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CONGRUENCE RELATIONS OF ANKENY-ARTIN-CHOWLA TYPE
FOR PURE CUBIC FIELDS

HIROSHI ITO

§1. Introduction

Ankeny, Artin and Chowla [1] proved a congruence relation among
the class number, the fundamental unit of real quadratic fields, and the
Bernoulli numbers. Our aim of this paper is to prove similar congruence
relations for pure cubic fields. For this purpose, we use the Hurwitz
numbers associated with the elliptic curve defined by y* = 4x* — 1 instead
of the Bernoulli numbers (§ 3). As a corollary to the main theorem (§5),
we have the following:

For a prime number p congruent to — 1 modulo 9, let A and
t+u¥p +v¥p®>1 be the class number and the fundamental unit of
the pure cubic field Q( ¥ p) respectively, where #, u and v are rational
numbers. Then we have:

2uh = G(pz_l)/a mOdp ’
2(20 —_ uz)h = Gz(pz_l)/a modp .

Here G, (k = 2) are rational numbers defined by the power series expansion
of the Weierstrass p-function satisfying p’(2)* = 4p(2)* — 1:

[t

pz) =~ + gg(k — 1G22,

2

N

Let m > 0 be a cube-free rational integer which has a prime divisor

shall prove similar congruence relations modulo p for the pure cubic field
Q(¥m). For this purpose, we first translate, in Section 2, the analytic
class number formula into the form

(the fundamental unit)* = (the elliptic unit),
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and then, following the idea of Robert [11], we take Kummer’s logarithmic
derivatives of both sides. In the final section, we shall give some discussion
concerning the p-adic L-functions of Lichtenbaum [6].

Throughout, we denote by @ the algebraic closure of the rational
number field @, C the complex number field; and C, the completion of
the algebraic closure of the p-adic number field @,. We fix an embedding
i, of @ into C and an embedding i, of @ into C, such that i,(p) is con-
tained in the valuation ideal of C,. Via these embeddings, the algebraic
numbers in C will be identified with the algebraic numbers in C,. Denote
by h and ¢ > 1 the class number and the fundamental unit of the pure
cubic field Q(8) respectively. Here 6 is the real cube root of m.

§2. The analytic class number formula

In this section, we translate the analytic class number formula for
Q(9) into the form which is suitable for the later applications ((2), (7).
Until the end of Section 8, the discussion will take place inside C. Put H =
K () and denote by @ the ring of integers of K. Note that m is uniquely
expressed as m = ab?, where a¢ and b are positive integers which are
square-free and prime to each other. Then the conductor of the abelian
extension H/K is given by the ideal (f) = f0r. Here f is the rational
integer defined as follows (cf. Hasse [4] and LeVeque [5]):

ab if a* = b*mod 9,
(1) f= { v =
3ab otherwise.

The ray class group Cl(f) of K modulo (f) is naturally isomorphic to
(Ox[fOx)*|p, where gz is the image of the group g of units of K in (0x/f0x)*.
By the assumption on m, f has a prime divisor p 2 2, 3, so that z has order
6. If @ e Oy is prime to f, we denote by C, the element of CI(f) represented
by ().

Denote by («/p), the cubic residue symbol in K and put X = (m/-)..
Then the map C,— X(«) is well-defined and gives a character of Cl(f)
corresponding to H/K. We denote this character also by X. For the
Dedekind zeta function y(;,(s) of Q(5), we see

Co(8) = C(8)Lx(s, X)
from Meyer [8]. It follows from the analytic class number formula that

hloge = L0, ¢).
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Let H; be the ray class field of K modulo (f). Take and fix ¥ € 0, such
that (7,6f) =1 and X(?) 5 1. If we use the ray class invariant ¢,(C)
modulo (f) defined in Section 2 of Robert [10], we see

0,1 = — o 3 (O loglp (O)F
= T;T 108| Ny 10 (C)lp s (CHF -
Hence we obtain
(2) &% = | Noy 1o (Clp (CHP .
Since Ny, x(0,(C,)) = Ny, (e, (C;Y), we also have
(3) = 1 eAC)x@me,

Now we consider the f-th root (> 0) of the right hand side of (2).
Our technique here is borrowed from [10]. Let p(2) be the Weierstrass
p-function which satisfies

(@) =4p(z)’ — 1.

Denote by L the period lattice of p(2). We may write L = 0,2 with 2
real and positive. For « e 0, denote by &’ the conjugate of @ and put
Na = aa’. Let g(2) be the Weierstrass o-function of L, and put

0(2) = A(L)a"(2),

$(z; @) = 0(a2)[0(2)"* (a € Uy).
Here A(L) is the discriminant of L which is equal to — 27. It should

be remarked that ¢(z; &) is an elliptic function with respect to L. More
precisely, we have

o) $(; @) = ALy T @@ — P
B+0

where the product is taken over the non-zero a-division points g of C/L
(Corollary 2.6 of [6]).

Because the number of roots of unity in H is equal to that of K, by
Lemma 6 of [10], we can take B, € 0, and m, e Z (jeJ) such that

{Nr—1+sz,(ij— 1)=0,
HCi) =1, (8,60 =1 (jed).

(5)
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Here J is a finite index set. We fix {8;},c, and {m,},;c, which satisfy (5)
throughout this paper. Set r = f~'2, and put

7= (1) [T 663 )™
Lemma 1. (i) peH,.
@) Niwyu) = Niayrulp (Clo (Co)-

Proof. 1t is seen from (4) that ¢(z; «) is a polynomial of p(z) with
coefficients in K and ¢({z; @) = ¢(2; @) for all { € p. Therefore ¢(r; a) e H,
for any « € 0y, from which follows (i). To prove (ii), we note that

(6) ¢(z; @) = ¢, (Clp,(CH™
if (o, f) = 1, and that
Ny (@ (Cp)) = Ny, (C)
for all jed (cf. §2 and § 10 of [6]). Then, from (5), we see
Nuu@) = Npyyulp (Cp(C)~ Y1+ 2y mid=Nen]
=N H;/H(%(Cr)/%(a)) ’

which completes the proof.

Since ¢ >0 and Ny (7)) = [Ny, u(p)[ >0, we obtain
(7) " = Ny, u(17)
from (2). Note that

7= 97 [1 o B

§3. The generalized Hurwitz numbers

We first summarize some notation and facts concerning the elliptic
curve E defined by the equation

(8) y=4x" —1.

The map z+— &(2) = (p(2), p’(2)) gives an isomorphism from C/L onto the
complex points of E. As usual, we identify ¢, with the endomorphism
ring of E in such a way that the endomorphism corresponding to a e 0,
is given by £(2) — £(@2). For a e Oy, we denote by F, the field obtained
by adjoining to K the coordinates of a-division points of E. It is known
that F,/K is abelian and every prime ideal of K which ramifies in F, is a
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divisor of 6. For a e O, (a,6) = 1, denote by a* the generator of the
ideal («) such that

(9) (X*E(——l) mod 3,

(44 2
where (— 1/a), is the quadratic residue symbol in K. Then the next
lemma follows from the results of Davenport and Hasse [3].

LEMMA 2. Let v, pe 0y, (v,6p) =1, and let Q, be a p-division point
of E. Then

QZ” =V *Q# ’
where g, is the Artin automorphism of the ideal (v) with respect to F,/K.

Let = be the generator of p such that #* = = and set ¢ = Nx. Define
fo, My€ Ox by f = zf,, m = zm, It is seen from (1) that (z,f,) = 1. Hence
there exist z,, 7, € C, which are uniquely determined modulo L, such that

t=7,4+17, tr,=fr,=0 modL.
Here r = f~'2 as in Section 2. Define the points P, P,, P, of E by

P=¢@x), P,=¢&() (i=12).

Let n be an integral ideal of K. We call a function 1:0, — Q a
Dirichlet character defined modulo n if there exists a character 1 of (0,/n)*
such that 1(«) = 1(e mod n) for (¢, n) = 1, and A(a) = 0 otherwise. We can
define the conductor of 2 by the usual way. A Dirichlet character is called
primitive if it is defined modulo its conductor. In the following, all
Dirichlet characters we consider will be primitive. Write m = ab® as
explained in Section 2. We can assume p|a without loss of generality by
replacing m by m?/b* if necessary. Then a Dirichlet character X, modulo
(f,) is defined by

(10) Heo) = (@@, 1@ = (),

for ac Oy, (a,f) =1. We also view X and X, as Dirichlet characters de-
fined modulo (f) and (z) respectively.

Denote by £(2) the Weierstrass {-function of L, i.e., {(2) = (d/dz)log o(2).
For any ¢ e L there is a constant x(¢) such that

L+ 0) =L(2) + x(9).
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The function ¢ — «(£) is clearly linear in ¢, and we extend it by R-linearity
to a function on C. Let we C/L and take a representative r,e C of w.
Then ¢(z + r,) — #(r,) does not depend on the choice of r,. We put
&*(z; w) = L(z + ry,) — £(ry,) (cf. Lemma 3.1 of [6]). For 2 =1, or X, we
define the generalized Hurwitz numbers G,,; (k¢ = 0), following [6], by

@) > M@)CHEan) = — 5 Gut

a€(0k/fo0K)*

It is easily seen that

%=Y1ﬁw=m

0 otherwise.

As is shown in Section 7 of [6], G,; (¢ = 1) are numbers related to Hecke
L-functions associated with K. Because — (d/d2)¢(2) = p(2), we have
G..= G, (k=2) if (f,) = (1), where G, are the numbers defined in the

introduction.

LemMA 3. (i) Giy Giyjr€ Fyy (RZ0).
(ii) Gy u/¥myy Gy ym1/¥Vmy' e K (kB = 0).
(iii) When q = p*®, we have
kaxz/z/-nTO’ Gk,z;‘/%/'_’{(;z € Q (k = 0)

if ¥m, is real.

Proof. We only consider the assertions concerning to the numbers
G.,,,» because those concerning to Gy, can be proved similarly. If
(f)=@Q), them my= -1, G,,,= —1, G,,,=0, and G, ,, = G, (k= 2),
from which all the assertions follow. Assume (f,) 2 (1). Because X,(—1)

= 1, we have

1 _ p/(z) - )
12 o> X 1 PR S @G, gkt
(12) 23%54@ o ) > Gu

by Lemma 3.3 of [6]. Then the assertion (i) is clear from the definition
of F,,.

To prove (ii), let () be an integral ideal of K prime to 6f, and o,
the Artin automorphism of (v) with respect to F,(¥m,)/K. By Lemma 2,

T T -1 p’(z)
— 2 G2t = = A
& g 21 p(2) — p(az)™
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_ 1 @) P'(2)
=g 2 p(?) — p(v*az,)

= Lyox e
_ 5 X,(v*) Z‘: Xz(OC) p(z) — p(ary)

= — 00*) 2 Gi, 2"
k=1

Hence

e == ()2, = (1)) = (%),

On the other hand,
Yot = (ﬁg) .
3

v
Thus (ii) is proved.
Finally assume q = p’. Then it is easily seen that G,,, are real.
This proves (iii).

§4. Kummer’s logarithmic derivatives

In this section, we introduce certain group homomorphisms -,
(1 k£ g — 1) which are used in [11] and were referred to as Kummer’s
logarithmic derivatives in the introduction (See also § 3 and §4 of Coates
and Wiles [2].). Let M, be a finite abelian extension of K such that the
prime ideal p does not ramify at M,/K, and put M = M,L, where L = F,.
Then, since L/K is an abelian extension of degree ¢ — 1 where p ramifies
completely, the prime ideal q of M, corresponding to the fixed embedding
i,: Q@ => C, ramifies completely at M/M, and [M: M, = q — 1. Denote
by £ the prime ideal of M above q. Let My and M, , be the completions
of M and M, at Q and q respectively. For any subfield NV of C,, denote
by O(N) the ring of integers of N, m(XN) the maximal ideal of O(N). Put
Oy = O(My), my = m(My), 0, = O(M,,), and m, = m(M,,). We remark here
that, in the later sections, we shall apply the argument of this section
to M, =F,.

For any prime element 4 of M, we can define group homomorphisms

Vot M5 —>0/m, ASk=q—1)

as follows. First, suppose u is a unit of M, congruent to 1 modulo u,.
Choose a power series f(T) = 1+ >, a,T* with coefficients in ¢,, such
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that u = f(4). For 1 < k < g — 1, we define (1) to be the residue class
in O0,/m, of the coefficient of T* in T(d/dT)logf(T). Since My/M,, is
completely ramified, ¥,(x) is independent of the choice of f(T). Because
any element « of M, is written uniquely in the form 4*¢u (ne Z, "' =1,
u = 1mod my), we can extend +, on M, by defining

Vild) = () = 0.

The homomorphisms v, depend on the choice of the prime element /.
We shall now make a particular choice of 4. Let 8 be the prime ideal
of L over p, and let L, denote the completion of L at P and K, the
completion of K at p. Set 0, = O(K,) and m, = m(K,). Let E be the
elliptic curve defined by (8), and let £ denote the formal group over 0,
of the kernel of reduction modulo m, on E, with parameter ¢ = — 2x[y
(Tate [12]). By the definition of n, the endomorphism = on E reduces to
the Frobenius endomorphism of E modulo p. Therefore £ is a Lubin-Tate
formal group for the uniformizing parameter = of K, (Lubin and Tate [7]),
and is isomorphic over ¢, to the formal group & defined by the endo-
morphism

(13) [#](T) = aT + T*.

Denote by w the isomorphism from £ to & over 0,, and put 4 = w(t(P,).
Then #(P,) and 4 are prime elements of L, Since My/Ly is unramified,
they are also prime elements of M;. In the following, we consider the
homomorphisms 4, (1 < k< q— 1) with respect to this 4. It is seen
from [z],(4) = 0 that

(14) A7 = — 1,

Although 4 depends on the choice of the embedding i,, 4“-"" gives a
cube root of — z which is independent of i,.” In fact, 4¢“~"” is contained
in L and is determined by

Ata=-v3 = t(P])(q—l)/a mod qg(q—l)/“l .

From this congruence, it is also seen that A4“-Y” is the real cube root
of — 7 =p in case q = p*
The homomorphisms 4, have the following property which will be

1) Concerning this point, the author is indebted to Masato Kamei for pointing
out an error in the original manuscript.
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used later. If we identify Gal(My/M,,) with Gal(Ly/K,), and with Gal(L/K)
naturally, we obtain the isomorphism

(15) (Ox[p)* —> Gal(M./M,,,)

by considering the actions of both groups on the group of p-division
points of E. Denote by g, the element of Gal(My/M,,) corresponding to
v modulo p € (O/p)*. The following lemma is proved by the same way as
in Proposition 45 of [11].

LemMma 4. Let k be an integer such that 1< k<q— 1. For any
aeM, and ve Oy, (v,r) =1, we have

Pi(@®?) = v (@) .

§5. Main theorem
We define ¥z and ¥m, by
3’[;7:— e p— A((I—l)/S’ 5 = ?/;Tix/m,j

The generalized Hurwitz numbers G,,,,, G, ,;: and the cube root ¥m, of
m, defined above are elements of F;,. Although these numbers depend on
the choice of the embedding i.:@Q =—> C, the numbers G, ,/¥m, and
Gy,,-1/ ¥mi (R = 0) are elements of K which are independent of i.. and i,.
Moreover they are rational numbers in case ¢ = p* (cf. Lemma 3).

We are now ready to state the main theorem of this paper.

THEOREM. Let m > 0 be a cube-free rational integer which is divisible
by a prime number p + 2, 3 and not divisible by p®. Let p be a prime
ideal of Q(v¥ — 3) over p and = its generator such that = = (— 1/p), mod 3.
Define the Dirichlet character 1, of Q(¥ — 3) by (m/-); = (-/p)X, and let
G... A =X, %;") be the Hurwitz numbers defined in Section 3. Further let
im, be the cube root of m, = m/rx defined as above. Then, if we denote
by hand e=t+u ¥m + v ¥m* > 1 (t,u, ve Q) the class number and the
fundamental unit of the pure cubic field Q(¥m) respectively, we have:

- 2—l:-h = Gvp-nyrl YMomod p
(16)

2(2% - (—tli)z>h = GZ(Nv—D/ii;l{‘/ z’/’;oé mOd p *

Moreover, in case p is congruent to — 1 modulo 3, both sides of the above
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congruences are rational numbers, and ‘mod 9’ can be replaced by ‘mod p’.
In this case, we also have t = 1 mod p.

Remark. Suppose m =p = — 1mod9. Then we have = = — p, m,
= — 1, and ¥m, = — 1. We also have (f;) = (1), hence G, ,, = G, ,-: = G,
(k = 2). Therefore the statement in the introduction follows from the
above theorem.

To prove the theorem we prepare a proposition. In the following, we
set M, = F;, and use the notation of the previous section. In particular
M = F,. As is noted in the proof of Lemma 1, ¢(2; @) (« € Of) is a poly-
nomial of p(2) with coefficients in K and ¢((z; @) = ¢(2; @) for all {ep.
It follows that ¢(r, + pr,; @) € M for any a, p € 0.

ProposITION. Let a €Oy, (a,f) = 1, and let k be an integer such that
1< k<q—1. If 2 coinsides with X, or %, we have

>0 ) W@ ey + pry; @) = 12(Na — a*2(a))Gy,; mod m, .

#mod fo
(¢ fo)=1

Proof. Our proof is almost the same as that of Coates and Wiles [2]
or Robert [11]. For simplicity, we assume (f;) % (1). The case (f)) = (1)
is treated in [11], Proposition 46. Put ¢(2) = ¢(z; «). We first note that

—dnlog 0(z) = 12¢(2) .
dz
For pe 0y, (4, 1) = 1, we define the complex numbers d, () (¢ = 0) by
(e pe) = 35 du()e* .

Then, from the definition of G,,, it is seen that

Gk,z = — ”mézfn Z(ﬂ)_ldk(ﬂ) .
(u, Fo)=1
Hence
Qan g 2w latdi(ap) — (Naydy(p)] = (Na — a*2(@))G, ; -

On the other hand, since ¢(2) = 0(x2)/0(2)"%, we have
zg;log #(z + pr) = 12azl(az + apr,) — 12(Na)28(z + pr.)

= 12 3, [*dy(ap) — Na)du()]e* .

https://doi.org/10.1017/50027763000021164 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021164

PURE CUBIC FIELDS 105

It follows from the above remark on the function ¢(z) that «*d.(ay)
— (Na)d () (k = 0) are elements of M,. We shall prove that these numbers
are contained in 0, and

V(@ (z1 + pe))) = 12[a*d(ap) — (Na)d,(¢)] mod m,
if 1 £ k< g —1. Then the proof will be completed by (17).

Fix an integer p € O such that (4, f,) = 1. The formula (4) and the
addition theorem for p(2) give

$(z + pr2)

= aAL)" ] @(z + po) — 2B
(18) 350

= a2 A(L)!- Ve 1 [_ p(2) — p(urs) + _1_(p,(2) - p,(ﬂ‘l'z) )’ _ p(‘B)]G .

s 4\ p(2) — p(pro)

Let £ be the isomorphism over K, from E to the formal additive group
G, (G(X,Y)=X+Y), and p(¢4(T)) and p’(4(T)) the formal power series
obtained by substituting z = ¢(7T) in the Laurent expansions at the origin
of p(2) and p’(2) respectively. Then there exists a power series a(T) e
Z[[T]] such that a(T) = 1 mod degree 1 and

p(I) = T7a(T),  p'(UT) = —2T7a(T) .

Moreover x(P;) = t(Py)*a(t(P,) and y(P,) = — 2t(P,)~*a(t(Py)) in Ly (cf. [12]).
Here x(P;) and y(P,) are the x-coordinate and the y-coordinate of P,
respectively. Let g(T) be the formal power series obtained from (18) by
substituting z = 4(T), i.e.,

§(T) = &ALy~ [] [~ T~a(T) — p(ue)

L(= 22D = ) g
+ 1w e ) — 0]

Since (f;,7) =1 and (a,7) = 1, we see that both p(ur,) and p(B8) are p-
integral elements of @. Moreover the leading degree of g(T) is not negative
because, by the assumption that (f)) = (1), ¢(z + pr.) is regular at z = 0.
Hence g(T) € 0,[[T]]. Since g(t(P,) = ¢(z; + pr;) by (18), we have f(4) =
é(z, + pr,) for the power series f(T) = g(w='(T)) € ¢,[[T]]. Note that the
constant term of f(T) is equal to a®4'~%* [T,(®(yr,) — p(P))’, which is a
unit of ¢,, Then we have the expansion

() _ < k
T = 5o T
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with b, €@, From the definition of ., it is seen that

Pi(g(z, + pry)) = b, mod m,

for 1<k<qg—1. As is well-known (see, for example, Lemma 7 of [2]
or Lemma 44 of [11]), we have, for the isomorphism £.w-! from & to G,,

Low Y(T) = T mod degree q.

Hence
f(T) = g(¢~(T)) mod degree q.

Here the right hand side is equal to the power series obtained from (18)
by replacing z by 7. Therefore, ‘

b, = 12[a*d, (ap) — (Na)d ()] if k<gq.
This completes the proof.

Proof of the theorem. The congruences (16) will be obtained by
applying V-1 and ¥,,_y,; to both sides of (7). We only consider the
first congruence because the second one can be proved similarly. Put
k=(qg—1)/3. Let 7, B,€0x and m;e Z (jeJ) be the integers fixed in
Section 2. We first calculate .(Ny,.(¢(z;7))). Set ¢(2) = ¢(z;7). By
Lemma 2, we have

$(2)’« = ¢(a*z) = ¢(ar)
for any @ ey, («,6f) =1. Here o, is the Artin automorphism of («)

with respect to M/K. Since CI(f) is isomorphic to (0x/f0x)*/z and the
number of elements of g is 6, we see

Ny f/11(¢ (@)* = . mll ; plaz)

2(a)=1

- Q) L@ 1w
I, $@)

a M
(a, f)=1

= (N, 11'f/1((§15(1')))6 m];[d , plar)r@rrmi@
Because V,(u) = 0 for ue M,,, we obtain

181[/'k(NHf/H(¢(T)))
= am%:f (@) + 1 (VP (az))

= > 2 (et of) + 17+ o) + 2f) (@ + 7))

g mod fo v mod z
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= ; Z (e + ) + 27 + X (@ i(Bel(pe + vfo)es + pe))
= ; Z: (Xl(”)xz(ﬂ) + X 1(V)X2_ 1(#»‘P’lc(¢(1’fl + #Tz)) .
By Lemma 4 and by the fact that X,(v) = (v/z), = v* mod p, we have

I k(¢(”71 + /1‘[2)) = ‘!’k(?s(‘rl + /sz)g”)
= ”k‘!"k(¢(71 + #Tz))
= xl(”)‘!"k@s(fx + ,UTz))

if v is prime to n. Hence, by the Proposition,

18‘PR(N H ,/H(¢(T)» = ; , mZo(:i . (xl(”)zxz(ﬂ) + X 1(#))‘?k(¢(71 + /ﬂ'z))

(v,2)=1
= (g — D 26 (@¥vulg(s. + peo))
”
= 12(r*1(r) — NG, ,, mod m,
= 12(x(r) — N1G,,,, mod m, .

Similar formulas hold for ¢(z;7), ¢(z; B;) and é(z; B) (jeJ), and we get
PNy j/H(”ﬁ))
= 2(10) + 10") — 2NT + T m,@(B) + 1(E) — 2NE))Grzo mod m,

Note that 2(a’) = X~!(a) for any @ € Ox. Then it follows from (5) that the
number in the square bracket is equal to

—1—2Nr+2 3 my(1— NB)=— 3.
jEJd
This gives

1!"15(1\7111/11(7777)) = - 2Gk, X2 mOd mq .

On the other hand, we have, by the definition of ¥m,,
19) _i_ =1 — %V@Ak + _l;_vrgoz/lztc .
Therefore,
Vile) = 1Ifk(—ft—) = %%70 mod m, .

Hence, by (7),
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- 2% h = G, ,,/[Aim, mod m, .

We complete the proof of the first congruence of (16) by observing that
the both sides of the above congruence are contained in K.

Finally, suppose p = — 1 mod 3. Then Ny, () = 1 gives £ = 1 mod p,
hence ¢ = 1 mod p.

ExampLE. Take m=10, p=5. Then h=1, ¢= (23 + 11310 + 5 ¥10%/3
(Wada [13]), and

— 2uh =1, 22v — uH)h =2 mod 5.
On the other hand, we see f =10, f, = — 2, and
((OK/ﬁ)@K)X = {C|C3 = 1} »

where the bar denotes the residue class modulo f,. By (10),

1,(0) = (g) —¢ ifr=1.

Furthermore, the equations 4p(z,)’ — 1 = p'(¢,)* = 0 (r, = 2/2) give
p(lry) = Lp(ry) = ¥4 if &*=1.

Hence, we see from (12)

—1‘ -t p'(2) _ 3 G k-1
26517 p(r)—C¥4 1;31 b

Similar formula holds for sz_l. The differentiation of p’(2)* = 4p(2)’ — 1
gives p”(2) = 6p(2)’, from which follows

ERRT

_ 1 0L
S T T
Thus we obtain
_ 32 G _319¥ 2
8,22 — T osm ? 8,221 = T oema1a
27 2%7%13
Since ¥m, = —¥2,
- g
Gy, oAm, = — o = 1 mod5,
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il

119
Gio yofimyt = 2:37213 2 mod5,

and we see the congruence (16) hold.

Remark. Let K, be a real pure quartic field and K, the quadratic
subfield of K,. Let H, be the group of positive relative units of K,/K,,
and ¢, (> 1) the generator of H,, i.e.,

H, ={ecEle >0, Neyr() = 1} = <& .

Here E denotes the group of all units of K,. Then, we can formulate a
class number formula such as

e/t = (the elliptic unit),

where A, and h, denote the class number of K, and that of K, respectively
(cf. Nakamula [9] and the papers quoted there). Taking Kummer’s
logarithmic derivatives of both sides, we will be able to obtain congruence
relations similar to (16).2? The same procedure will apply to pure sextic
fields.

§6. P-adic L-functions

In the special case that p splits in K, we can also derive our congru-
ence relations (16) from the discussion concerning the p-adic L-functions
associated with the elliptic curve E. Throughout this section, we assume
p =1 mod 3. Recall that the algebraic numbers in C, are identified with
those in C via i, and i,. We shall work mainly in C,.

Let 9 = (E, dx/2y,r) be a triple consisting of our elliptic curve E,
the invariant differential dx/2y on E, and an isomorphism r of formal
groups from the formal multiplicative group G, (.e., G.(X,Y)= X4 Y
+ XY) to E, with coefficients in O(K},.). Here K;,. denotes the com-
pletion of the maximal unramified extension of K,. The existence of r
follows from Lemma 2 of [7]. Further, put X = (m/-), and let P be the
f-division point on E fixed in Section 3. With these data, Lichtenbaum
[6] associated C,-valued continuous functions L(7, X, P)(s) and L(7, X', P)
(s) on Z,. Take a positive integer N such that X(N) = 0, 1. Then by
Theorem 8.11 of [6] any by the definition of L(J, X, P), we can write

L(7, X, P)(s) = A(L + p)* — DIXIN)NY=**' — 1)

2) These congruence relations have been obtained by Masato Kamei.
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for some A(T)e O(C,)[[T]]l. Here, (N) is a p-adic integer determined by
N = o(N)XN,
o(N)-* =1, o(N)= N mod p.

Hence, we have

(20) L(7,%, P)Y(m) = (7, X, P)(n) mod p

for any rational integers m and n.
Now, taking the p-adic logarithms of (3), we obtain

1) 12fh log,e = — > (Ua) + 1Y) log,e,(C.) .

1
6 amod f
(ayf)=1

Define a primitive p-th root of unity { by { — 1 = r-'(¢(P,)), and put
S, =, Olp, =4, ) = S

By Corollary 4.2 of [6], we can define a unit u, of K, ,, by

(22) £ T) =r(e~"—1).

Then, if we put k2 = (p — 1)/3, it follows from Corollary 9.4 of [6] (Note
that the left hand side of the formula of Corollary 9.2 and the right
hand side of {the formula of Corollary 9.4 should be multiplied by 1/2),
the formula (20), and Theorem 8.2 of [6], that

617 3T 1) log,,(C.) = 287" (7, 7, P) (1)
a mod
(a, f)=1

= 257'u;'L(T, %, P)(1 — k)
= 6k!S;'u;*G,,,, mod p.

LemMma 5. (i) S;'= — #'(BRD)'us*4* mod p.
(ii) w'=z" mod p.
The proof will be given later. By this lemma, we get

’617 > 17(e) log,¢,(C.) = — 6G,,,4* mod p.

Similar consideration gives
1
6f

On the other hand, we see, from * = 1 mod p and (19),

22 1@ log,0,(C,) = — 3Gy,,;24* mod p.
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- 2\
log,e = log,,(%) = — Lmar + _;_(2% _ (%) )%noz/ﬁk mod p.

Then we obtain the congruences (16) from (21).
Proof of Lemma 5. By (22),
r(T) = u;*T mod degree 2,
hence
(23) ¢ — 1= ut(P) = u,d mod A*.
On the other hand, as is well-known (e.g., see Weil [14]), we have
(X, 0) = RI(C — 1) mod A%,
(24 (X, O = — (= D@ "pm,
).
x/s
It follows from (14) that
(%, O/4* e KF{7') = K, .
Then, by (23) and (24),
0y, O/A4* = R!'uz* mod p.
Therefore we obtain

S;t = — /M. O) = — 2'(k)'uy*A* mod p.

z

To prove (ii), observe that the isomorphism r from G, to E satisfies

r([ple,(T)) = [7)2(r([«'];,(T))) .
Comparing the coefficients of T?, we obtain (ii).
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