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Abstract

Aviation passenger screening has been used worldwide to mitigate the translocation risk of
SARS-CoV-2. We present a model that evaluates factors in screening strategies used in air travel
and assess their relative sensitivity and importance in identifying infectious passengers. We use
adapted Monte Carlo simulations to produce hypothetical disease timelines for the Omicron
variant of SARS-CoV-2 for travelling passengers. Screening strategy factors assessed include
having one or two RT-PCR and/or antigen tests prior to departure and/or post-arrival, and
quarantine length and compliance upon arrival. One or more post-arrival tests and high
quarantine compliance were the most important factors in reducing pathogen translocation.
Screening that combines quarantine and post-arrival testing can shorten the length of quaran-
tine for travelers, and variability andmean testing sensitivity in post-arrival RT-PCR and antigen
tests decrease and increase with the greater time between the first and second post-arrival test,
respectively. This study provides insight into the role various screening strategy factors have in
preventing the translocation of infectious diseases and a flexible framework adaptable to other
existing or emerging diseases. Such findings may help in public health policy and decision-
making in present and future evidence-based practices for passenger screening and pandemic
preparedness.

Introduction

The rapid global spread of the coronavirus disease 2019 (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has led to significant impacts to public
health and economies worldwide. In response to the emergence of COVID-19, countries have
imposed pandemic-related restrictions to prevent and limit its transmission with mitigation
activities including the restriction of domestic and international air travel. Since the start of the
COVID-19 pandemic, the aviation industry has been one of the largest industries impacted
economically, with an approximate 60% decline in global passenger travel between 2019 to 2020
and an estimated loss of $324 billion USD in gross revenue to airlines globally [1]. In reopening
air travel, control measures such as passenger screening and entry requirements (e.g., vaccination
and diagnostic testing), non-pharmaceutical interventions, sanitation, air improvement in
airports, and current benefits of environmental control systems on aircraft have been used to
minimize the translocation of COVID-19 and renew passenger confidence in air travel [2,
3]. In the beginning of the pandemic, an estimated 10% of the cases of COVID-19 were attributed
to importation by international travel [4]. International travel has aided in spreading new and
emerging COVID-19 variants of concern [5]. Understanding passenger screening methods and
the associated translocation risks from travel between countries is essential for public health
and allows governments to make informed decisions. Lessons learned from the COVID-19
pandemic will be useful in mitigating future emerging and resurging infectious diseases. In this
study, we present the efficacy of test-based and quarantine-based passenger screening, herein-
after collectively referred to as screening strategies, for air travel between countries with differing
COVID-19 point-prevalence levels for not only COVID-19 but for future playbooks.

Screening for COVID-19 in the air travel system has helped mitigate the spread of the
COVID-19 by lowering the likely number of infectious passengers entering the air travel
system and quarantining and testing individuals infected at their destination, reducing the risk
of disease translocation and transmission [6, 7]. Passenger screening, as relevant to the analysis
herein, employs diagnostic testing techniques, requiring travellers to provide a negative
COVID-19 real-time reverse transcription polymerase chain reaction (RT-PCR) assay or
rapid antigen test prior to departing, upon arrival, or both [8, 9]. Prior to the development
of COVID-19 vaccines and in some regions, even after their initial introduction, diagnostic
testing was almost invariably used in conjunction with quarantine upon arrival, with
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quarantine periods of up to 14 days [10, 11]. This was because
screening strategies, while effective at reducing translocation risk,
may still miss infected travellers in the air travel system; just how
many were missed was not known and depends on a myriad of
factors in the types of screening tests and their timing, differing
quarantine lengths, and individual differences in the disease
course [12, 13]. These measures were occasionally supplemented
with temperature screening as well as pre-travel advice from
health departments and airlines regarding information on symp-
toms of COVID-19 and the importance of testing prior to trav-
elling, though the efficacy of these supplemental methods is
uncertain [14]. Since the roll-out of COVID-19 vaccine pro-
grammes, several countries began requiring international travel-
lers to be vaccinated against COVID-19, sometimes without
exception and sometimes in lieu of testing [15]. In safely resum-
ing domestic and international air travel to that of pre-pandemic
levels, data-driven, risk-based approaches are necessary when
assessing the appropriate passenger screening protocols. The
importance and consequences communicable diseases have in
aviation have recently been recognized in the United States, with
the establishment of new legislation for a National Aviation
Preparedness Plan Act of 2022 to address the future risk from
infectious disease outbreaks and pandemics [16].

Here our aim is to estimate and present the sensitivity of
several test-based and quarantine-based passenger screening
strategies and their elements, and compare the relative import-
ance of each strategy element in predicting sensitivity. By com-
paring the importance of various screening methods in a travel
context, informed decisions can be made by governments to help
guide policy, infectious disease risk management, and public
health preparedness.

Methods

Data

Daily data of COVID-19 infections and country population data
were collected from the COVID-19 Data Repository by the Center
for Systems Science and Engineering at Johns Hopkins University
[17, 18]. The total number of new daily notified infections was then
aggregated by country into a seven-day moving average. Using
population estimates for each respective country, we calculated a
seven-day point-prevalence.

Data used for model calibration of RT-PCR testing were col-
lected from two publicly available data sets from Iceland and
Canada [19–21]. Iceland implemented a screening process where
eligible incoming passengers were tested using RT-PCR on arrival
and 5 days post-arrival with quarantine in between. Canada imple-
mented a screening process as part of a border study where eligible
arriving international passengers were tested using RT-PCR on
arrival, 7 days post-arrival, and 14 days post-arrival, with quaran-
tine during the 14-day period.

Data used for model calibration of rapid antigen testing were
based on the Abbott Laboratories BinaxNOW antigen test and
collected from three data sets published in the literature
[22–24]. The results from the antigen tests were compared to those
from the RT-PCR test to estimate testing sensitivity and specificity
discussed below.

Vaccine efficacy were taken from the University of Washington
Institute for Health Metrics and Evaluation, using the vaccine
effectiveness provided by the Pfizer/BioNTech vaccine against the
Omicron BA.5 variant of SARS-CoV-2 [25].

Statistical analysis

Monte Carlo model
Passenger screening efficacies were obtained through a Monte
Carlo simulation-based analysis. The starting point of this analysis
was an approach used by Quilty et al. (2020) that was modified and
adapted to investigate the efficacy of passenger screening as well as
differing screeningmethods based on vaccination status [26]. Using
the methods below, we produced an individualized disease timeline
for travelling passengers.

To set up theMonte Carlo simulation, a timeline of disease had
to first be established. The disease timeline was broken into
several time points: disease exposure, onset of symptoms
(if symptoms developed), and end of the infectious (contagious)
period. Disease exposure was set to occur at time zero, and all
other time points weremodelled as Gamma distributions, with the
disease timeline being sourced from the existing literature to
represent that of the Omicron variant [27, 28]. The distribution
for the time to symptom onset is displayed in the supplementary
appendix (Supplementary Figure A.1). The time to onset of
symptoms and time to end of the infectious period were modelled
as a function of time from symptom onset, or corresponding time
near the time of peak viral load for those who did not develop
symptoms (Supplementary Figure A.2). Given that not all infected
persons will develop symptoms, the Monte Carlo simulations
assume that 32.4% of infected persons are asymptomatic [28]
and that 0.45% of those symptomatic [29] develop severe symp-
toms leading to self-quarantine and their exclusion from the air
travel system prior to travel. Moreover, for simplicity, we assume
that there is no transmission during the travel journey and that
travellers do not become infectious during this time so that we can
assess the efficacy of screening methods for infections present
prior to entry into the air travel system.We further generalize that
the timeline of disease is the same across all individuals, including
those who are asymptomatic. Finally, it is assumed that all pas-
sengers will self-quarantine until the final test is administered
such that there are no new infections after arrival and that all
passengers will be fully compliant with any length of quarantine
imposed unless otherwise noted.

We simulated a total of 10,000 infected passengers over a
generalized flight lasting four hours. The proportion of the number
of passengers vaccinated and the vaccine efficacy was manually
added into the model when determining the percent of passengers
vaccinated and unvaccinated. The model here does not account for
individual variation in vaccination regime or waning immunity
[30]. Despite the potential for differing disease timelines between
the vaccination status of individuals, the U.S. Centers for Disease
Control and Prevention recommends the same quarantine and
masking guidelines for individuals that test positive for COVID-
19, regardless of vaccination status [31, 32]. This formula takes the
results of screening the 10,000 passengers with the vaccinated
passenger screening strategy and then scales them using the efficacy
of the vaccine and the disease point-prevalence, shown in
Equation 1.

V tp = stpVi (1)

where V tp is the proportion of individuals vaccinated that are
true-positive infections, stp is the simulated proportion of true-
positive individuals based upon the simulated passengers set,
and Vi the proportion of vaccinated infected individuals. The
proportions of vaccinated and unvaccinated infected as well as
vaccinated and unvaccinated uninfected passengers were
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calculated using the inputs vaccine efficacy, disease point-
prevalence, and assigned proportion of passengers vaccinated.
These values were then used to calculate the number of passen-
gers that were vaccinated and infected ðVi), not vaccinated and
infected ðUi ), vaccinated and not infected ðVu ), and not
vaccinated and not infected ðUu ) as represented in Table 1
and Equations 2–4.

p=ViþUi (2)

1�pð Þ=VuþUu (3)

v =ViþVu (4)

To solve for vaccine effectiveness, we use a transformed odds
ratio, described in Equation 5.

Ve = 1� Vi=Vu

Ui=Uu

� �
(5)

Equation 6 is used to solve for Ui in Table 1.

b=
1�Ve v�pð Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve v�pð Þ�1ð Þ2�4Vep 1� vð Þ

q
2Ve

(6)

From there, we can solve for all of the other values in Table 1 and
are able to obtain estimated proportions of infected individuals who
are vaccinated and unvaccinated.

For each infected passenger, the flight departure time was
randomly placed between the time of exposure and the end of the
infectious period using a uniform distribution. Our analysis did not
consider infected passengers who were no longer infectious at the
time of departure. That is, only active infections in which a pas-
senger was infectious at the time of departure or would later become
infectious were included. Although some infected people may
continue to test positive via RT-PCR even after they are no longer
infectious [33, 34], these cases are not considered here.

The effectiveness of RT-PCR and antigen testing, measured in
terms of sensitivity (true-positive rate or proportion of true infec-
tions that test positive), was modelled as a function of time from
exposure [35, 36]. A monotonic Hermitean spline was fitted to
each individual simulated infection timeline to capture the test
sensitivity. It is assumed that testing sensitivity peaks at the day of
symptom onset (or approximate corresponding time point for
asymptomatic infections) and then trailed off to zero at 10 days
past the end of the infectious period for RT-PCR, while sensitivity
for an antigen test went to zero at the end of the infectious period.
The distribution of testing sensitivity over the infectious period is
discussed below [23, 24, 35].

Calibration and assessment of screening parameters
The timeline model was fitted to real-world passenger screening
data from Iceland and Canada, with the parameters for RT-PCR
test performance calibrated against these data. Calibration of the
parameters for rapid antigen testing was conducted on published
data from the United States. The RT-PCR and antigen param-
eters were calibrated by estimating sensitivity from the data and
minimizing the mean squared error between the data sensitivity
and the model sensitivity. The calibration of the parameters
relied on the sensitivity profile of six parameters, each of which
have differing values for antigen and RT-PCR testing (denoted
by subscripts Ag for antigen testing and PCR for RT-PCR test-
ing): a ðaAg and aPCRÞ , the probability of a person testing
positive at the time of exposure; b ðbAg and bPCR ), (the
probability of a person testing positive three days before symp-
toms start; c ðcAg and cPCR), the probability of a person testing
positive when symptoms start (representative of the maximum
sensitivity); d ðdAg and dPCR), the probability of a person testing
positive three days after symptoms start; eAg (for antigen
testing), the probability of a person testing positive one day
before the end of the infectious period; ePCR (for RT-PCR
testing), the probability of a person testing positive at the end
of the infectious period; f Ag (for antigen testing), the probability
of a person testing positive at the end of the infectious period;
and f PCR (for RT-PCR testing), the probability of a person
testing positive ten days after the end of the infectious period.
The specificity of an antigen and RT-PCR test is determined by a
time-constant parameter gAg and gPCR with gAg = 0.950 and
gPCR = 0.998. Based on empirical data from the literature, three
other parameters remained constant in our models. In the anti-
gen model, aAg = 0.05, eAg =0.05, and f Ag =0.05. The remaining
parameters bAg , cAg , and dAg were then calibrated against the
data. In the RT-PCR model, aPCR= 0.002, cPCR= 0.99, and f PCR
= 0.002. The remaining parameters, bPCR, dPCR, and ePCR were
calibrated against the data.

Screening elements were assessed using sensitivity, specificity,
positive predictive value (PPV), and negative predicted value
(NPV) [37]. Sensitivity was estimated using the percentage of the
simulated infected passengers who tested positive using the screen-
ing test of interest. Specificity was estimated using the percentage of
simulated uninfected passengers who tested negative using the
screening test of interest. The sensitivity and specificity of the
diagnostic testing parameters and the calibrated parameters
showed a ‘typical’ disease timeline, with symptom onset on day
5 post-exposure and with the infectious period ending on day 13 of
infection (Supplementary Figures A.3 and A.4).

Sensitivity post-quarantine was calculated using the proportion
of simulated infectious travellers who were past the end of the
infectious period at the end of the quarantine period. Most but
not all infected travellers will no longer be infectious after 14 days
[38]. The NPV was calculated as the proportion of all simulated
travellers (infected and uninfected) who were not infectious at the
end of the 14-day period. For a 14-day quarantine with 100%
compliance, all passengers were evaluated for infectiousness at
the end of the 14-day period after flight arrival. For scenarios with
quarantine compliance less than 100%, a randomly selected per-
centage of passengers were evaluated for infectiousness at the end of
the full 14-day period after departure. The remaining percentage of
non-quarantine-compliant passengers were evaluated for infec-
tiousness immediately after flight arrival or after the final test for
scenarios that had quarantine period after testing post-arrival.

Table 1. Contingency table of the presence of disease among vaccinated and
unvaccinated individuals

Vaccinated
Not
vaccinated

Infected Vi Ui

Disease
point-prevalence: p

Not infected Vu Uu (1 - p)

Proportion
vaccinated: v (1 - v) 1
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Model results were then summarized in terms of post-screening
point-prevalence, which was derived using the NPV described in
Equation 7.

Post� screening point prevalence per 100,000 population =

1�NPVð Þ100,000
(7)

Model calibration results can be found in the Supplementary
Tables A.1 and A.2.

Screening strategy analysis
We evaluated a combination of screening strategies with the model
described above using the values in Table 2 to assess screening
sensitivity of passengers travelling from a country with high
COVID-19 disease point-prevalence (1,050 infections per 100,000
population).We visually represented several combinations of screen-
ing strategies used by international governments in their effective-
ness at reducing translocation risk (refer to figures here for the visual
representation). Using the screening strategies from Table 2,
approximately 1.5 million different screening strategy combinations
were then used to estimate the importance of each screening strategy
(number of screening elements used in the strategy combinations are
presented in the Supplementary Table A.3).

Data were split into training and test data sets for model valid-
ation, where 70% of the data were used in the training data set and
30% in the test data set. A generalized boosted regression model
(gbm)was fitted to the training data, with sensitivity as the response
variable and each screening strategy element as explanatory vari-
ables. Variable importance results from this gbm were used to
assess the relative importance of each screening strategy element
on screening sensitivity. The goodness of fit of the model was
evaluated using the square of the correlation between the observed
and predicted sensitivity in the testing data set (Equation 8) where
yi, the observed sensitivity; ŷi , predicted sensitivity; and �yi , the
mean predicted sensitivity.

R2 = 1�
P

i yi� ŷi
� �2

P
i yi��yi
� �2 (8)

Variability analysis
Screening sensitivity estimates based on the simulated passenger
data set are treated as fixed values. To analyse the uncertainties

around these screening sensitivity estimates, we generate a series
of post-arrival testing scenarios using combinations of dual test
strategies which include dual antigen, dual RT-PCR, RT-PCR
followed by antigen, and antigen followed by RT-PCR tests. We
then carry out Monte Carlo-based simulations as described in the
above for a total of 10,000 passengers over a generalized flight
lasting four hours each for 400 combinations of varying time to
event parameters and symptomatic proportions for the different
test strategies with varying difference of time (in days) between
first and second test. The input parameter values include a com-
bination of random draws from a beta distribution for PCR
sensitivity, antigen specificity, symptomatic proportions for
severely infected and asymptomatic passengers and from a
gamma distribution for incubation period, and time to severe
symptoms from the day of start of symptoms. The uncertainty
in the sensitivity of the screening strategies and scenarios is
measured in terms of the standard deviation on a logit scale. We
then study the relationship between this variability in dual testing
scenarios when observed against the difference in time (in days)
that the two tests are undertaken.

Statistical analyses were all performed in R (version 4.0.3,
www.r.project.org) [39], using packages ‘covid19.analytics’
(version 4.0.5), ‘dplyr’ (version 1.0.9), ‘tidyr’ (version 1.2.0), ‘purrr’
(version 0.3.4), ‘forcats’ (version 0.5.1), ‘gbm’ (version 2.1.8), and
‘pracma’ (version 2.3.8) [18, 40–45].

Results

Seven commonly used passenger screening methods and
their reduction of COVID-19 translocation from an origin des-
tination with a high point-prevalence are presented in Figure 1.
Among these seven common strategies, a combination of pre-
departure and post-arrival testing, and greater quarantine length
and compliance reduced translocation prevalence the greatest
(Figure 1).

Among the screening strategies, the five most important factors
in predicting sensitivity were: the number of days between arrival
and a passenger first and second post-arrival test, quarantine
compliance, the type of the first and second post-arrival test
(Table 3). Interestingly, quarantine length, while important, was
not ranked among the five most important factors in improving
screening sensitivity (Table 3). Moreover, the type of pre-departure
test (either first or second pre-departure test) added little additional
value in predicting screening sensitivity. The validation of these
results on the testing data showed strong agreement in the gener-
alized boosted regression model being able to accurately identify
testing sensitivity (R2 = 0.98).

Variability in screening sensitivity had an inverse relationship
with themean screening sensitivity from all testing scenarios, where
variability generally decreased with an increase in the mean sensi-
tivity of antigen and RT-PCR testing (Figure 2). Among antigen
and RT-PCR testing screening strategies, the most variability is
observed when first and second tests are conducted closer (in days)
to each other and with the variability decreasing with longer times
between the first and second tests (Figure 2). Among the post-
arrival testing scenarios, scenarios that included at least one
RT-PCR had the greatest mean testing sensitivity, while scenarios
that used dual antigen testing had the lowest sensitivity, requiring
longer periods between the first and second post-arrival tests to
have similar testing sensitivities to that of scenarios what included
an RT-PCR test (Figure 2).

Table 2. Screening strategy values used to simulate different screening
methods

Screening strategy Value

Quarantine (days) 7, 10, 14

Quarantine compliance (%) 0, 25, 50, 75, 100

Diagnostic test type None, RT-PCR, Antigen

Number of diagnostic tests (n) 0, 1, 2

Diagnostic test timing Pre-departure, Post-arrival

Pre-departure diagnostic testing (days) 0, 2, 4, 7, 10, 14

Post-arrival diagnostic testing (days) 0, 2, 4, 7, 10, 14

Note that all post-arrival diagnostic testing scenarios assumes a quarantine length to the
completion of the post-arrival test.
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Discussion

Emerging and resurging infectious diseases pose a significant chal-
lenge to public health, and the prevention of the translocation of
these diseases can benefit population health, economies, and society
[46]. The COVID-19 pandemic has highlighted the translocation
risk of infectious diseases by international and domestic travellers
and the importance of effective screening practices, i.e., diagnostic
testing, contact tracing, and quarantine [7, 47, 48]. However, not all
screening practices are feasible, effective, sustainable, or necessary,
depending on epidemiological context and differential prevalence
of the disease between geographic areas [48]. Although screening is
known to be effective, how that effectiveness (measured in terms of
sensitivity, i.e., the true-positive proportion of true infections that
test positive) varies by test type, test timing, combinations, pairing

with quarantine, and underlying epidemiological conditions was
previously unknown. Here, we address this gap by evaluating the
importance of differing screening strategies and their variability in
the sensitivity of screening passengers for COVID-19. We deter-
mine the importance of differing screening strategies when consid-
ering various testing regimes and quarantine (including length and
compliance).

Important in the control and prevention of spreading infectious
diseases is having detailed understandings of how mitigation strat-
egies affect the risk of disease translocation between two locations.
This fundamental knowledge allows mitigation strategies to adapt
throughout public health emergencies and helps governments
make informed decisions. For instance, passenger screening may
not be necessary when two countries have similar incidence of
disease, especially if their shared incidence is low [49]. Safely redu-
cing the rigour of screeningmethods can reduce the burden on both
public resources and travellers. However, this must be done with
caution given the pace of emerging variants of SARS-CoV-2, their
capacity for immune escape, and waning immunity from both
vaccines and prior infection [50, 51]. Moreover, reduced screening
may not be practical in areas where vaccination is low or undocu-
mented. Screening and public health measures must adapt to the
changing epidemiological situation to reduce disease risk with
emerging immune-evading variants of COVID-19 [52].

Quarantine and pre-departure and post-arrival testing have
been themain strategies used throughout the COVID-19 pandemic
by governments to prevent the introduction of COVID-19 into
communities [48]. We found that screening passengers with one or
more post-arrival tests and quarantine compliance to be the most
important factors predicting screening sensitivity. Interestingly,
among the pre-departure testing factors, the timing of the first
and second pre-departure test had a greater relative influence on
screening sensitivity than the type of test given. While quarantine

Figure 1. Reduction in point-prevalence from a destination with a high point-prevalence across different independent screening strategies ordered left to right by the least to
greatest reduction in prevalence.

Table 3. Ranked relative variable importance

Variable Relative importance

Post-arrival 1st test day (n) 34.00

Quarantine compliance (%) 22.29

Post-arrival 2nd test day (n) 12.79

Post-arrival 1st test type 12.01

Post-arrival 2nd test type 7.71

Pre-departure 1st test day (n) 4.54

Pre-departure 2nd test day (n) 4.32

Quarantine length days (n) 1.67

Pre-departure 2nd test type 0.35

Pre-departure 1st test type 0.32
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duration had a lower relative importance, it should be noted that
quarantine is assumed to occur in screening strategies that involve
post-arrival testing, and therefore, its importance is likely also
reflected in post-arrival testing factors. Our model showed that
quarantine duration can be shortened when combined with post-
arrival testing while achieving similar screening sensitivity and
disease translocation. For instance, we show that a combination
of pre- and post-departure/arrival testing with a four-day post-
arrival quarantine can provide a similar reduction in translocation
prevalence than that of a scenario with a 14-day quarantine with
complete quarantine compliance. These findings align with mod-
elling on the translocation risk in COVID-19-free countries, where
a combination of testing and post-arrival quarantine was found to
be the most effective prevention in New Zealand [49]. Among
screening strategies, there are certain combinations that may have
similar reductions in translocation prevalence. For instance, we
show in Figure 1 that a single 24-h pre-departure antigen test verses
a single 72-h pre-departure RT-PCR test (Figure 1) can have
comparable translocation reductions. It is therefore likely that
health bodies may be able to tailor the combination of screening
factors to suit public health logistics and objectives (i.e., lowering
prevalence to a specific level, or detection of a percentage of
infectious persons) that balance economic costs and incomitances
to travellers. COVID-19 screening has been deployed in other
settings, such as in schools and summer camps, and has been shown
to reduce infection rates [53]. Moreover, weekly screening of
healthcare workers and other high-risk groups by the use of
RT-PCR testing was estimated to reduce their contribution to
SARS-CoV-2 transmission by 23% [54]. Serial pre-departure test-
ing may help to reduce disease translocation and the risk of trans-
mission during air travel; however, a drawback of multiple serial
testing is the increased rate of false-positive tests. For example, with
a specificity of 99%, conducting two tests instead of one test
approximately doubles the false-positive rate from 1% to 2%, and
additional testing increases the false-positive rate for the test series
even further (to approximately 10% for 10 tests, for example).
While 99% specificity could be a conservative estimate for RT-PCR
tests for COVID-19, it is difficult to determine since RT-PCR
positive is often considered the gold standard for COVID-19 infec-
tion despite a possible lack of relevance to contagiousness. None-
theless, the false-positive concern could become even more

problematic for technologies with lower specificity values than
RT-PCR [55]. Complicating these factors and test relevance is that
while RT-PCR screens can detect the lowest levels of viral presence,
antigen testing is the better tool for discovering contagiousness,
which is arguably the most important variable to uncover for travel
risk [56].

Ideally, antigen andRT-PCR screening is performed during pre-
departure as close to the time of departure as possible, so that
disease transmission risk is reduced as far upstream in the travel
journey as possible and fewer early-stage infections are missed by
the testing. However, the turn-around time for RT-PCR results may
not support testing sufficiently close to departure. By contrast,
COVID-19 antigen tests take 15 min to generate results, are less
expensive than RT-PCR, and do not require instrumentation for
analysis. Combination of screening approaches, especially those
that include antigen tests, has allowed governments to shorten
and/or remove quarantine periods for travellers from countries
with high COVID-19 prevalence [57]. We find that the variability
in testing sensitivity is reduced and testing sensitivity increases with
a greater time between the first and second post-arrival RT-PCR
and antigen (and a combination of both) tests. Dual antigen tests
were found to have the greatest relative increase in testing sensitiv-
ity and decrease in test variability than compared with other
scenarios that combine RT-PCR with antigen tests and dual
RT-PCR post-arrival testing. However, relative variance in testing
sensitivity was smallest in testing scenarios that use dual RT-PCR
tests. If screening strategies were to rely upon dual antigen screen-
ing, we find, to minimize the variability in screening sensitivity and
maximize the number of infectious individuals identified, a second
post-arrival antigen test can improve testing sensitivity by 8%when
tested 6 days apart. Based on these findings, two antigen tests can be
used in screening with less cost and inconvenience to travellers than
several RT-PCR tests or a combination of both and still achieve
comparable detection of infectious persons. By knowing the char-
acteristics that influence the sensitivity of detecting infectious
individuals, screening strategies can be optimized to develop a
combination that best suits a nations healthcare capacity. For
instance, if pathology services are not able to meet the demand
for RT-PCR testing, knowing how testing sensitivity increases with
multiple antigen tests over several days can relieve stress on health-
care systems while maintaining the same reduction in translocation

Figure 2. Relationship between the standard deviation of testing sensitivity (a) andmean sensitivity (b) in dual testing scenarios (on the y-axis) for simulation when both tests were
carried out on the day of arrival or post-arrival and the number of days between the first and second test on the x-axis.
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risk. Despite the potential for infected passengers to enter the air
travel system, the aviation industry has shown that, while on the
aircraft, transmission risk of COVID-19 and other respiratory
infections (i.e., Swine Flu) remains relatively low [58, 59].Moreover,
public health initiatives in aviation have helped to improve public
confidence in their safety during travel [60]. Therefore, screening
has the greatest impact on public health when used in limiting the
risk of the translocation of diseases.

Limitations

COVID-19 has challenged public healthmanagement strategies with
its pre-symptomatic infectiousness and rapid evolution of new vari-
ants [61]. These variants have affected vaccine efficacy, transmissi-
bility, and infection severity. Thus, a limitation of our work is that
disease transmission and infection severity were not assessed here.
However, our model can indirectly analyse vaccine efficacy and
waning population immunity by assuming a set vaccine efficacy
value and vaccine coverage for the departure country. We further
do not account for varying levels of vaccine status (i.e., first, second,
and booster doses), nor various vaccine brands. Instead, wemake the
general assumption of a standard vaccination efficacy and coverage
across the entire population. By doing so, it is possible to evaluate
translocation risk over various scenarios as vaccination programmes
progress and evolve. Furthermore, our model assumes the same
disease timeline was used for vaccinated and unvaccinated passen-
gers. Even though there are some studies that suggest the disease
timeline differs and is shortened for vaccinated individuals [30], the
Centers for Disease Control and Prevention [62] recommends the
same quarantine and masking guidelines for individuals that test
positive for COVID-19, regardless of vaccination status. Conse-
quently, this study uses the same timeline for all travellers, regardless
of vaccination status, to create a conservative estimate of the impact
of using reduced testing for vaccinated individuals.

Conclusion

Significant barrier for public health, the travelling public, and for the
aviation industry include lack of consistency in screening approaches
across the globe and rapidly evolving knowledge about COVID-19 as
a disease. Here, we show the importance of various passenger disease
screening measures used in air travel with identifying individuals
infected with COVID-19. We find that post-arrival testing and
quarantine compliance to be the more important factors in screen-
ing. Moreover, shorter quarantine periods coupled with testing can
be effective in reducing the length of quarantine periods, lessening
the burden and economic cost to the travelling public. RT-PCR
testing can be costly and onerous to individuals and to public health
services; here, we show that antigen testing, being cheaper and
quicker for diagnosis, is equally as affective at detecting those infected
with COVID-19 offering a less burdensome approach to passenger
screening. Clear quantification of the effectiveness of various screen-
ing strategies not only benefits governments seeking to keep their
populations safe, but also increases passenger confidence, provides
objective guidelines that can inform the standardization of policies
across jurisdictions, and reduces burden to public health and econ-
omies by minimizing quarantine durations. Governments have
recently sought to improve future pandemic preparedness, such as
the establishment of the Australian Centres for Disease Control and
Prevention and the US legislation for the National Aviation Pre-
paredness Plan for pandemics; the model we have developed here

provides a flexible framework to evaluate a wide array of screening
strategies and can be easily adapted to other existing or emerging
diseases aiding in future policy development.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268824000220.
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