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On tracial Z-stability of simple non-unital
C∗-algebras
Jorge Castillejos, Kang Li, and Gábor Szabó
Abstract. We investigate the notion of tracial Z-stability beyond unital C∗-algebras, and we prove
that this notion is equivalent to Z-stability in the class of separable simple nuclear C∗-algebras.

1 Introduction

The Jiang–Su algebra Z has become a cornerstone in the classification program of
simple nuclear C∗-algebras [28]. Tensorial absorption of this algebra, reminiscent of
the McDuff property for II1 factors, is a regularity condition which forms part of the
Toms–Winter regularity conjecture [57], and it allows separable, simple, unital, and
nuclear C∗-algebras in the UCT class to be classified by their K-theoretical and tracial
data [14, 18, 25, 26, 56, 60, 61]. Even outside the nuclear setting, tensorial absorption
of Z is a useful condition. For instance, Rørdam showed that this condition implies
almost unperforation of the Cuntz semigroup [48].

For the class of simple and unital C∗-algebras, Hirshberg and Orovitz [27] intro-
duced the notion of tracial Z-stability, which corresponds to a weakened form of
tensorial absorption of the Jiang–Su algebraZ. The weaker nature of this notion makes
it easier to verify than tensorial absorption of Z in many examples from dynamical
systems (see, for instance, [29–31, 38, 41, 44]). Despite its apparent weaker form, it
turns out to be equivalent to tensorial absorption of Z in the presence of nuclearity.
Therefore, all such examples where one can directly verify tracialZ-stability are within
the scope of the classification program.

In recent years, there has been an uptick in interest concerning the classification
program beyond unital C∗-algebras [16, 17, 22–24, 37, 43]. So it is natural to consider
and study tracial Z-stability for general simple C∗-algebras, which may not be unital.
This notion was announced by Amini, Golestani, Jamali, and Phillips and very recently
appeared in [1]. This paper aims to study the relation between tracial Z-stability and
tensorial absorption of Z in this setting.
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2 J. Castillejos, K. Li, and G. Szabó

In particular, we show that it is preserved under stable isomorphisms and that
it implies almost unperforation of the Cuntz semigroup. Our main theorem is the
following.

Theorem A Let A be a separable simple nuclear C∗-algebra. Then A is tracially Z-
stable if and only if A is Z-stable.

It is a rather straightforward consequence of the definition that tracial Z-stability
yields the existence of tracially large order zero maps from matrix algebras into the
central sequence algebra of A; a condition that we will refer to as the uniform McDuff
property. Not unlike in Hirshberg–Orovitz’s original approach, the most significant
step toward the main theorem is to show that the Cuntz semigroup of any tracially
Z-stable C∗-algebra is almost unperforated. In the presence of nuclearity, this grants
us access to property (SI), which allows us to make the jump to genuine Z-stability
with Matui–Sato’s [40] famous technique (see Section 5).

We hope that this version of tracial Z-stability will have potential applications in
the study of Z-stability for algebras arising from group actions on general C∗-algebras
(see, for instance, [2]).

Structure of the paper

In Section 2, we gather some preliminaries needed for this note. In particular, we
introduce a non-unital version of the uniform McDuff property and state its relation
with uniform property Γ. Our version of tracial Z-stability is introduced in Section 3,
where we also show that it is preserved under stable isomorphisms. In Section 4,
we prove that tracial Z-stability yields almost unperforation of the Cuntz semigroup.
Finally, the equivalence betweenZ-stability and tracialZ-stability for nuclear algebras
is established in Section 5.

Remark The notion of tracial Z-stability for non-unital C∗-algebras is also intro-
duced and discussed in [1], which was posted online sometime after this note was
uploaded to the arXiv in 2021. Some of the related results (overlapping with Sections
3 and 4) were announced by some of the authors of [1] at a preliminary stage at the
2018 ICM satellite conference in Rio de Janeiro (attended by the second author of this
note) and COSy 2021 (attended by the first and second authors of this note). Although
we claim no originality for some of the results in Sections 3 and 4, we had to ensure a
self-contained treatment of our findings at the time of posting this note by supplying
our own proofs (which are not necessarily identical to the ones in [1]) to all claims
made there. Shortly after this note was posted, the preprint [21] appeared on arXiv
where the authors developed similar ideas with the goal of finding conditions that
yield stable rank one.

2 Preliminaries

2.1 Notation

Let A be a C∗-algebra. We will denote the unitization of A by Ã, and the set of positive
elements in A by A+. The Pedersen ideal of A will be denoted by Ped(A). We will write
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On tracial Z-stability 3

K for the algebra of compact operators on a separable infinite-dimensional Hilbert
space, and we will denote its standard matrix units by (e i j). We will frequently identify
Mn(C) with the subalgebra generated by e i j with 1 ≤ i , j ≤ n.

The cone of lower semicontinuous (extended) traces on A (see [19, Section 3]) will
be denoted by T+(A), and the set of tracial states on A will be denoted by T(A). We
say that A is traceless when T+(A) only consists of traces with values in {0,∞}. If
A is in addition simple, then there are precisely two (trivial) such traces denoted by
the symbols 0 and∞, and the negation of A being traceless is symbolically denoted by
T+(A) ≠ {0,∞}. Every lower semicontinuous trace on τ on A extends uniquely to the
lower semicontinuous trace τ ⊗ Tr on A⊗K, where Tr is the canonical unnormalized
trace on K [8, Remark 2.27(viii)]. In fact, by uniqueness of Tr (see, for instance, [49,
p. 8885]), every lower semicontinuous trace on A⊗K is of this form.1 We will use this
fact freely. We will also simply say trace instead of lower semicontinuous trace.

Given a C∗-algebra B and a map φ ∶ A → B, ifF ⊆ B is a subset, we write ∥[φ,F]∥ < ε
to mean that ∥[φ(a), b]∥ < ε for any contractions a ∈ A and b ∈ F. We will use a ≈ε b
to denote ∥a − b∥ < ε. If a ∈ A+ and ε > 0, then (a − ε)+ denotes the positive part of
the self-adjoint element a − ε1Ã.

As usual, given a free ultrafilter ω on N, we denote the C∗-ultrapower of A by
Aω ∶= �∞(A)/{(an)n∈N∣ limn→ω ∥an∥ = 0}. For any subalgebra D ⊂ Aω , we denote
Aω ∩ D′ = {x ∈ Aω ∣ [x , D] = {0}} and Aω ∩ D⊥ = {x ∈ Aω ∣ xD = Dx = {0}}. The
(corrected) central sequence algebra (see [32, Definition 1.1]) Fω(A) of a σ-unital C∗-
algebra A is given by the quotient

Fω(A) ∶= (Aω ∩ A′)/(Aω ∩ A⊥).(2.1)

2.2 Functional calculus of order zero maps

A c.p. map φ ∶ A → B between C∗-algebras has order zero if it preserves orthogonality,
i.e., φ(a)φ(b) = 0 if a, b ∈ A+ satisfy ab = 0. By the structure theorem proved by
Winter and Zacharias [62, Theorem 3.3], φ ∶ A → B has order zero if and only if there
are h ∈M(C∗(φ(A)))+ and a ∗-homomorphism π ∶ A →M(C∗(φ(A))) ∩ {h}′ such
that φ(a) = hπ(a) for a ∈ A. If A is unital, h is equal to φ(1). Using this decomposition,
for any positive function f ∈ C0(0, 1], one can define a new c.p. order zero map
f (φ) ∶ A → B by f (φ)(a) = f (h)π(a) for a ∈ A (see [62, Corollary 4.2]).

2.3 Cuntz equivalence and strict comparison

Given a, b ∈ A+, it is said that a is Cuntz-below b, denoted a ≾A b, if for any ε > 0 there
is x ∈ A such that x∗bx ≈ε a. We will often simply write ≾ if the relevant C∗-algebra is
understood from the context. It is said that a is Cuntz-equivalent to b, denoted by a ∼ b,

1Let σ be a nontrivial lower semicontinuous trace on A⊗K. For any a ∈ A+, the map σa ∶ K+ →
[0,∞] given by σa(x) = σ(a ⊗ x) is a well-defined lower semicontinuous trace on K. Similarly, τ ∶
A+ → [0,∞] given by τ(a) = σ(a ⊗ e11) is a well-defined lower semicontinuous trace on A. Using the
convention that∞ ⋅ 0 = 0, the uniqueness of Tr yields

σ(a ⊗ x) = σa(x) = σa(e11)Tr(x) = σ(a ⊗ e11)Tr(x) = τ(a)Tr(x).
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4 J. Castillejos, K. Li, and G. Szabó

if a ≾ b and b ≾ a. The Cuntz semigroup is given by Cu(A) = (A⊗K)+/ ∼ equipped
with orthogonal addition and order given by Cuntz subequivalence. The equivalence
class of a ∈ (A⊗K)+ in Cu(A) is denoted by ⟨a⟩. We refer to reader to [6, Section 2]
for a more comprehensive review of the basic construction of the Cuntz semigroup.

The Cuntz semigroup Cu(A) is called almost unperforated if ⟨a⟩ ≤ ⟨b⟩ holds when-
ever ⟨a⟩, ⟨b⟩ ∈ Cu(A) satisfy (k + 1)⟨a⟩ ≤ k⟨b⟩ for some k ∈ N. For simplicity, we will
simply say quasitrace instead of lower semicontinuous 2-quasitrace (see [8, Definition
2.22]). Any quasitrace on A extends uniquely to the quasitrace τ ∶= τ ⊗ Tr on A⊗K by
[8, Remark 2.27]. The dimension function dτ ∶ (A⊗K)+ → [0,∞] associated with τ
is given by dτ(a) = limn→∞ τ(a1/n). This dimension function induces a well-defined
functional on Cu(A).

It is said that A has strict comparison if ⟨a⟩ ≤ ⟨b⟩ holds whenever dτ(⟨a⟩) < dτ(⟨b⟩)
for every quasitrace τ on A with dτ(⟨b⟩) > 0. If A is simple, then Cu(A) is almost
unperforated if and only if A has strict comparison (see [3, Proposition 5.2.20] or [54,
Remark 9.2(3)]).

We finish this subsection with the following definition.

Definition 2.1 [3, Definition 5.3.1] Let x , y ∈ Cu(A). It is said that x is way-below y,
denoted x ≪ y, if whenever (yn)n∈N is an increasing sequence with y ≤ supn∈N yn ,
then there is some n ∈ N such that x ≤ yn . An element y ∈ Cu(A) is soft if for any
x ∈ Cu(B) such that x ≪ y there is some k ∶= k(x) ∈ N such that (k + 1)x ≤ ky.

2.4 Generalized limit traces

A trace τ on Aω is called a limit trace if there is a sequence of tracial states (τn)n∈N on
A such that τ((an)n∈N) = limn→ω τn(an). Such tracial states on Aω capture enough
about the global tracial information when A is unital, but become too restrictive when
A has unbounded traces. In the general non-unital case, it becomes more appropriate
to study the following class of traces.

Definition 2.2 [53, Definition 2.1] Let ω be a free ultrafilter on N. For a sequence
of lower semicontinuous traces (τn) on A, one defines a lower semicontinuous trace
τ ∶ �∞(A)+ → [0,∞] by

τ((an)n∈N) = sup
ε>0

lim
n→ω

τn((an − ε)+), (an)n∈N ∈ �∞(A)+.(2.2)

This trace induces a lower semicontinuous trace on Aω . Traces of this form on Aω
are called generalized limit traces. The set of all generalized limit traces on Aω will be
denoted by T+ω (A).

Given a generalized limit trace τ on Aω and a ∈ A+, the map τa ∶ (Aω ∩ A′)+ →
[0,∞], x ↦ τ(ax) yields a trace that satisfies τa(x) ≤ τ(a)∥x∥ for x ∈ (Aω ∩ A′)+. It
actually extends to a positive tracial functional on Aω ∩ A′ with norm ∥τa∥ = τ(a) if
τ(a) < ∞. Moreover, this induces a trace on Fω(A), which we will also denote by τa .
We refer the reader to [53, Remark 2.3] for details.

Lemma 2.3 (cf. [12, Proposition 2.3]) Let A be an algebraically simple σ-unital C∗-
algebra with T+(A) ≠ {0,∞}. If a generalized limit trace on Aω is finite on some
nonzero positive element of A, then it is a constant multiple of a limit trace.
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Proof Since A is algebraically simple, all nontrivial lower semicontinuous traces
on A are bounded and extend to positive tracial functionals. The same proof of [11,
Proposition 2.3] remains valid except we replace compactness of T(A) with [55,
Proposition 2.5] in order to obtain inf σ∈T(A) σ(a) > 0 for some nonzero a ∈ A+. ∎

2.5 Uniform McDuff property for non-unital C∗-algebras

We now present a non-unital version of the uniform McDuff property, which was
defined in [13, Definition 4.2] for C∗-algebras with compact tracial state space. As
explained in [13, Remark 4.3], the uniform McDuff property is equivalent to the
existence of a c.p.c. order zero map φ ∶ Mn(C) → Aω ∩ A′ such that τ(φ(1Mn)) = 1
for any limit trace τ on Aω ; such maps have been called (uniformly) tracially large. We
also state here a version of such maps in the general non-unital case.

Definition 2.4 Let A and B be C∗-algebras with B unital and A separable simple and
T+(A) ≠ {0,∞}. A c.p.c. order zero map φ ∶ B → Fω(A) is tracially large if τa(φ(1)) =
τ(a) for all (or any) nonzero positive element a ∈ Ped(A) and τ ∈ T+ω (A) with τ(a) <
∞.2

We say that a separable, simple C∗-algebra A with T+(A) ≠ {0,∞} is uniformly
McDuff if for every n ∈ N there is a tracially large order zero map φ ∶ Mn(C) →
Fω(A).

As in [12, Proposition 2.6(ii)], the notion introduced here agrees with Definition
4.2 of [13] if every τ ∈ T+(A)/{∞} is bounded and the tracial state space is compact
and nonempty. One may, hence, view the above as some kind of stabilized version of
the previously defined notion of uniform McDuffness.

Since stably isomorphic C∗-algebras have isomorphic central sequence algebras, it
is reasonable to expect that the uniform McDuff property is also preserved. In order
to prove this, one has to check how the stable isomorphism is transforming the traces
of the form τa with a ∈ Ped(A) and τ ∈ T+ω (A).

Proposition 2.5 The uniform McDuff property is preserved under stable isomorphism.

Proof By [45, Theorem 1.4], any isomorphism between two C∗-algebras restricts
to an isomorphism between their Pedersen ideals. If we combine this with [12,
Proposition 2.8], it follows directly that the uniform McDuff property is preserved
under genuine isomorphism. Therefore, given a separable simple C∗-algebra A with
T+(A) ≠ {0,∞}, it is enough to check that A is uniformly McDuff if and only if A⊗K

is uniformly McDuff.
Consider m ∈ N and suppose φ ∶ Mm(C) → Fω(A) is any completely positive

contractive order zero map, which by [59, Proposition 1.2.4] can be represented by
a sequence of order zero maps φn ∶ Mm(C) → A. Let Ψ ∶ Aω → (A⊗K)ω be given
by (an)n∈N ↦ (an ⊗ (∑n

i=1 e i i))n∈N. By [12, Lemma 1.3] (which goes back to [32]), Ψ
induces an isomorphism Ψ̄ ∶ Fω(A) → Fω(A⊗K). Consider a generalized limit trace
σ ∈ T+ω (A⊗K). This trace is induced by a sequence (τn ⊗ Tr)n∈N where τn ∈ T+(A).

2In other words, the element 1 − φ(1) vanishes under the trace τa . The fact that “for all” and “for
any” agree here is due to [53, Proposition 2.4] applied to the inclusion A ⊂ Aω .
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Let τ be the generalized limit trace on Aω induced by the sequence (τn)n∈N. Suppose
a ∈ Ped(A)/{0} is positive. Then we observe

σa⊗e11(Ψ̄(φ(1)))
= sup

ε>0
lim
n→ω

(τn ⊗ Tr)((a1/2 ⊗ e11) ⋅ φn(1) ⊗ (∑
j≤n

e j j) ⋅ (a1/2 ⊗ e11) − ε)
+

= sup
ε>0

lim
n→ω

τn((a1/2φn(1)a1/2 − ε)+) = τa(φ(1)).

Now φ is tracially large if and only if τa(ϕ(1)) = τ(a) whenever 0 < τ(a) < ∞,
and Ψ̄ ○ φ is tracially large if and only if σa⊗e11(Ψ̄(φ(1))) = σ(a ⊗ e11) whenever
0 < σ(a ⊗ e11) < ∞. Since by construction we always have τ(a) = σ(a ⊗ e11) for the
aforementioned assignment σ ↦ τ, the computation above directly implies that φ
is tracially large if and only if Ψ̄ ○ φ is tracially large. Consequently, A is uniformly
McDuff if and only if A⊗K is. ∎
Remark 2.6 If A is a separable simple exact Z-stable C∗-algebra with T+(A) ≠
{0,∞}, then it is uniformly McDuff. Indeed, let us first assume that every nontrivial
trace on A is a multiple of a tracial state and that T(A) is compact. Let n ∈ N. By
[14, Proposition 2.3], there is an order zero map φ ∶ Mn(C) → Fω(A) = Aω ∩ A′ such
that τ(φ(1)) = 1 for all τ ∈ Tω(A). It follows that A is uniformly McDuff. We, hence,
observe that the general case follows with the previous proposition and [11, Theorem
2.7].

In light of [13, Theorem 4.6], it is natural to ask about the relation between the
uniform McDuff property and the stabilized uniform property Γ (see [12, Definition
2.5]). We can at least provide an answer to this question if we assume a regularity
condition at the level of the Cuntz semigroup. (It is conceivable that, although our
proof uses these assumptions, the statement may actually hold in greater generality.)
Proposition 2.7 Let A be a simple separable C∗-algebra with T+(A) ≠ {0,∞}. If A is
uniformly McDuff, then A has stabilized uniform property Γ. The converse holds if A is
nuclear and has either stable rank one or Cu(A⊗Z) ≅ Cu(A).
Proof Suppose A is uniformly McDuff. Then, for any n ∈ N, there is a tracially large
order zero map φ ∶ Mn(C) → Fω(A). It follows that the map x ↦ τa(φ(x)) is a tracial
functional on Mn(C) for any a ∈ A+ and τ ∈ T+ω (A) with τ(a) < ∞. If tr denotes the
normalized trace on Mn(C), then

τa(φ(x)) = τa(φ(1))tr(x) = τ(a)tr(x), x ∈ Mn(C).(2.3)

Observe that the last equality follows from the fact that φ is tracially large. If we
set f i = φ(e i i), then the previous equation shows τa( f i) = 1

n τ(a) for any a ∈ A+ and
τ ∈ T+ω (A) with τ(a) < ∞. Hence, A has stabilized uniform property Γ.

For the converse implication, we suppose that A is nuclear and has either stable
rank one or satisfies Cu(A⊗Z) ≅ Cu(A). By [11, Proposition 2.4], A is either stably
projectionless or stably isomorphic to a unital C∗-algebra. In the stably projectionless
case, A is also stably isomorphic to a C∗-algebra B with nonempty compact tracial state
space and without unbounded traces by [12, Lemma 3.3] and the final observation in
[12] (this uses the assumption that either Cu(A) = Cu(A⊗Z) or A has stable rank
one, respectively).
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Since A is nonelementary, simple, separable, and nuclear, B is also nonelementary,
simple, separable, and nuclear. By [13, Theorem 4.6], B is uniformly McDuff if and only
if B has uniform property Γ. Then, since stabilized property Γ and the McDuff property
are preserved under stable isomorphisms (see [12, Theorem 2.10 and Proposition 2.6]
and Proposition 2.5), we deduce that A is uniformly McDuff if and only if A has
stabilized uniform property Γ. ∎

3 Tracial Z-stability

Let us begin by stating the general version of tracial Z-stability. This notion uses the
idea of “tracial smallness” that can be traced back to [20, 27, 35, 36, 46].

Definition 3.1 (see also [1, Definition 3.6]) A simple C∗-algebra A is traciallyZ-stable
if A ≠ C and for any finite set F ⊆ A, ε > 0, nonzero positive elements a, b ∈ A+, and
n ∈ N, there is a c.p.c. order zero map φ ∶ Mn(C) → A such that

(b(1Ã − φ(1))b − ε)+ ≾ a and ∥[φ,F]∥ < ε.

Remark 3.2 When A is a unital C∗-algebra, it is straightforward to see that [27, Def-
inition 2.1] implies Definition 3.1. The converse implication follows from functional
calculus of c.p.c. order zero maps. More precisely, we consider the map f (φ) where f
is a continuous function on [0, 1] given by

f (t) ∶=
⎧⎪⎪⎨⎪⎪⎩

(1 − ε)−1 t, t ∈ [0, 1 − ε],
1, t ∈ [1 − ε, 1].

This order zero map satisfies that 1 − f (φ)(1) ∼ (1 − φ(1) − ε)+ (see the proof of [7,
Lemma 2.8]).

Remark 3.3 (a) We also note that in principle we allow φ to be the zero map in order
to consider purely infinite simple C∗-algebras as tracially Z-stable (see also [33,
Proposition 3.5(ii)]). This has the one downside that it would a priori also include
C as an example, which is why we exclude this specific case in the definition.

(b) We can furthermore observe that simple C∗-algebras cannot be tracially Z-stable
if they are elementary, i.e., of type I. Indeed, suppose A = K(H) for a Hilbert space
of dimension at least 2. Let p1 , p2 ∈ A be two orthogonal rank one projections,
and let v ∈ A be a partial isometry with v∗v = p1 and vv∗ = p2. If we consider
a = p1, b = p1 + p2, andF = {v , v∗} and choose a c.p.c. order zero map φ for n = 2
as in the definition of tracial Z-stability for small enough ε, then we obtain a
contradiction. This is because if x ∈ M2(C) is any contraction, then the operator
φ(x) not only leaves the two-dimensional subspace (p1 + p2)H approximately
invariant (as [φ(x), b] ≈ 0), but ∥[φ(x),F]∥ ≈ 0 forces φ(x) to act like a constant
multiple of the identity on this subspace. Considering the domain of φ, it can,
hence, only be order zero if bφ(⋅)b is close to the zero map. For sufficiently
small ε, this would yield 1

2(p1 + p2) ≤ (b(1Ã − φ(1))b − ε)+ ≾ a = p1, which is
not possible.

The following is rather straightforward.
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Lemma 3.4 Let A be a simple C∗-algebra with A ≠ C. Let S ⊆ A+ be any subset
containing an approximate unit of contractions. Then A is tracially Z-stable if and only
if for any finite set F ⊆ A, ε > 0, nonzero positive contraction a ∈ A, b ∈ S, and n ∈ N,
there is a c.p.c. order zero map φ ∶ Mn(C) → A such that

(b(1Ã − φ(1))b − ε)+ ≾ a and ∥[φ,F]∥ < ε.

Proof The “only if ” part is tautological. For the “if ” part, let us fix an arbitrary tuple
(F, ε, a, b, n), in particular with some arbitrary element b ∈ A+ with norm one. By
the property of S, we may choose a positive contraction h ∈ S with ∥b − bh∥ < ε/4. By
assumption, we can find a c.p.c. order zero map φ ∶ Mn(C) → A such that

(h(1Ã − φ(1))h − ε
2
)
+
≾ a and ∥[φ,F]∥ < ε.

Using the well-known [34, Lemma 2.2], we observe

(b(1Ã − φ(1))b − ε)+ ≾ (bh(1Ã − φ(1))hb − ε
2 )+

≾ b(h(1Ã − φ(1))h − ε
2 )+b

≾ (h(1Ã − φ(1))h − ε
2 )+ ≾ a. ∎

Proposition 3.5 Let A be a simple C∗-algebra with A ≠ C. Then A is traciallyZ-stable if
and only if for any n ∈ N, any separable C∗-subalgebra D ⊆ A, and any positive element
a ∈ Aω of norm one, there exist a c.p.c. order zero map φ ∶ Mn(C) → Aω ∩ D′ and a
contraction x ∈ Aω such that

ax = x and x∗x − (1Ãω
− φ(1)) ∈ Ãω ∩ D⊥ .(3.1)

Proof Suppose that A is tracially Z-stable. Let (ak)k∈N be a sequence of positive
elements of norm one representing a ∈ Aω and fix n ∈ N. By employing functional
calculus, we may perturb (an)n∈N by a null sequence and assume without loss of gen-
erality that there exists another sequence of norm one positive elements (dk)k∈N with
dk ak = dk for all k ∈ N. We choose a countable increasing approximate unit {ek}k∈N in
D+, and let e ∈ Dω ⊂ Aω be its induced element. LetFk ⊂ D be an increasing sequence
of finite subsets with dense union.

Using the hypothesis, we can find a sequence of c.p.c. order zero maps φk ∶
Mn(C) → A such that

(ek(1Ã − φk(1))ek −
1
k
)
+
≾ dk and ∥[φk ,Fk]∥ < ε.(3.2)

In particular, we may find a (possibly unbounded) sequence rk ∈ A satisfying

r∗k dk rk ≈2/k ek(1Ã − φk(1))ek , k ∈ N.(3.3)

We see that the sequence xk =
√

dk rk satisfies lim supk→∞ ∥xk∥ ≤ 1, so we obtain a
contraction x ∈ Aω induced by this sequence. Let φ ∶ Mn(C) → Aω be the sequence
induced by (φk). Clearly, φ is a c.p.c. order zero map, and by construction, the image
of φ is actually in the relative commutant Aω ∩ D′. Furthermore, we have arranged
that

ax = x and x∗x = e(1Ã − φ(1))e .
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Since e acts like a unit on elements of D, we see that this implies the required condition
x∗x − (1Ãω

− φ(1)) ∈ Ãω ∩ D⊥.
Conversely, let F ⊆ A be a finite subset, ε > 0, and consider nonzero positive

elements a, b ∈ A, and any n ∈ N. Let us assume without loss of generality that ∥a∥ = 1
and F = F∗. By the hypothesis, there is an order zero map φ ∶ Mn(C) → Aω ∩ F′

and a contraction x ∈ Aω such that ax = x and x∗x − (1Ãω
− φ(1)) ∈ Ãω ∩ {b}⊥. A

particular consequence of this is bx∗axb = b(1Ãω
− φ(1))b. By [59, Proposition 1.2.4],

we can find a sequence of order zero maps φk ∶ Mn(C) → A that induces φ. Likewise,
choose a sequence of contractions xk ∈ A representing x. Then this leads to the limit
behavior

lim
k→ω

∥bx∗k axk b − b(1Ã − φk(1))b∥ = 0.(3.4)

Thus, there is I ∈ ω such that for all k ∈ I, one has

∥bx∗k axk b − b(1Ã − φk(1))b∥ < ε.(3.5)

It follows that (b(1Ã − φk(1))b − ε)+ ≾ bx∗k axk b ≾ a. Since the image of φ is in the
relative commutant Aω ∩ F′, we can also assume that ∥[φk ,F]∥ < ε for suitably chosen
k. This shows that A is tracially Z-stable. ∎

We will now prove some permanence properties for tracial Z-stability.

Proposition 3.6 (see also [1, Theorem 4.1]) Let A be a simple C∗-algebra, and suppose
that B ⊆ A is a hereditary C∗-subalgebra. If A is tracially Z-stable, then so is B.

Proof Since A is tracially Z-stable, it cannot be of type I. Since A is also simple and
B is hereditary, we may conclude B ≠ C. So it suffices to show that the condition in
Proposition 3.5 passes from A to B. Let D ⊆ B be a separable C∗-subalgebra, and let
b ∈ Bω be a positive element of norm one. A standard application of the ε-test yields a
positive norm one element e ∈ Bω such that ed = d = de for all d ∈ D ∪ {b}. Let n ∈ N.
Using that A is tracially Z-stable, we find a c.p.c. order zero map ψ ∶ Mn(C) → Aω ∩
D′ ∩ {e}′ and a contraction x ∈ Aω such that bx = x and

1Ãω
+ Ãω ∩ D⊥ = x∗x + ψ(1) + Ãω ∩ D⊥

in (Ãω ∩ D′)/(Ãω ∩ D⊥). By these properties of ψ and the fact that B is hereditary,
we see that φ = eψ(⋅)e ∶ Mn(C) → Bω ∩ D′ is also c.p.c. order zero. Furthermore, we
obtain the equality

1Ãω
+ Ãω ∩ D⊥ = x∗x + ψ(1) + Ãω ∩ D⊥ = ex∗xe + φ(1) + Ãω ∩ D⊥

in (Ãω ∩ D′)/(Ãω ∩ D⊥). Since clearly bxe = xe, we have that xe ∈ Bω is a contrac-
tion, and the equation from left to right actually holds in (B̃ω ∩ D′)/(B̃ω ∩ D⊥). This
finishes the proof. ∎

We now prove that tracial Z-stability passes to minimal tensor products with
arbitrary simple C∗-algebras. This observation in particular generalizes [27, Lemma
2.4].

Proposition 3.7 (see also [1, Theorem 5.1]) Let A and B be two simple C∗-algebras. If
A is tracially Z-stable, then so is the minimal tensor product A⊗ B.
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Proof Let FA ⊂ A and FB ⊂ B be finite sets of contractions. It suffices to check
the condition in Definition 3.1 for sets of the form F = {a ⊗ b ∣ a ∈ FA, b ∈ FB}. Let
g ∈ A⊗ B be a nonzero positive element, which will play the role of the element a in
Definition 3.1. By Kirchberg’s slice lemma [50, Lemma 4.1.9], we can find a pair of
nonzero positive elements a1 ∈ A and b0 ∈ B with a1 ⊗ b0 ≾ g. Appealing to Lemma
3.4, it suffices to check the condition in Definition 3.1 for elementary tensors of norm
one positive contractions in place of arbitrary elements b as stated there.

Let 0 < ε < 1 and n ∈ N be given. Let e ∈ A and f ∈ B be any pair of positive
contractions of norm one. Since B is simple, we can find some natural number k ∈ N
with

⟨( f 2 − ε)+⟩ ≤ k⟨b0⟩.(3.6)

Appealing to [27, Lemma 2.3],3 we find a nonzero positive contraction a0 ∈ A with
k⟨a0⟩ ≤ ⟨a1⟩.

Now use that A is tracially Z-stable and choose a c.p.c. order zero map ψ ∶
Mn(C) → A satisfying

(e(1Ã − ψ(1))e − ε)+ ≾ a0 and ∥[ψ,FA]∥ < ε.(3.7)

Let s ∈ B be a positive contraction that satisfies sx ≈ε x ≈ε xs for all x ∈ FB ∪ { f }.
Then φ = ψ ⊗ s ∶ Mn(C) → A⊗ B is another c.p.c. order zero map that clearly satisfies
∥[φ,F]∥ < 3ε. Then

(e ⊗ f )(1 − φ(1))(e ⊗ f ) ≈ε (e ⊗ f )(1Ã ⊗ s − φ(1))(e ⊗ f )
= e(1 − ψ(1))e ⊗ f s f
≈ε e(1 − ψ(1))e ⊗ f 2 ,

and hence we observe (appealing again to [34, Lemma 2.2]) that

⟨((e ⊗ f )(1 − φ(1))(e ⊗ f ) − 4ε)
+
⟩

≤ ⟨(e(1 − ψ(1))e ⊗ f 2 − 2ε)
+
⟩

≤ ⟨(e(1 − ψ(1))e − ε)
+
⊗ ( f 2 − ε)+⟩

(3.6),(3.7)
≤ k⟨a0 ⊗ b0⟩ ≤ ⟨a1 ⊗ b0⟩ ≤ ⟨g⟩.

This verifies the condition in Lemma 3.4 for A⊗ B. ∎
A straightforward consequence of Propositions 3.6 and 3.7 is the following.

Corollary 3.8 (see also [1, Proposition 4.11]) Let A be a simple C∗-algebra. Then A is
tracially Z-stable if and only if A⊗K is tracially Z-stable.

4 Strict comparison

We move now to show that simple tracially Z-stable C∗-algebras have almost unper-
forated Cuntz semigroups. For this, we will mimic the original approach used by

3We note that despite unitality being an assumption there, all that is needed in the proof is that
hereditary subalgebras of A are not type I, in order to appeal to Glimm’s theorem via [33, Proposition
4.10]. This is automatic here.
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Hirshberg and Orovitz in [27, Lemma 3.2]. The results appearing in this section were
announced some years ago by the authors of [1].

Lemma 4.1 (cf. [27, Lemma 3.2]) Let A be a simple tracially Z-stable C∗-algebra. Let
a, b ∈ A+, and suppose that 0 is an accumulation point of σ(b). If k⟨a⟩ ≤ k⟨b⟩ in Cu(A)
for some k ∈ N, then a ≾ b.

Proof We will proceed as the original proof of [27, Lemma 3.2] with some modifica-
tions. Since we have shown that hereditary subalgebras of A are tracially Z-stable, we
may assume without loss of generality that A is σ-unital. Let us fix ε > 0. Without loss
of generality, we may assume that a and b have norm equal to 1. Let c = (c i j) ∈ Mk(A)
and δ > 0 such that c((b − δ)+ ⊗ 1k)c∗ = (a − ε)+ ⊗ 1k .

Let f ∈ C0(0, 1] be a nonnegative function of norm equal to 1 such that its support
is contained in (0, δ/2). Set d ∶= f (b), which is not zero since 0 is an accumulation
point of σ(b).

We fix μ > 0. As in [27, Lemma 3.2], we can assume that c i jd = 0, and hence

k
∑
r=1

c ir(b − δ)+c∗jr =
⎧⎪⎪⎨⎪⎪⎩

(a − ε)+ , i = j,
0, i ≠ j.

(4.1)

Let g ∈ C0(0, 1] such that g∣[ μ
7 ,1] = 1 and g(t) =

√
7t/μ for t ∈ (0, μ

7 ]. Let h ∈ C0(0, 1]
be given by h(t) = 1 −

√
1 − t. Thus,

∣g(t)2 t − t∣ < μ
15

, 1 − h(t) =
√

1 − t.(4.2)

Set F = {(a − ε)+ , (b − δ)+, (a − ε)1/2
+ } ∪ {c i j , c i j(b − δ)+c∗rs}i , j,r ,s . Since we

assumed that A is σ-unital, let ( fn) be a sequential increasing approximate unit of A
satisfying fn+1 fn = fn for all n ≥ 1. Find n ∈ N large enough that satisfies

fn x ≈ μ
15

x ≈ μ
15

x fn , x ∈ F.(4.3)

Using tracial Z-stability, we find a c.p.c. order zero map φ ∶ Mk(C) → A such that

( fn(1Ã − φ(1)) fn − η)+ ≾ d , ∥[φ,F]∥ < min{η, μ
15
} ,(4.4)

where η > 0 is small enough so that

∥[g(φ),F]∥ < μ
15k4 , ∥[φ1/2 ,F]∥ < μ

15k4 .(4.5)

The existence of such η is guaranteed by [27, Lemma 2.8].
Let m ≥ n be such that

fm φ(1) ≈ μ
15

φ(1).(4.6)

Set

a1 ∶= fm φ(1)(a − ε)+ fm ,

a2 ∶= (a − ε)1/2
+ ( fm(1Ã − φ(1)) fm − η)+(a − ε)1/2

+ .(4.7)
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As ( fn) is an increasing approximate unit and m ≥ n, it follows from (4.3) that

fm x ≈ μ
15

x , for all x ∈ F.(4.8)

In particular,

a1
(4.6)≈ μ

15
φ(1)(a − ε)+ fm

(4.8)≈ μ
15

φ(1)(a − ε)+ .(4.9)

Thus,

a1 + a2
(4.9)≈ 2μ

15
φ(1)(a − ε)+ + a2

≈η φ(1)(a − ε)+ + (a − ε)1/2
+ fm(1Ã − φ(1)) fm(a − ε)1/2

+

(4.8)≈ 2μ
15

φ(1)(a − ε)+ + (a − ε)1/2
+ (1Ã − φ(1))(a − ε)1/2

+

(4.4)≈ μ
15

φ(1)(a − ε)+ + (1Ã − φ(1))(a − ε)+
= (a − ε)+ .(4.10)

As in the original proof [27], we set g i j ∶= g(φ)(e i j), ĉ i j ∶= φ1/2(1)g i jc i j and ĉ ∶=
∑k

i , j=1 ĉ i j . Observe that

g i j gsr =
⎧⎪⎪⎨⎪⎪⎩

g(φ)(1) ⋅ g ir , j = s,
0, j ≠ i .

(4.11)

Then

ĉ(b − δ)+ ĉ∗ =
k

∑
i , j,r ,s=1

φ1/2(1)g i jc i j(b − δ)+c∗rs gsr φ1/2(1)

(4.5)≈ μ
15

φ(1)
k

∑
i , j,r ,s=1

g i jc i j(b − δ)+c∗rs gsr

(4.5)≈ μ
15

φ(1)
k

∑
i , j,r ,s=1

g i j gsr c i j(b − δ)+c∗rs

(4.11)= φ(1) ⋅ g(φ)(1)
k

∑
i , j,r=1

g ir c i j(b − δ)+c∗r j

(4.1)= φ(1) ⋅ g(φ)(1)
k

∑
i=1

g i i
⎛
⎝

k
∑
j=1

c i j(b − δ)+c∗i j
⎞
⎠

(4.1)= φ(1) ⋅ g(φ)(1) ⋅ g(φ)(1) ⋅ (a − ε)+
(4.2)≈ μ

15
φ(1)(a − ε)+

(4.9)≈ 2μ
15

a1 .(4.12)
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On the other hand,

a2 = (a − ε)1/2
+ ( fm(1Ã − φ(1)) fm − η)+(a − ε)1/2

+

(4.3)≈ 2μ
15
(a − ε)1/2

+ fn( fm(1Ã − φ(1)) fm − η)+ fn(a − η)1/2
+

≈η (a − ε)1/2
+ fn fm(1Ã − φ(1)) fm fn(a − ε)1/2

+

= (a − ε)1/2
+ fn(1Ã − φ(1)) fn(a − ε)1/2

+

≈η (a − ε)1/2
+ ( fn(1Ã − φ(1)) fn − η)+(a − ε)1/2

+ .(4.13)

Since a is a positive contraction, we obtain

(a2 −
2μ
15

− 2η)
+

(4.13)
≾ (a − ε)1/2

+ ( fn(1Ã − φ(1)) fn − η)+(a − ε)1/2
+

∼ ( fn(1Ã − φ(1)) fn − η)1/2
+ (a − ε)+( fn(1Ã − φ(1)) fn − η)1/2

+

≾ ( fn(1Ã − φ(1)) fn − η)+
(4.4)
≾ d .(4.14)

Thus, there is s ∈ A such that

sds∗ ≈ μ
15
(a2 −

2μ
15

− 2η)
+
≈ 2μ

15 +2η a2 .(4.15)

As before, we can further assume that s(b − δ)+ = 0 and recall that c i jd = 0. Then

(ĉ + s)((b − δ)+ + d)(ĉ + s)∗ = ĉ(b − δ)+ ĉ∗ + sds∗

(4.12)≈ μ
3

a1 + sds∗

(4.15)≈ μ
5 +2η a1 + a2

(4.10)≈ μ
3 +η (a − ε)+ .(4.16)

Since μ and η are arbitrary small, we get

(a − ε)+ ≾ (b − δ)+ + d ≾ b,(4.17)

where the last part follows from the construction of d = f (b) where supp f ⊆ [0, δ/2].
Since ε is arbitrary, we conclude a ≾ b. ∎

We thank the referee for suggesting the following direct proof of the main theorem
of this section.

Theorem 4.2 (cf. [1, Theorem 6.4]) Let A be a simple C∗-algebra. If A is tracially Z-
stable, then Cu(A) is almost unperforated (equivalently, A has strict comparison).

Proof Let us suppose first that A is σ-unital. By [11, Proposition 2.4], we know that
A is either stably isomorphic to a unital C∗-algebra or A is stably projectionless. If A
is unital, then the result follows from [27, Theorem 3.3], as both tracial Z-stability
and the almost unperforation of the Cuntz semigroup are preserved under stable
isomorphism.
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If A is stably projectionless, then it is stably finite. By [3, Proposition 5.3.16], every
nonzero element of Cu(A) is either soft or compact. By [9, Theorem 3.5], ⟨a⟩ is soft
if and only if {0} is an accumulation point of σ(a) (see Definition 2.1). Let ⟨a⟩, ⟨b⟩ ∈
Cu(A) be soft elements such that (k + 1)⟨a⟩ ≤ k⟨b⟩ for some k ∈ N. It follows that
(k + 1)⟨a⟩ ≤ (k + 1)⟨b⟩ and, by Lemma 4.1, ⟨a⟩ ≤ ⟨b⟩ in Cu(A). Hence, the soft part of
Cu(A) is almost unperforated. By [54, Proposition 2.8], Cu(A) is almost unperforated
as well.

For the general case, let a, b ∈ (A⊗K)+ such that there is some k ∈ N with (k + 1)
⟨a⟩A ≤ k⟨b⟩A in Cu(A). Let B be a σ-unital hereditary subalgebra of A such that
B ⊗K contains both a and b.4 By [33, Lemma 2.2], (k + 1)⟨a⟩B ≤ k⟨b⟩B in Cu(B).
By Proposition 3.6, B is tracially Z-stable and hence, by the first part of this proof,
Cu(B) is almost unperforated. It follows that ⟨a⟩B ≤ ⟨b⟩B in Cu(B), which clearly
yields ⟨a⟩A ≤ ⟨b⟩A. This shows that Cu(A) is almost unperforated. ∎

5 Z-stability

This is the main section of this note. We aim to show that tracial Z-stability is
equivalent to Z-stability in the separable simple nuclear setting. We begin with the
easy part.

Proposition 5.1 Let A be a simple Z-stable C∗-algebra. Then A is tracially Z-stable.

Proof By assumption, we have A ≅ A⊗Z, so by Proposition 3.7, it suffices to know
that Z is itself tracially Z-stable. But this is well known (see, for example, [27,
Proposition 2.2]). ∎

The notion of property (SI), introduced by Matui and Sato in [40], has been
fundamental in many recent developments in the structure and classification of simple
nuclear C∗-algebras. It was originally introduced for simple unital C∗-algebras in [40,
Definition 4.1] and has been recently revised by the third-named author in [53], in
which a general framework was developed to cover the class of all simple separable
nuclear C∗-algebras. Let us record some of the ingredients needed in this note.

Definition 5.2 ([53, Definition 2.5]) Let A be a separable simple C∗-algebra.
(i) A positive contraction f ∈ Fω(A) is called tracially supported at 1, if one of the

following is true: A is traceless, and ∥ f a∥ = ∥a∥ for all a ∈ A+; or T+(A) ≠ {0,∞},
and for all nonzero positive a ∈ Ped(A), there exists a constant κ f ,a > 0 such that

inf
m≥1

τa( f m) ≥ κ f ,a τ(a)

for all τ ∈ T+ω (A) with τ∣A nontrivial.
(ii) A positive element e ∈ Fω(A) is called tracially null if τa(e) = 0 for all nonzero

positive a ∈ Ped(A) and τ ∈ T+ω (A) with τ(a) < ∞.
Either one of the conditions above holds for all nonzero positive a ∈ Ped(A) if it holds
for just one such element.

4If we write a = ∑ j,�∈N a j,� ⊗ e j, l and b = ∑ j,�∈N b j,� ⊗ e j, l , then the hereditary subalgebra gener-
ated by e = ∑ j,�∈N 2−( j+�)(a∗j,�a j,� + a j,�a∗j,� + b∗j,�b j,� + b j,�b∗j,�) would do the trick.
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Definition 5.3 ([53, Definition 2.7]) Let A be a separable simple C∗-algebra. It is
said that A has property (SI) if whenever e , f ∈ Fω(A) are positive contractions with f
tracially supported at 1 and e tracially null, there exists a contraction s ∈ Fω(A) with

f s = s and s∗s = e .(5.1)

Importantly, it follows from [53, Corollary 3.10] that nonelementary separable sim-
ple nuclear C∗-algebras with strict comparison have property (SI). For completeness,
we include a proof of the following folklore result, which is well known to the experts.
The underlying argument has appeared in the literature several times before.

Proposition 5.4 (Matui–Sato) Let A be a simple, separable, and nuclear C∗-algebra
with strict comparison and T+(A) ≠ {0,∞}. Then A is uniformly McDuff if and only if
A is Z-stable.

Proof The “if ” part is clear by Remark 2.6, so we proceed to prove the “only if ” part.
It follows from [53, Corollary 3.10] that A has property (SI). For each n ∈ N, there is

a tracially large order zero map φ ∶ Mn(C) → Fω(A). Set e ∶= 1Fω(A) − φ(1) ∈ Fω(A)
and f ∶= φ(e11) ∈ Fω(A). The fact that φ is tracially large means precisely that e is
tracially null. Let us check that f is tracially supported at 1.

Since the tracially null elements form an ideal and φ(1) agrees with the unit of
Fω(A)modulo this ideal, we also get that 1Fω(A) − φ(1)m is tracially null for any m ≥ 1.
This shows that (1Fω(A) − φ(1)m) f is tracially null and

τa( f ) = τa(φ(1)m f ), m ∈ N.(5.2)

Recall that by the structure theorem of order zero maps, we have φ(e11)m =
φ(1)m−1φ(e11) (see Section 2.2). Thus,

τa( f m) = τa(φ(e11)m) = τa(φ(1)m−1φ(e11)) = τa( f )(5.3)

for all nonzero positive a ∈ Ped(A) and τ ∈ T+ω (A) with τ(a) < ∞. Observe that, by
uniqueness of the tracial state tr on Mn(C), τa ○ φ must be a multiple of tr. Then

τa( f m) = τa( f ) = tr(e11)τa(φ(1)) = 1
n

τ(a)(5.4)

for all nonzero positive a ∈ Ped(A) and τ ∈ T+ω (A) with τ(a) < ∞. It follows that f is
tracially supported at 1.

By property (SI), there exists s ∈ Fω(A) such that f s = s and s∗s = e. By [51,
Proposition 5.1(iii)], there is a unital ∗-homomorphism from the dimension drop
algebra5 Zn ,n+1 into Fω(A) for all n ∈ N. By [42, Proposition 5.1], we conclude that
A is Z-stable. ∎

Next, we will show that tracial Z-stability implies the uniform McDuff property.
Let us prove a preliminary lemma first.

Lemma 5.5 (cf. [27, Lemma 4.3]) Let A be a simple nonelementary C∗-algebra with
T+(A) ≠ {0,∞}. Suppose that K ⊂ T+(A)/{0,∞} is a compact subset. Then, for any

5Given n, m ∈ N, the dimension drop algebra Zn ,m is defined as Zn ,m ∶= { f ∈ C([0, 1], Mn(C) ⊗
Mm(C)) ∣ f (0) ∈ Mn(C) ⊗ 1, f (1) ∈ 1⊗Mm(C)}.
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n ∈ N, there exists a positive element cn ∈ A of norm one such that dτ(cn) ≤ 1
n for all

τ ∈ K.

Proof Let b be a nonzero positive element in Ped(A). Then, by compactness, we have
supσ∈K dσ(b) < ∞, so let us choose a natural number k ∈ N greater than this constant.
In particular, each trace τ ∈ K restricts to a positive tracial functional of norm at most
k on the hereditary subalgebra bAb. Using [33, Proposition 4.10] and [62, Corollary
4.1], there exists a c.p.c. order zero map ψ ∶ Mnk(C) → bAb such that cn ∶= ψ(e11) is a
positive contraction of norm one in A. Given τ ∈ K, it follows that

nk ⋅ dτ(ψ(e11)) = dτ (
nk
∑
i=1

ψ(e i i)) = dτ(b) ≤ k.(5.5)

Therefore cn satisfies the required property. ∎
Proposition 5.6 Let A be a separable simple C∗-algebra with T+(A) ≠ {0,∞}. If A is
tracially Z-stable, then A is uniformly McDuff.

Proof Pick any nonzero positive element b ∈ Ped(A), and define the subset K ⊂
T+(A)/{0,∞} as those traces that normalize b. Then K is clearly compact and every
nontrivial trace on A is a constant multiple of a trace in K. Let ck ∈ A be the positive
elements of norm one given from Lemma 5.5 for k ∈ N, and let c ∈ Bω be the induced
element. We claim that τ(c) = 0 for any τ ∈ T+ω (A) with τ(b) < ∞. Indeed, clearly,
τ(c) = 0 whenever τ is induced from a sequence τn ∈ K. However, if τ(b) < ∞, then by
[53, Lemma 2.10 and Remark 2.11], τ is already a constant multiple of some generalized
limit trace induced from a sequence in K, so the claim follows.

Let n ∈ N. By Proposition 3.5, there are a c.p.c. order zero map φ ∶ Mn(C) → Aω ∩
A′ and a contraction x ∈ Aω such that

cx = x and x∗x − (1Ãω
− φ(1Mn)) ∈ Ãω ∩ A⊥.(5.6)

Let us show that this map induces a tracially large map into Fω(A). Indeed, we have
for any τ ∈ T+ω (A) with τ(b) < ∞ that

τ(b1/2(1Ãω
− φ(1Mn))b1/2) (5.6)= τ(b1/2x∗cxb1/2)

= τ(c1/2xbx∗c1/2)
≤ ∥x∥2∥b∥τ(c) = 0.

This shows that 1 − φ(1Mn) vanishes under the trace τb . As explained in the footnote
at Definition 2.4, [53, Proposition 2.4] yields that 1 − φ(1Mn) vanishes under any trace
τa with a ∈ Ped(A) and τ ∈ T+ω (A) satisfying τ(a) < ∞. Hence, the induced map φ̄ ∶
Mn(C) → Fω(A) is tracially large and A is uniformly McDuff. ∎
Theorem 5.7 Let A be a separable simple nuclear C∗-algebra. If A is tracially Z-stable,
then A is Z-stable.

Proof By [11, Proposition 2.4], we know that A is either stably projectionless or
A is stably isomorphic to a unital C∗-algebra. If A is stably isomorphic to a unital
C∗-algebra, say B, it follows by Corollary 3.8 that B is tracially Z-stable. By [27,
Theorem 4.1], it follows that B is Z-stable. Since Z-stability is preserved under
stable isomorphism, it follows that A is Z-stable. On the other hand, if A is stably
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projectionless, then A is stably finite. Recall that A has strict comparison by Theorem
4.2. Thus, Propositions 5.4 and 5.6 yield that A is Z-stable. ∎

Matui introduced the notion of almost finiteness for étale groupoids with a compact
and totally disconnected unit space (see [39, Definition 6.2] and we also refer the
reader to [47] for the theory of étale groupoids). Recently, the notion of strongly
almost finiteness was introduced in [5, Definition 3.12] for étale groupoids G with a
(not necessarily compact) totally disconnected unit space. More precisely, G is strongly
almost finite if the restriction G∣K is almost finite in the sense of Matui for all compact
open subsets K of the unit space G(0). So the reduced groupoid C∗-algebra C∗r (G)
may not be unital in general. Moreover, it is known that when the groupoid is also
minimal and has a compact unit space, strong almost finiteness agrees with Matui’s
almost finiteness (see [5, Proposition 3.6]). It is also worth noting that (strong) almost
finiteness does not imply amenability for groupoids nor exactness for groupoid C∗-
algebras (see [15, Theorem 6] and [4, Remark 2.10]).

Corollary 5.8 Let G be a locally compact Hausdorff minimal σ-compact étale groupoid
with totally disconnected unit space G(0) without isolated points. If G is strongly almost
finite, then the reduced C∗-algebra C∗r (G) is a σ-unital simple and tracially Z-stable
C∗-algebra with real rank zero and stable rank one.

If G is also amenable and second-countable, then C∗r (G) is classifiable by its Elliott
invariant and has decomposition rank at most one.

Proof Fix a compact open subset K ⊆ G(0). Since G is minimal, it follows that G
and the restriction G∣K are Morita-equivalent. Hence, C∗r (G) and C∗r (G∣K) are stably
isomorphic by [10, Theorem 2.1]. On the other hand, G∣K is a minimal, almost finite,
σ-compact étale groupoid with compact totally disconnected unit space K. As K is
clopen in G(0), K has no isolated points as well. By [38, Corollary 9.11], we deduce
that C∗r (G∣K) is a unital simple and tracially Z-stable C∗-algebra. Moreover, C∗r (G∣K)
has real rank zero and stable rank one (see [4, 52]). Hence, we conclude that C∗r (G)
satisfies the desired properties by Corollary 3.8.

If we also assume amenability and second-countability for G, then C∗r (G) is also
a nuclear separable Z-stable C∗-algebra in the UCT class by Theorem 5.7 and [58].
Notice that by [52, Lemma 3.9], we have T+(C∗r (G)) ≠ {0,∞}. Finally, [11, Theorem
7.2 and Remark 7.3] together imply that C∗r (G) has decomposition rank at most one
as desired. ∎
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References

[1] M. Amini, N. Golestani, S. Jamali, and N. C. Phillips, Simple tracially Z-absorbing C∗-algebras.
Preprint, 2021. arXiv:2109.05192

[2] M. Amini, N. Golestani, S. Jamali, and N. C. Phillips, Group actions on simple tracially
Z-absorbing C∗-algebras. Preprint, 2022. arXiv:2204.03615

[3] R. Antoine, F. Perera, and H. Thiel, Tensor products and regularity properties of Cuntz
semigroups. Mem. Amer. Math. Soc. 251(2018), no. 1199, viii + 191.

https://doi.org/10.4153/S0008414X23000202 Published online by Cambridge University Press

https://arxiv.org/abs/2109.05192
https://arxiv.org/abs/2204.03615
https://doi.org/10.4153/S0008414X23000202


18 J. Castillejos, K. Li, and G. Szabó
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