Jeurnal of Glaciology, Vol. 6, No. 47, 1067

PLASTICITY SOLUTION FOR A GLACIER SNOUT

By J. F. NYE
(H. H. Wills Physics Laboratory, University of Bristol, Bristol, England)

ApsTRACT. The flow near the end of a glacier in a steady state is investigated by using a theoretical model:
a plastic-rigid material with a constant flow stress resting on a rough horizontal bed. Starting from an
appropriately chosen slip-line far from the end, the slip-line field is constructed numerically and continued to
the end of the glacier. The ficld rapidly settles down to a form independent of the precise starting conditions.
In the region of small surface slope it agrees with the approximate analytical solution reported earlier (Nye,
1951). To avoid a breakdown in the method it is found necessary to modify the bed by a trivial amount over
the final 3 m. In practice the ice can lose contact with the bed very near the end, and the effect of this on the
solution is discussed.

The velocity field is computed for a uniform ablation-rate. Other distributions of ablation-rate could be
accommodated, but there appears to be a critical gradient of ablation-rate beyond which the slip-line
field fails.

REsuME. Solution de plasticité pour la langue terminale d’un glacier. 1.’écoulement prés de extrémité d’un glacier
en état stationnaire est étudié 4 I'aide d’un modéle théorique: un matériau plastique-rigide avec une
contrainte d’écoulement constant sur un lit rugueux horizontal. Partant d’une ligne de glissement choisie
d’une maniére appropriée loin de 'extrémité, le champ de lignes de glissement est construit numériquement
et continué jusqu'a extrémité du glacier. Ce champ prend rapidement une forme indépendante des conditions
précises de départ. Dans la région d’une faible pente superficielle, il y a accord avec la solution analytique
approchée publiée antérieurement (Nye, 1951). Pour éviter la non application de la méthode, il s’est avéré
nécessaire de modifier le lit d’une grossiére valeur dans les 3 derniers métres. En pratique, la glace peut
perdre le contact avec le lit trés prés de Iextrémité et son effet sur la solution est discuté.

Le champ des vitesses est calculé pour une vitesse uniforme de I’ablation. D’autres distributions de la
vitesse d’ablation peuvent étre utilisées, mais il y a un gradient critique de la vitesse d’ablation en-dessous
duquel le champ de lignes de glissement est faux.

ZUSAMMENFASSUNG.  Plastizitdtslosung fiir eine Gletscherzunge. Die Eisbewegung nahe am Ende eines
stationiiren Gletschers wird mit Hilfe eines theoretischen Modelles untersucht: plastisch-starres Material
unter konstanter Fliess-Spannung, das auf rauhem, horizontalem Untergrund aufliegt. Ausgehend von einer
passend gewihlten Gleitlinie mit grossem Zungenabstand wird das Gleitlinienfeld numerisch konstruiert und
bis zur Gletscherzunge fortgesetzt. Das Feld nimmt rasch eine Gestalt an, die von den genauen Ausgangs-
bedingungen unabhiingig ist. Im Gebiet mit geringer Oberflichenneigung stimmt es mit der friiher mitge-
teilten analytischen Niherungslosung (Nye, 1951) tiberein. Um ein Versagen der Methode zu vermeiden,
erweist sich eine Abinderung des Bettes um einen unbedeutenden Betrag auf den letzten 3 m als notwendig.
In der Wirklichkeit kann das Eis sehr nahe am Ende den Kontakt mit dem Untergrund verlieren; der
Einfluss dieser Erscheinung auf die Lésung wird untersucht.

Das Geschwindigkeitsfeld wird fiir gleichférmige Ablation berechnet. Andere Ablationsverteilungen
konnten beriicksichtigt werden, doch scheint es einen kritischen Ablationsgradienten zu geben, tiber dem das
Gleitlinienfeld versagt.

1. THE PrOBLEM

The flow in the region close to the bottom end of a glacier is not adequately described by
present theory. The theoretical treatments of glacier flow are all based on the approximation,
which is valid far from the end, that the top and bottom surfaces of the glacier are almost
parallel. If a model based on this approximation is extended towards the end, the top surface
becomes more and more steeply inclined to the bed, and the approximation becomes useless
before the end is reached.

To pose the problem more precisely, let us consider a glacier flowing down a uniform
inclined plane in a state of plane strain, so that there is no component of velocity transverse
to the main flow. Let some suitable boundary condition be imposed at the up-stream end
and let us assume a definite distribution of rate of ablation (wastage by melting and evapora-
tion) on the top surface; this could be specified as a function either of altitude or of the
horizontal coordinate. We may presume that a steady state will eventually be reached, and
we may ask what is the form of the steady-state profile and what is the distribution of stress
and velocity. The problem is not completely posed until the properties of the material and
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the boundary condition on the bed have been specified. To choose these sufficiently realisti-
cally and at the same time have a tractable problem is a major difficulty. In these circum-
stances it seems useful to try to solve the problem for a plastic-rigid material with a constant
flow stress (Hill, 1950, p. 128) and for a perfectly rough bed. This has the advantage of
promising an exact (numerical) solution to a definite problem. A refinement would be to
assume a more general flow law for the material (say a power law) and some more realistic
boundary condition at the bed (perhaps based on Weertman’s theory of sliding), but the
present paper does not go beyond plasticity with constant flow stress, although it does at the
end consider some relaxation of the rough bed condition. We assume a horizontal bed, for
the sake of definiteness; there is possibly no difficulty in introducing a sloping bed, but this
has not yet been investigated in detail. An earlier but unsuccessful attempt to solve the same

problem was made by Lliboutry (1956).

2. METHOD

We do not know, a priori, whether a solution exists in which the material is plastic right
up to the end, as in Figure 1a. For example, Figure 1b shows another possibility where the
material is deforming plastically up to a limiting slip-line and behaves rigidly beyond.
Possibilities of this sort will be looked at later (p. 710-12); meanwhile we tentatively assume
the existence of a solution that is everywhere plastic.

Plastic Plastic

P R

Fig. 1. Hypothetical states at the end of the glacier

Take the origin at the end (Fig. 2) with Ox horizontal and Oy vertical. Orowan (1949)
has shown that at points far from the end an approximate profile may be found from elementary
equilibrium considerations, as follows. Far enough to the left the surface slope is small and the
hydrostatic pressure is large compared with £, the maximum shear stress. So the normal
pressure acting across pQ increases linearly from approximately zero at P to approximately
pgh at o, where p is the density, assumed uniform, and where P = h. For unit thickness
perpendicular to the diagram the force is then §pgh*. This must be balanced, since the motion
is quasi-static, by the shear force k¥ acting across 0Q, where 0@ == #. Hence

Ypgh = ki,
or h: = 2hof, (1)
where ho = k/pg. The constant ke, which is a characteristic length, has the order of magnitude
10m. The condition for the surface slope to be small and for £ to be small compared with
pgh is the same, namely & 3 ho. The parabolic profile (1) is thus a valid approximation far
from the origin.

When the stress and velocity distribution corresponding to this approximate parabolic
profile is considered in more detail (Nye, 1951), it1s found that there are two possible approxi-
mate stress solutions in the plastic state, one corresponding to a compressive stress and strain-
rate in the top surface (compressing flow) and the other to a tensile stress and strain-rate
(extending flow). Both approximate solutions give a slip-line field consisting of parts of cycloids
(Fig. 3a, b). The corresponding approximate velocity solutions are such that a vertical line
becomes distorted after a small interval into a quadrant of an ellipse. In compressing flow
(Fig. ga) the flow lines diverge, and so there is an outward normal component of velocity at
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Fig. 2. Curve a: Orowan’s parabolic profile. Curve ®; improved parabolic profile

the top surface. For a steady profile there must therefore be ablation at the top surface. In
extending flow (Fig. gb) the flow lines converge. If the convergence is large enough there will
be an inward normal component at the top surface, which, for a steady profile, must be
compensated by accumulation (snowfall). If, on the other hand, the convergence were so small
that the top flow line dipped less than the surface, extending flow could be associated with
ablation. At the end of a glacier there is ablation—and, choosing between the two fields, it
seems reasonable to start with that of Figure 3a (compressing flow) and to try to extend it to
the right. However, as a numerical procedure this is not quite satisfactory, because the field
of Figure 3a is not known exactly, but only to a first approximation in which the higher-order
terms in Ao/h are neglected. The field is only known exactly in the limit & — o0.

To meet this difficulty we first take note of the close analogy (Nye, 1951) between the
present problem and a classical problem in plasticity theory, namely the weightless plastic
material deformed between rough parallel plates. The slip-line field for this problem is shown
in Figure 4 (Hill and others, 1951; Hill, 1950, p. 228). The two plates are forced together
and the material squeezes out sideways to left and right. Two rigid wedges are left at the
centre. Now it is easy to show that the same slip-line field is valid for the reverse problem
where, in addition to the pressure on the plates, an excess pressure is applied to the ends of the
block so as to force the plates apart. The material then flows inwards towards the centre, and
all the velocities, shear stresses and pressure gradients are reversed in sign. Now allow the
material to have weight. Any solution in the theory of plasticity for a weightless material may
be transformed into a solution for a material with weight by leaving the velocities unchanged
and by adding to the stresses at each point a hyvdrostatic tension pg y, where p is the density, g
is the gravitational acceleration, and y is the height of the point above a fixed horizontal planc
(see e.g. Nye, 1951, p. 556). The analogy we are trying to set up is between the slip-line field
of Figure 3a and the region of the field in Figure 4 that is outlined by a broken line, with the

a b

Fig. 3. Approximate cyeloidal slip-line fields and velocity distributions for (a) compressing flow and (b) extending flow
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material in this region moving from left to right. For the weightless material of Figure 4
there is an approximately linear decrease in pressure along AB. If AB is suitably inclined to the
horizontal, when the transformation is made to the material with weight, the added hydro-
static tension, which also varies linearly along AB, just cancels the pressure; so A, which is
already free from shear stress, by symmetry, also becomes free from normal stress. It thus
becomes the free top surface of Figure ga. The two slip-line fields are not exactly the same,
because while AB is exactly straight and parallel to the other boundary the top surface of the
glacier is not. Nevertheless, the correspondence is close enough to suggest how the field of
Figure 3a may be extended.

Fig. 4. Slip-line field for a plastic material deformed between rough, parallel plates. Only one half of the block is shown. G is the
centre. Shaded areas are undeforming

In computing the field of Figure 4 Hill and others deduced, by consideration of velocities,
that the slip-line cp was straight and that the slip-lines in cpE were radii and arcs of circles.
They then extended the field to the right by a small-arc numerical process. They found that
the field rapidly approached an asymptotic configuration in which successive slip-lines have
the same shape; this is the well-known cycloidal slip-line field of Frontard (1922) and Prandtl
(1923). The approach is accompanied by discontinuities of diminishing strength; discon-
tinuities propagating along the slip-lines are allowed by the hyperbolic natureof the equations,
but they are very severely damped at each reflexion at the plates. Hill and others likened the
behaviour to the operation of Saint-Venant’s principle in elasticity (although in elasticity
there are no propagating discontinuities because the equations are elliptic). To solve the
glacier problem we copy this procedure. We start with a field of radii and arcs of circles and
extend it to the right. The expectation is that, so long as the field is started in a way consistent
with the plasticity equations, the details of how it is started will not matter—it will quickly
settle down to the approximately cycloidal field of Figure 3a. We can then continue the numerical
computation to find the field in the tip region of the glacier, where the cycloidal field is no
longer even approximately valid.

Accordingly, the problem is set up as in Figure 5. The material obeys the equations of
plasticity with constant flow stress £, and is weightless. On the horizontal plane y == 0 we
assume 7z, — k. On the upper surface, whose shape is to be calculated, there is no shear
traction but there is a normal pressure proportional to altitude pgy (p being the density when
we later transform to a material having weight). The left-hand boundary ca is taken as straight
with the angle Aco — {7 —ao, where a, is a constant to be fixed later. On ca a shear traction
k is applied in the sense shown; ca is then a slip-line. Since the top surface must meet ca at
an angle of }r its downward slope at A must be a. The normal pressure on ca is chosen to be
uniform to satisfy the plasticity equations, and we give it the value pgH+k to keep the stress
continuous at A, where H is the y coordinate of A (the principal stresses at A are —pgH and
—pgH —2k). On transforming to a material of density p we add a hydrostatic tension pgy
everywhere. This frees the top surface of stress, as required, and gives a pressure on Ac of
pg(H—y)+k.

The normal velocity on the lower surface is taken to be zero. On the upper surface the
outward normal velocity is prescribed to be positive and is given as a function of x or y. In the
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Fig. 5. The slip-line field is started as radii and circular arcs in cAB and extended by a small-arc process to the end of the glacier.
Only selected slip-lines are shown. The profile and slip-lines are to scale (drawn by the computer) for a starting height Ak
of 10ho (=100 m.), this rather small starting height being chosen for clarity in the figure; larger starting heights and
therefore longer glaciers were used for the computations reported in the paper. The boundaries shown between Jelds I, IT
and III are not of course sharp

actual computation reported here it was taken as uniform with the value U//+/2, where U is
a constant. If the rate of ablation were also uniform and equal to U//2, there would be a
steady state. The normal velocity across ca will be determined later.

The left-hand boundary and the conditions on it have been chosen to satisfy the plasticity
equations. Since the shear stress on the bed and on ca is £, ¢ is a stress singularity. The slip-line
field is begun as radii and circular arcs in cas. The sense of the shear tractions on ca and cs
shows that the radii are a-lines and the arcs are g-lines (Hill, 1950, p. 134). In continuing the
field we expect, by analogy with the parallel-plate problem, to find three regions. A field (I),
analogous to the edge field in the parallel-plate problem, will be followed by an approximately
cycloidal field (II), described by the approximate analytical solution valid for small surface
slopes. As the solution is further extended the surface slope will become large and we enter the
tip region (II1). Field T is of no particular interest; it depends on the left-hand boundary
conditions which were chosen arbitrarily in order to start the solution in a simple way. Field I1
should agree with calculation and so checks the method. Field I1I is the objective of the
computation.

The value of o, and the length of ca, which we denote by r, are thus far arbitrary. » must
be chosen fairly large, say > 1ok, for otherwise field IT will not be attained before field 111
sets in; and in this case field III would depend on the starting conditions, which we do not
want to happen. Apart from this, the length of ca ought not to matter so far as field I1T is
concerned. The choice of «, is more difficult. If a0 is chosen very far from the values that the
surface slope will take in field IT we can expect severe oscillations in field I. We want to choose
a0 50 as to make the transition from I to IT reasonably smooth. If ca is large enough, field I11
should not depend on the precise value of a. However, it turns out, as we now show, that there
are other restrictions on a, that may be found by considering the small-arc process for calculat-
ing the slip-lines.

Referring to Figure 5, EF is a typical f-line; suppose the field to the left of this slip-line is
known (EF could be, in particular, the circular arc aB). If EH is a small arc we can find the
position of ¢ (Appendix A) by using the plasticity equations and the top boundary condition.
By the usual small-arc process the slip-line M may then be found, where M is on the «-line
through r. Obviously m must lie on or above the lower boundary or the process will fail. So
¥M, which is tangential to the bed at ¥, must not curve downwards. The necessary and sufficient
condition for this is that 1 should not be concave downwards, by Hencky’s first theorem
(Hill, 1950, p. 136). (The theorem shows that the change in the angle of the slip-lines between
H and G is the same as the change between ¥ and m.) In the critical case rM, and therefore Ha,
are straight. Let us see what this implies.
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On the top boundary the principal stresses for the weightless problem are —pgy, —pg y—2k.
So on the boundary the mean compressive stress p equals pgy{-k. By the plasticity relations
along the slip-lines (Hill, 1950, p. 135)
8 = —2kd¢ on an o-line, (2)
8p = 2kdd on a f-line, (3)
where ¢ is the angle of the a-line to Ox measured anticlockwise. Applying these relations to
the arcs, ne and uEe (Fig. 5 inset) and eliminating pr we find
pPE—pPa = Qk(aa ¢+83 ‘#’)s
where 8, ¢ and 8; ¢ are the increments in ¢ along He and HE. Using the boundary values
of p and putting yg—yg = A and ho = k/pg, this becomes
A = 2ho(8, 8, ). ()
In the limit of small arcs HE — HG = 8, say. Divide equation (4) by & to give
S, A 3¢
5 2hed 87
or, in the limit,
I sin I

B= T35 (5)
where « is the surface slope and R, S are the radii of curvature of the slip-lines, defined in the
usual senses by

1 I d
R~ &, e dsg
The condition for the small-arc process to work may now be written as 1/R = o or, by (5), as
sin o I
o ® B (6)
We shall make two applications of this condition, one now and one later. At A in Figure 3,
S = —r where ca = 7. So (6) gives
sin ap = —\/fh“. (7)

Thus, if ao is chosen too small, zero for instance, the initial a-element pQ will curve downwards
and the process will fail. If, on the other hand, « is chosen much too large, o will curve
upwards rather sharply. It seems likely that, in this case, the next or a later element of the
a-lines will curve downwards, thus transferring the breakdown to a later step—but this has
not been studied. To avoid such oscillation and consequent breakdown ao was chosen so as to
satisfy the equality sign in (7). It is readily shown that, in terms of H(=ya) rather than 7,
condition (7) may be written
5 8
tan oo = Hihe (8)
The length of the glacier is known a priori if we assume that the shear traction £ is main-
tained on the horizontal bed right up to the end. (We shall find later that this assumption
may not be true, but it still provides a convenient practical way of fixing an origin of x1in
advance.) A balance of horizontal forces (Appendix B) then gives

Lhy = YH?+-Hho, (9)

where L = xo (Fig. 5), which is essentially the same as equation (1) except for the last term.
It is of interest that (g) is independent of how ao is chosen. A formula for co rather than ko
would not have this property.
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Small-arc process. Having chosen r and a, the numerical process is started at A in Figure 5,
and is designed to find the next g-line to aB. It is then repeated to find successive 8-lines. The
details are given in Appendix A. The computations were programmed in ALGOL for an
Elliot 503 computer (Computer Unit, Bristol University). H was taken as 20k, (L — 220ho)
and the arc AB was divided into at first 20 intervals and later into 40 intervals. Further
computations were made for H = 20 y/2ho (L ~ 428h,) to check that field ITT was indepen-
dent of H. ao was fixed by the equality sign in (8). The first a-element pQ is then straight
in the limit of small arcs. With the finite arcs used it did in fact curve upwards slightly (for
20 intervals and H = 20ho, ¢a = 07378, ép = 0-7194, g = 0-7225). This difference
between ¢p and ¢q is preserved exactly down to the bottom element BS, so S is slightly
above the bottom, as required.

The procedure computed the slip-lines in fields I and IT satisfactorily. For 20 intervals
the computation time was between 0-2 and 1 sec. for each B-line (depending on how much
information was placed in the backing-store for later use).

Break-down near the lerminus. Near the terminus the computation of the slip-line field breaks
down because the typical arc e (Fig. 5) begins to curve downwards. rM therefore curves
downwards too and the computation must stop. We can see that this is inevitable, as follows.

First we show that the curvature of the g-line at ¥ (Fig. 5) is infinite (Hill and others,
1951, p. 52). With origin at F the a-line through r is, say,

P = axtbxntt
The curvature of the S-line at ¥ is then
dyldx i nax"='4 .,

lim = lim — _—
P J X0 ax' T ...

which is infinite whatever the value of ».

Now, by Hencky’s second theorem (Hill, 1950, p. 138), as one passes along an a-line the
radius of curvature of the successive intersecting B-lines changes by the distance traversed,
Since the radius of curvature of the f-line at F is zero, the radius of curvature of the B-line
at J is ], where FJ is the arc length. So criterion (6) for the a-line through j to curve upwards
may be written

sin « <, [T

V'2ho 7 ¥

($ being negative). As we approach the origin « — 1=, because assuming the material is
plastic up to the end this is the only value that is compatible with a free top surface and a
bed which is a surface of maximum shear stress. So the criterion becomes

v 2ho

F] = —
sin o

= 2h,.

But from Figure 5 it is clear that ¥] must continually decrease; so when ¥] becomes less than
2ho, if not before, we must expect the computation to fail on the g-line through j. It does so
in fact when x at j is —o0- gk, that is about § m. from the end. The break-down thus oceurs
extremely close to the end, in a region where the result of the computation may not be of
physical interest—for in real glaciers factors outside those in the present model may dominate
the scene within a few metres of the ice edge (irregularities in the rock bed and in ablation rate,
and melting on the bottom surface). Nevertheless, the failure cannot be dismissed, because
while the slip-line field remains open-ended we cannot be sure that it is part of a valid
solution to any physical problem.

The difficulty may be met by modifying the lower boundary. One way is arbitrarily to
make the lower boundary follow the last valid a-line, or any preceding a-line. But we can
solve a problem closer to the one originally posed if we continue the slip-line field further to
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the right in the following way. When the point is reached in the computation at which the
element ¥m (Fig. 5) curves downwards, instead of declaring the method to have broken down,
we redefine the lower boundary to follow this slip-line. Thus, in Figure 6, AB curves upwards
and a new point ¢ is taken as the beginning of a new a-line. But cp is found to curve down-
wards, so the bed, which is horizontal up to ¢, is made to follow the slip-line. Clearly, there is
one less arc element in ¥p than in EC; so as successive f-lines are computed elements are lost,
one for each step, and the field finally terminates at ¢. This procedure results in a full solution
to a problem that is very close to, but not identical with, the original one. The y-coordinate of
G is —0-00336ho (see Table I); thus the bed curves down by g cm. over the final 3 m. of its
length. For all practical purposes, but not in theory, the problem has been solved for a
horizontal bed.

TasLE I. VALUES AT EXTREMITY OF GLACIER

H n Ye do Jj €0
(radians)
20k 20 —0-00338340 —o0-06087 177 3+46Ufho
204/2ho 20 —0-003378k0 —0- 06084 233 3-35U/ho
20ho 40 —0:003367h0 —o0-06084 354 g-22U/ho
204/2ho 40 —0-003362k0 —o-06080 466 —

(H = starting height; n — number of intervals on first f-line; ¥, ¢ are values
of y and ¢ at end point; j = number of intervals along surface; éo = surface
compressive strain-rate at end point.)

The lower boundary of the plastic region is an envelope of slip-lines up to ¢ (Fig. 6), but
is a slip-line from c to the end; the field in the parallel-plate problem (Fig. 4) behaves in just
the same way, EF being an envelope and Fc a slip-line.

Velocities. The velocity field is computed from right to left as in the corresponding parallel-
plate problem. The boundary condition on the top surface is that the outward normal

A C D J H G

Fig. 6. Computed slip-line field (to scale) very near the end of the glacier. Only selected slip-lines are shown. ¢ is the critical
point at which the bed ceases to be horizontal. Inset: final triangular element, not to scale
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component of velocity is UJ4/2, a constant; or, in terms of the velocity components u, o
parallel to the slip-lines,

utv = U. (10)

On the lower boundary » = o. The fundamental equations governing the variation of u
and v along the slip-lines are (Hill, 1950, p. 136):
du—vdp = 0 on an o-line, (11)
dv+udd — o on a B-line. (12)
At ¢ in Figure 6 the boundary conditions give u = U, v = 0. Since v — 0 on the «-line caG,

it follows from (11) that du = o, and therefore u — I/ on cq. In particular ug = U, vg = o.
At 1 we have, from (12) applied to Hr,

vi—oH+ §(ur+un) (fr—du) = o
and, from the boundary condition,
HI+UI =/,

The ¢ values being known, these two simultaneous equations may be solved for u; and oy.
In a similar way the velocities are computed at J, k and L, and so on for successive B-lines,
up to the line ¢B ... E. The next point A is computed by using (11) along aB together with
va = 0. And so the computation continues up to the circular arc AB in Figure 5. Within
caB (Fig. 5) the a-lines are straight. So, from (11), u is constant along the «-lines. Therefore
u = u(¢). Introducing this relation in (12) with » = 0 on cs, shows that, within CAB,
v = v(¢). Therefore v is constant on ca. The functions u(¢) and v(¢p) are known from the
values of « and » on aB. In particular, the constant value of » on ca is found from the computed
value of v at A. Thus, to maintain the outward flow across the top surface of the glacier,
material has to be fed in across ca at a uniform rate whose component normal to cA is —u 4.
The direction of motion of material just after crossing ca (on a radial line through ¢) is
uniform and not, in general, parallel to the bed. ¢ is a velocity singularity.

In the parallel-plate problem of Figure 4 the normal velocity across cp has to be compatible
with a rigid-body motion of the material to the left of cp. That is why @b is straight—because
then the normal velocity across it comes out to be uniform and therefore compatible with
rigid-body motion. In the glacier problem (Fig. 5) ca was chosen straight and the normal
velocity across it likewise comes out to be uniform, as we have Jjust seen. We could then, if
we wanted to, have rigid material to the left of ca. But whereas in the parallel-plate problem
this feature is essential, in the glacier problem the conditions to the left of ca are left unspecified.
The left-hand boundary condition in the model is not supposed to represent reality; it is
merely a mathematical device for starting the slip-line field, and therefore further discussion
of how it might be realized physically would be academic.

The computation described was made for a uniform normal velocity on the top surface,
corresponding to a uniform ablation rate in the steady state. But the same slip-line field
should be valid even when this velocity is allowed to be non-uniform. The velocity field could
be computed by an identical method, except that U in equation (10) would be a function of
position. There is, however, a further condition to be satisfied: that the sign of the plastic
work should be everywhere positive. For U/ uniform there is no reason to suspect that the
computed solution does not meet this condition ; but if I/ is non-uniform it could be violated
as may be seen as follows. A discontinuity in U in the sense shown in Figure 7 would lead to a
discontinuity in u across an o-line as indicated. The sense of the discontinuity in u is opposite
to the sense of the shear stress, and so negative work is done. The slip-line field is therefore
invalid for such a distribution of U. (A discontinuity of the opposite sense is compatible with
the slip-line field.) If attention is confined to continuous variations there is presumably a
critical gradient of ablation rate beyond which the slip-line field is invalid. The critical case
evidently occurs when ablation decreases with altitude—which is, of course, unfortunately,
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the variation normally found. Very rough calculation shows that the solution is likely to fail
when the ablation gradient exceeds about 10 per cent in o-1 km., measured along the glacier
surface—so the solution appears to have a useful range of validity.

Fig. 7. A discontinuity in ablation rate is associated with a discontinuity in velocity across an a-line

3. REsuLTs

(i) Profiles. Let us look first at the computed profile and compare it with the Orowan
parabola of equation (1). The lower curves in Figure 8a show h (computed) —k (Orowan)
plotted against  for two different starting heights. The computed profiles oscillate at first in
field I but, as expected, they rapidly settle down in field II to a single steady curve that lies
about 1-5h below the parabola.

We can improve on the Orowan parabola as an analytical approximation by replacing
the linear distribution of normal pressure on P (Fig. 2) by the more accurate distribution
given by the cycloidal slip-line field (Nye, 1951). The latter gives an average pressure on PQ
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Fig. 8a. Curves A, A’ : h (computed)—h (Orowan) plotted against x for two different lengths of glacier. Curves
B, B': h (computed)—h (improved parabola) plolted against x for two different lengths of glacier
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of }pgh-4ink, in contrast to the value of $pgh assumed before. Balancing horizontal forces
then gives
Ypgh® + tmkh—k% = o,
which, by making the substitutions
W = h+tinho, %' = Z+3}mtho, ho = k/ps,
may be written
h? = 2ho &', (13)

Thus the improved profile (13) is exactly the same parabola as that of equation (1), but with
its apex shifted downwards by $7h, ~ 16 m. and to the right by i#*h ~ 12 m. (Fig. 2).
It passes through the origin O with a slope of 2/7 ~ 0-64.

By using this modified parabola the agreement with the steady computed profile in field I1
is much improved (Fig. 8a, upper curves), the difference being typically 0:04ke ~ 04 m.

The same argument provides an improvement on the well-known approximate formula
obtained by considering the shear stress on the bed, namely

k = pgha  (a small), (14)

where « is the angle of the top surface. For, by considering the equilibrium of the material
between x and x-}-dx, we have

d,_
= (Gzh) =k
where 6; = —4pgh+ ink, neglecting terms of order pgh(k/pgh)®. The upper sign refers to
the case in hand (compressing flow), and the lower sign to extending flow. Putting
dhldx = —tan « and solving for £ gives
k = pgha(1 +ima), (15)

neglecting terms of order pghas.

The first approximation (14) leads on integration to the Orowan parabola (1), while the
second approximation (15) with the upper sign leads to (13). It will be seen that the formulae
for the two types of flow differ in the second approximation but not in the first. When applied
to the computed profile, the right-hand side of (14) gives values about 10 per cent too low in
field II. This is the order of error expected (for the proportional error is of order « and at
x = —100h,, for example, « >~ 0-08). On the other hand, formula (15) with the upper sign
brings the error down to about 1 per cent in field II (Fig. 8b). (Figure 8b shows once again
how the two different starting heights produce curves that oscillate in field I, but then settle
down to a common steady curve.)

It should be emphasized that formulae such as (14) and (15) cannot hold in all circum-
stances. For example, (15) is in error by go per cent in field I, even though « is less than o-o07.
This is because there does not exist, in general, any unique relation between £ and «. On the
contrary, both are determined at each x by the boundary conditions. The fact that formulae
(14) and (15) give definite relations between / and « that are independent of x, and therefore
independent of the proximity of the left- and right-hand boundaries (provided they are distant),
is an unobvious result that is to be regarded rather in the same way as Saint-Venant’s principle
in elasticity. The formulae hold when the steady field II conditions have become established.

The same principle no doubt applies outside the realm of constant flow-stress plasticity.
The generalization of field IT to a more general flow law is carried out in (Nye, 1957). The
oy distribution is no longer elliptical and the correction term in equation (15) will then need
modification. Thus, the correction term in (15) is only applicable in constant flow-stress
plasticity. The leading term, on the other hand, has a wider relevance if £ is interpreted as
the shear stress on the bed.

(ii) Stresses. The computer was programmed to evaluate p, ¢, u, v at all the grid points of
the slip-line field. It also evaluated the distribution of the Cartesian stress components oy, oy, T2y
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Fig. 8b. Test of theoretical relation between h and «. The right-hand side of formula (15) is plotted against x for two different
lengths of glacier ( full curve: starling height 20/ 2he; broken curve: starting height 20h.)

and velocity components s, vy for certain fixed values of x, by interpolation between grid
points, and compared them with the values given by the approximate analytical solution. For
example, Figure ga shows the three stress components at x = — 100ho. (The difference between

results for the two starting values H = 20h, and 204/2k, is nowhere more than o-oo7k.)
The approximate analytical solution (Nye, 1951, p. 558) is

oz _y—h ( F
i Wi e €

Ty y*}!

p > 6
Tay

kT kR’

and neglects terms of order ho/h. The stresses predicted by (16) should therefore agree with
the computed stresses to order (ho/h)k = 0-08k. This expectation is confirmed; the two
curves for oy and the two for o, are indistinguishable on the scale of the figure. 75y at the
surface shows the greatest departure, being o 140k compared with zero.

Figure ga to e show how the departure of the approximate solution (broken lines) from the
computed solution (full lines) grows towards the terminus, until at x = —o- 1A there is no
longer any resemblance. It is striking that o and 7y, which are linear in y in the approximate
solution, remain linear in y to high precision in the computed solution, even as close to the

terminus as x = —#h, and x = —o0-1ho. oy is in fact very closely approximated by
oy = pey+f(x) (17)
throughout the entire range. In the equilibrium equation

O7gzy = Ooy

"B oy = P&
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L
-2k

Fig. ga to e. Cartesian stress components at 5 selected values of x. Full curves : computed ; broken curves : approximate analytical
solution (16)
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the first term is zero on » = o by the boundary condition 75, = k (we exclude the end
region x > —o0-3ho where the bed ceases to be horizontal). So, near enough to y = 0, gy will
necessarily be exactly represented by equation (17). But for the other y (17) cannot be exact
because it would imply 97z4/8x = o for all , which is by no means true. In other words, the
non-linearity of o, with », which is barely perceptible in the graphs, is essential for satisfying
the equations.

(iii) Velocities. Figure 10a to e show the Cartesian velocity components u 4, vy as computed
(full lines), and as calculated (broken lines) from the approximate formulae (Nye, 1951,

p. 562)
2\
Ui = ﬁ—%nV—&-QV[I—(l—ﬁ) } :
(18)
Vy
Uy = h"s
d dh
where V = _(ag—%djr) = up sec a— i tan a,
# = up s/h,
un = Uly/2,

(¢ = discharge, « == surface slope, u, = velocity normal to the surface, @ = mean ug,
s = distance along the surface from the end). The difference from the approximate analytical
solution is quite small at x = — 100/, and grows towards the end, as expected. Nevertheless
vy remains approximately linear in y, so that the vertical strain-rate €,, remains approximately
uniform with y even down to x = —ho. (At x = —0- 1A, v, becomes very small and negative
to follow the downward sloping bed.) The variation of u, with y, which is initially elliptical,
becomes more nearly linear towards the end, but even at x = —0- 1k it is still appreciably
non-linear, so that homogeneous simple shear would not be a very good representation.

(iv) Strain-rates. It is of interest to compute the rate of compression (i) along the bottom
and (ii) along the top surface. Both distributions (Fig. 11a, b) show a discontinuity in field I
that emanates from A in Figure 5 and propagates with diminishing intensity along the slip-
lines AB, BR, etc. In the approximate solution (18) the strain-rate component du,/dx at given
x is independent of y, and in agreement with this the two curves in Figure 112 run close
together in field I1. In field III the strain-rate on the bottom reaches a maximum compression
of o-11UJhs at about x = —2-7h.. (For example, if ks = 10 m. and U = 10 m.[yr., which
corresponds to an ablation rate of 7-1 m.[yr., this is a compression of 11 per cent per year
at 27 m. from the end.) In the extreme tip region —o0-3hs << & < 0, where the bed has been
made to follow a slip-line, the strain-rate on the bed is necessarily zero.

The compressive strain-rate in the surface rises steadily (Fig. 11a, b) in fields IT and ITI
and goes up very steeply near the end. Computed values of the surface compression-rate ¢,
at the extreme end are shown in Table I (p. 702). A value of about 3-2U/h, is indicated in
the limit as H — oo and n — co.

Theoretically, it may be shown (Appendix C) that é, = — U/S,, where S, is the radius of
curvature of the final B-line (of infinitesimal length) at the end. But in Figure 6 the radius
of curvature of the p-line at ¢ is zero, by the argument given previously, and hence, by Hencky’s
second theorem, S, is the arc-length cc. Thus és = —UJce. The computed value of é is
consistent with this result.

We shall refer to observational evidence on the surface strain-rate at the end of a glacier
in Section 5 (p. 712).
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4. PossiBLE ENp CONFIGURATIONS

Having discussed a particular solution in which the glacier deforms right up to the end,
we may now consider some other possible terminations. Provided the upper and lower
boundary conditions continue to hold, and provided the material remains plastic, the slip-line
field must continue in the way we have described. One way of terminating it, as mentioned
earlier, is arbitrarily to make the bed follow first the envelope of the a-lines and then a
particular a-line of the solution. All boundary conditions are then automatically satisfied. The
solution described is an example of this where the particular «-line is the one passing through
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the critical point ¢ in Figure 6. But any other preceding a-line, such as rg in Figure 1b, could
just as well have been chosen as the bed.*

A possible objection to solutions of this type is that they assume that the shear traction on
the lower boundary remains equal to the critical value k right up to the end. It is commonly
observed that at the end of a glacier the ice does not make contact with the rock bed over its
whole area, presumably because the normal pressure is insufficient. But further up the glacier,
as the normal pressure increases, the proportion of contact supposedly approaches 100 per cent.
Within a metre or so of the ice edge the ice is often, but not always, completely out of contact
with the bed; but we distinguish between this cantilevered region, which is considered further
in Section 5, and the more extensive region where contact is less than 100 per cent. As a rough
representation of the friction law that results in this latter region we may take

pp (b < kfp)
= ) (19)
ko (p = kw)
where 7 is the shear traction and p is the normal pressure. p is a coeflicient of friction, but
would not necessarily be equal to such a coefficient measured on a laboratory scale.

Thus, if p falls below the critical value k/p as the end of the glacier is approached, we
cannot expect the full plastic friction to develop, and the boundary condition + = £ on the
bed must change. A detailed examination shows that it is not possible to extend the slip-line
field beyond this critical point by going over to the boundary condition = = uf. Therefore,
beyond this point the material on the bed cannot deform plastically. According to a general
theorem in plasticity theory, the deforming plastic region must be bounded by a slip-line
(Hill, 1950, p. 151), across which the tangential component of velocity may be discontinuous.
We shall find that there must be such a discontinuity, and therefore the bounding slip-line
cannot be a B-line, because the condition » = o0 on the bed precludes a discontinuity there.
It must be an «-line, such as p@ in Figure 1b, and p will be the point where p falls below the
critical value k/u. Now in the computed, fully plastic, solution with the almost horizontal bed,
p falls as the end of the glacier is approached, reaches a minimum value at ¢ in Figure 6 of
0-875k(x = —0-3hs), and then rises gradually to k. So if p > 1/0-875, thatis p > 1-14, the
normal pressure is always enough to produce = = k. We must then expect 100 per cent
contact right up to the end (but see Section 5). The conclusion is that the solution described
is valid under the friction law (19) provided p > 1-14. Along other o-lines, p never falls
below 0-875k, and so for u > 1-14 the bed can equally well be placed along any one of them.
(Incidentally, p is slightly less than £ in a region that starts on the bed at x = —o-8629h, and
extends to the end of the glacier; this means that the principal stress component approximately
normal to the glacier surface is slightly tensile in this region.)

If u << 1-14, on the other hand, a point P is reached on the horizontal bed where the
normal pressure becomes insufficient to maintain v = %, and the deforming plastic region
must be terminated on the o-line pg. It is natural to suppose that the remainder of the glacier
to the right of rg moves rigidly, but this does not, in fact, provide a consistent solution, as
can be seen as follows. Suppose the bed is exactly horizontal up to the end (as pr in Fig. 1b)
and that the upper surface Qr is subject to the same ablation rate as everywhere else. The
velocity in PQR is then supposedly uniform and parallel to the bed, and, in order to maintain
a steady profile, R must be straight—but there may, in general, be a discontinuity in the

* The solution for a strictly horizontal bed is found by first locating the a-line whose intersection with the
top surface lies on the x-axis. It begins between A and ¢ in Figure 6 and curves first upwards and then downwards.
The material between this x-line and the x-axis is undeforming and moves with uniform velocity 0-g55U parallel
to the bed. There is no tangential discontinuity in velocity across the slip-line. Material thus passes into this
undeforming region and then out again. The region, which is of length 0- 4%k and maximum height 00019k,
is probably stressed up to the yield point, but some or all of it could be below the yield point. The difference
fmrt} the solution of Figure 6 is very slight. The slope of the ice surface at the end is 47-7 degrees. Note added in
proof.
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slope of the profile at ¢. It turns out on detailed examination that a balance of forces on the
section PQR, both horizontal and vertical, now allows the angle PrRQ to be determined (the
tractions on rQ are known, and the average tangential traction on PR is p times the average
normal pressure). The discontinuity in surface slope at g is then calculable. Now v, the velocity
along the B-lines, must be continuous at @. The velocity normal to the surface is also continuous
by the boundary condition. Therefore u, the velocity parallel to pQ, is discontinuous across Q.
Such a discontinuity across a bounding slip-line is usual in plasticity solutions, but it is, of
course, necessary that its sense should be the same as that of the shear traction across the slip-
line, for otherwise negative work is done. The fact is that in the present problem the surface
turns out to be re-entrant at @, and the resulting discontinuity of u is then of the wrong sign.
Therefore the postulate that Por behaves entirely rigidly must be false. The correct solution
for p << 1:14 is unknown. Presumably there is at least one plastically deforming region
within PQR.

In brief, for u > 114 we have a self-consistent solution for a bed which is for all practical
purposes, but not exactly, horizontal.* For & << 1-14 the complete solution is not known, but
only up to the limiting slip-line P, which acts as a thrust plane.

5. VALIDITY OF THE MODEL NEAR THE END

On the bed within a few metres of the end of a glacier there will be melting because
radiation can penetrate the ice and be absorbed at the ice-rock interface. This, and further
melting by conduction of heat through the rock, cause the ice to lose contact with the bed,
quite apart from the effect considered in the last section. Since our model ignores this effect
(as well as the natural irregularities in the rock bed and the effects of moraine carried by the
ice) it cannot be realistic within a few metres of the ice edge.

At distances of more than a few tens of metres from the ice edge, however, it appears to be
a useful representation. It might at first be thought that this cannot be so because the model
gives a terminus angle of 45°, whereas the terminus angles of most temperate glaciers are
considerably smaller, say 10° to 20°. But in Figure 12 the angle of the surface, «, is plotted
against distance from the end, taking ko = 10 m., and it will be seen that the angle diminishes
rather quickly away from the end. If one excludes the last 1020 m., on the grounds that contact
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Fig. 12. Angle of the surface « plotted against distance from the end

* For the case of a strictly horizontal bed see the footnote on p. 711.
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with the rock bed is not complete, the angle of the surface takes values consistent with observa-
tion. One may also remark that most glaciers at present are retreating; the terminus angles
would probably be greater if they were stationary, as assumed in the model.

The surface strain-rates shown in Figure 11a and b may now be compared with Glen’s
observations (1961) on Austerdalsbreen. He found a fluctuating compressive strain-rate
averaging o-1 yr. ' over the last 220 m., and noted that it was remarkable that the compression
was maintained down to his last measured stake interval: over the interval 3 to 19 m. from the
end of the glacier there was still a compressive strain-rate of 0-06 yr.~'. He concluded that
strain occurred down to the point where the ice lost contact with the bed.* Figure 11a and b
shows that in the plastic model compressive strain-rates of o-05 to o-2 yr.~" occur in the
surface in the range of x from —200 m. to —15 m. The Austerdalsbre results are therefore
quite consistent in order of magnitude with the conclusions of plasticity theory. The very high
compression rates in the theoretical model, up to ~g yr.”%, only occur within the last few
metres of the ice edge, and are not attained in practice if bottom melting frees the ice from the
bed. It might be worth while looking for them at places where good contact is maintained.

MS. received 4 Oclober 1966
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APPENDIX A

SMALL-ARC PrROCESS

In Figure 5 G is a typical top point of a B-line. The values of p, ¢, x and y are assumed to
be known at the points E and H. It is required to find them at G.
Applying equation (2) to the arc HG we find

pot2ekde = pu+2kdm,

* Professor F. C. Frank points out (private communication) that melting and drainage at grain boundaries
caused by preferential absorption of radiation would give contraction of the ice even when it was out of contact
with the bed.
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where the right-hand side has a known value, say pgd. By the boundary condition at c,

e = pgratk. (20)
Eliminating p¢ we have
b = d(d—ho—yc), (ho = kpg). (21)
The first-order expressions for the slopes of E¢ and He give
y6—E = —(x¢—xg) tan {}r—}(éut+dc)} (22)
and ye—ryn = (x¢—xu) tan }(da+¢n). (23)

Equations (21), (22) and (23) are solved for xq, yg, ¢ ¢ by successive approximation. Starting
with an approximate value of ¢g = ¢, say, the linear simultaneous equations (22) and (23)
are solved for yg. Then ¢ is found from (21). If this value is ¢. we have ¢. = f(¢1), so that
in this notation the equation to be solved has the standard form

¢ =rf($).
In fact in this case ¢; is a worse approximation than ¢, but if we use for a new trial value not
$2 but §(¢:+¢.) the process converges satisfactorily. ¢ being known, xg and yg are readily
found, and then pg from (20).

Points on the S-line through ¢ down to M are now found by a standard small-arc process
(Hill, 1950, p. 141, first method). The bottom point n is determined by the equations

¢n = o, (boundary condition)
N = pm—2kdn, from (3)
Jn =0,

¥N = x¥M+yu tan $dy.

APPENDIX B

ORIGIN FOR X
Consider the horizontal forces on cao in Figure 5. To the left they are
YpeH* -+ k(L+cx),
where Ak = H and kKo = L. To the right they are
pgH?* +-kH+-kr cos (}m—aw),
where ca = r. But 7 cos (}m—a) = ck. So balancing the forces gives
Lho = YH*+Hho  (ho = k/pg)

as quoted in the text, equation (g).

APPENDIX C

SURFACE STRAIN-RATE AT THE END

Figure 6 (inset) shows a small curvilinear triangle at the end of the glacier bounded by
the surface 16, the bed uG, which is an «-line, and a B-line H1. The velocity components at the
vertices are as shown. By the boundary condition at 1

o = U, (24)
and by equation (12) applied to H1

v+4(u+U)s¢ = o, (25)
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where 3¢ is the increase in ¢ along n1. Eliminating » we find, to first order,

v = —Udé. (26)
If A is the length of 16, the rate of compression of 16 is
(u—v—U)/v/28 = —/20/A by (24)
= 1/2Us¢[A by (26)
= —U[S$o

in the limit as A — 0, where S, is the limiting radius of curvature of the S-line, which is the
result quoted in the text.
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