],

(2.2) |a; —a;||; < M* wheneveri # j,
(2.3) |b; — b;|l; < M* wheneveri # j,
(24) lla; — B[l > p*.

Apply the operation S5 | o; S5, aj to both sides of inequality (2.2):
j#i

<l—§:af>M4

i=1

K K K
= Zai(l — a,‘)M4 = Zai ZajM4
j=1

i=1 i=1
J#i

K K
4
>3 > ;> (im—ajm)

[
(]
Nl

4 3 2 2 3 4
i (a; = A4a; ,@jm + 607,05, — 40 ma; , + 45 ,,)

Il
Nl
2
NQ’.:‘
3
-
M =
A/~
I\ M =~
2
R
3
~~
A/~
M=
L
)
i/

m=1 i=1 m=1 " i=1 j=1
n K n K K
2
+6 ( E a,a,m> ( E aja]7m> —4 E ( E a,a,1m> < E a;ja; m)
m=1 " i=1 j=1 m=1 " i=1 j=1
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which, by (2.1), simplifies to
2
es (1 Z ) 2233 1m+62(z )
m=1 i=1

Similarly, if we apply 25: B Z%l Bi to (2.3), we obtain
i#]

n L 2
(2.6) <1252>M4>2ZZB] +6Z<Zﬂjb§,m> :
m=1 " j=1

m=1 j=1

Next apply Zfil Q; Z?zl Bjto (2.4):

n

L K L
O‘zZﬂ],uzl Sza1261 (ai.,m*bj,m)4
j=1

j=1 i=1 m=1

1
Mw

Il
—

n

K L
Zzaﬁj(alm* b]m+6a1mb§m 4ai,mb?m+b‘;7m)

=1 i=1 j=

(ia,a ) (iﬂj) —4;(?;0[,‘[1?’"1) (iﬁjb}"r’)

=1 “i=1

n K L n K L
+6 ( Q;a; m) (Zﬂjbim) - 42(206#11',”1) (Zﬁjbim>
m=1 1 =1 m=1 \ i=1 i=1

3

n

i=

(%) ()

m=1
n K L
@ Zalaw+6z<zwm) (Zgjb;m) ZZﬁ, -
m=1 i=1 = j=1 m=1 j=1
that is,
n K n L n K L
DI TED D) D IR o ( 3 aiagm) (Z ;a,-b;m> .
m=1 i=1 m=1 j=1 m=1 " i=1 j=1

Add (2.5) and (2.6) together:
(zfzaf 72,3;)1\44
i=1 =1
23 Y e 12334 Jm+6z(zm,%m> +62<Z[3; )

m=1 i=1 m=1 j=1 m=1
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27, - K ) L P
> 2u — 122 (Zaiai.m) (Zﬁj%.m)
m=1 i=1 j=1

(

n K n L
+6Z(Zaiaﬁm) 2 +6Z(Zﬁjb§_m) 2
m=1 i=1 m=1 j=1
n K 2 K L L 2
s (Eee) () (E) (£ )
m=1 i=1 i=1 =1 =1
n K L 2
=2u' + 62 (Z i, — Z ﬂjb?m)
m=1 i=1 j=1

>2ut.
Therefore,

(2.8) M 2
’ AT K L :
ptT 2= af - Ej:l 6?

By (2.1) and the Cauchy—Schwarz inequality, S, a? > 1/K and Z?Zl Bi > 1/L.

Therefore,
K L 2 2 e
Za?+252 > l+l > {M+n+2 if n is even,
! ] = = 2 2 . .
i=1 =1 K L —5 + -5 ifnisodd.
Substitute this estimate into (2.8) to obtain
M > 1+2 if n is even,
pt T\ 1+ ey ifnisodd,
which finishes the proof.

Proof of Corollary 1.4 It is well known and easy to see that for any x € R”, if 1
p < 4, then ||x||s < ||x||, < n'/P~14||x|4, and if 4 < p < 00, then ||x||, < ||x]|s
n'/4=1/P||x|| ,. Suppose that there exists an equilateral set S of -+ 2 points in ¢7. Then

INIAN 1

maxxyes [|x —ylls  _ l1/4=1/p]
minxyesxzy [[x — ylla

Combine this inequality with Theorem 1.3 to obtain 1 + % < nlt=4/?l, A calculation
then shows that

4log(1+2/n) 8 1
— 4| > = .
=4z log(n + 2) nlogn (1+06:™D) "
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Proof of Proposition 1.5 Letk € N, x, y € R, and
a:=(1+x,xx,...,x) eéﬁ and b= (y,y,...,y) Eéﬁ.

We would like to choose x and y such that ||a||; = ||b||s and ||@ — b||s = 2"/*. This is
equivalent to the following two simultaneous equations:

1+x)*+ (k—1x* = ky4
(2.9)
A+x—p)+k—1Dx—p*=2
We postpone the proof of the following lemma.

Lemma 2.1 Foreach k € N the system (2.9) has a unique solution (xk, yx) satisfying
vk > 0. Asymptotically, as k — oo we have

= k2 k0T and  y = kYA — kA v oY,
Using the solution (x, y) = (xx, yx) from the lemma, we obtain
lalls = [|blls = Kty =1 — k"2 + O(k=/*).

Write ay, . . ., ai for the k permutations of a and set a;,; = b. Then (2.9) gives that
{a),a, ..., a5} is equilateral in /%, Finally, let n = 2k. Then in the set

S={(a,0)|i=12,...,k+1} U{(0,a) |i=1,2,... . k+1}

of n + 2 points in £/ the only nonzero distances are 2'/* and 2'/4||a||,. Therefore,

maxx yes || X — ¥||4 1 2 _
: ye [ ¥l _ :1+\/7+O(n 34y,
ming yesxy [|x =yl llalla n
The case where n = 2k + 1 is odd is handled by using the points a;, . .., a5 € Elj as
constructed above and the analogous construction of k+2 points aj, ..., a;,, € k1

satisfying ||a/ —aj||s = 2'/* and [|a][|ls = 1— (k+1)"/2+O(k™"). Then the nonzero
distances between points in

S={(a,0)|i=12,...,k+1} U{(o,a]) |i=1,2,...,k+2}
are 2'/* and (||a;||% + [|a |4)1/4, giving the same asymptotics as before. [
Sketch of proof for Lemma 2.1 Fort € R let

(1) = ((1 +o) +k(k_ 1)t4) Y0, )t D

Then (2.9) is equivalent to f(x) = |y|and f(x—y) = (2/k)"/*. Since || - ||4 is a strictly
convex norm, f is strictly convex. Since f(0) = k~'/* and lim, 1, f(t) = oo, it
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follows that there is a unique oy < 0 and a unique fx > 0 such that f(ax) =
f(By) = (2/ k)l/ 4 Thus,x— y € {ak, Bk} Tt also follows that f is strictly decreasing
on (—oo,ag). It is immediate from the definition that f is strictly increasing on
(0,00). Since f(—k~"*) < (2/k)"/* < f(k='/*), it follows that oy < —k~'/* and
Br < k=14,

By strict convexity of || - ||4, f also satisfies the strict Lipschitz condition

|f(¢+h)— f(t)] <h forallt,h € Rwithh > 0.

It follows that t — f(¢) —t is strictly decreasing and t — f(#)+1 is strictly increasing.
Since lim; oo (f(t) — ) = 1/k and lim,,_(f(¥) +t) = —1/k, it follows that
f(t) >t +1/k, and for each r > 1/k there is a unique ¢ such that f(¢) — ¢t = r; also
f(t) > —t — 1/k, and for each r > —1/k there is a unique ¢ such that f(¢) +t = r.
We now consider the two cases x — y = aj and x — y = f4.

Case L If x — y = oy, then f(x) = |y| = |x — ay|. Since f(x) > —x — 1/k >
—x —k V4> —x + ag, necessarily y = x — o > 0 and f(x) — x = —ay. Since
—o > k7Y% > 1/k, there is a unique x; such that f(x;) — x; = —ay, and since
f(0) =0 = k™% < —qy, it satisfies x; < 0. Setting y = X — ay, we obtain
that (2.9) has exactly one solution (xx, yx) such that xx — yx = «, and it satisfies
xr < 0 < yg.

Case Il If x — y = [, then we similarly obtain a unique solution (x, y), this time
satisfying x < 0 and y < 0.

Therefore, (2.9) has exactly two solutions, one with y > 0 and one with y < 0.
Next we approximate the solution (x, yx) of Case 1.
From f(oy) = (2/k)"/4, it follows that

(2.10) (1+a)*+ (k—1)af =2,

which shows first that oy = O(k~/*) as k — o0, and then, since oy < 0, that
ap = —k~ Y4 + O(k=1/?). We can rewrite (2.10) as

(2.11) o = —k V41 — 4oy — 60F — 40)/*
= k(1 — ax = 305 — 90} + O(™))

where we have used the Taylor expansion (1+x)'/* = 1+ 1x — 2x% + Zx> + O(x*).

Substitute the estimate oyy = —k~'/4 + O(k~'/2) into the right-hand side of (2.11) to
obtain the improved estimate ay = —k~'/* — k=1/2 + O(k—3/*), and again, to obtain

ap = —k V4 — k724 2k 1 Ok,

Since

fT) 4k 2= A k2 kP 0! > —

for sufficiently large k, and f(xx) — xx = —ay, it follows that x; > —k=1/2 for large
k, that is, x; = O(k~'/2). It follows that

flxx) — xx = k71/4(1 + X + O(kil)) — Xk
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Set this equal to —ay and solve for x; to obtain x; = —k~/2 + k=3/* + O(k~!) and

yr=x — o = k=4 — k341 Ok, [ ]
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