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REMARKS ON ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

BY 

CLÉMENT FRAPPIER 

ABSTRACT. A classical result of Laguerre says that if P is a poly­
nomial of degree n such that P{z) + 0 for \z\ < 1 then (£ - z)P' (z) + 
nP(z) =£ 0 for | z | < 1 and | £ | < 1. Rahman and Schmeisser have obtained 
an extension of that result to entire functions of exponential type: if/ 
is an entire function of exponential type T, bounded on U, such that 
hfiTt/2) = Othen(£ - l ) / ' (z) + hf{z) ± 0 for Im(z) > 0 and | £| < 1, 
whenever/(z) + 0 if Im(z) > 0. We obtain a new proof of that result. 
We also obtain a generalization, to entire functions of exponential type, 
of a result of Szegô according to which the inequality | P(Rz) — P(z) | < 
R" - 1, | z | < 1, R > 1, holds for all polynomials P, of degree < n, such 
that \P(z)\ < 1 for |z | < 1. 

1. Statement of the results. Let B7 denote the class of entire functions of expo­
nential type T > 0 bounded on the real axis. The Phragmén—Lindelôf indicator function 
of / E B7 is defined as 

— log | / ( r^ 8 ) | 
hf(d) := lim -, 0 < 6 < 2TT. 

Rahman and Schmeisser [8] have proved the following result: 

THEOREM 1. Let f EL B7 such that hf{it/2) = 0 andf(z) j= 0 in Im(z) > 0. Then, 
for \%\< 1 andlm(z) > 0, 

(1) ( Ç - l) / ' (z) + I T / ( Z ) ^ 0 . 

This theorem represents an interesting generalization of a classical result of Laguerre 
(see [2] or [7, vol. II, chap. 2]) according to which 

(2) (Ê - z) P' (z) + nP(z) ± 0, \i\ < 1, \z\ < 1, 

for all polynomials F (z) := E" = 0 «^z€ such that P(z) ^ Oin |z | < 1. In [8] the theorem 
is proved by using a property of ^-operators. Here, we prove (1) with a method of 
approximation due to Lewitan [6] in a form given by Hormander [5]; it will be done 
by adding only one hypothesis on the roots of the function/. Using that method, we 
will also prove the 
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THEOREM 2. Let f EL £ T such that /I/(TT/2) < 0. / / - » < X < oo, -oc < nq < œ a m / 
y < — |T] I f/ien: 

(3) \e~^ (f(X + iT - IT,) - / ( X - ITI)) + e^(f(X + /F + h,) 

- / ( X + rn))| < 2(e~7Y - 1) max | / ( r ) | . 
- X < / < OC 

If T] = 0 in Theorem 2 we obtain the inequality 

(4) | f(X + ÏY) - f(X) | < (<TTK - 1) max | f(t)\, -«> < X < oo, y < 0. 
- x < / < o c 

In that inequality the hypothesis hf(iï/2) < 0 is not necessary. In fact, it may be 
deduced from the classical inequality of Bernstein [1], | / ' ( X ) | < T max | / (0 |> 
-oo < X < o o j and the identity 

(5) f(X + iY) -f(X) = i\ f'(X + iu)du. 

However, the example/(z) = e-'6", 0 < e < T, shows that, in (3), the inequality may 
not hold if hf(ir/2) > 0 (and TJ * 0). 

For other recent results obtained with that method of approximation see [4, Theorem 
1] and [3]. 

2. Some lemmas. Given/G Z?T, let 

<« ' ^ L ( * ^ ^ ) > • * ) • - - < * < - • * > • • 
We shall use the 

LEMMA 1. [5] 77/e functions fh defined by (6) are trigonometric polynomials 
with period \/h and degree less than N : = 1 4- [T/2TT/Z]. When X is real we have 
\fh(X)\ < 1 whenever max- x < Kx 1/(0 I — U and fh(z) —» /(z) uniformly in every 
bounded set when h —> 0. 

In view of Lemma 1 we may write 

N 

(7) /„(X) = I Cm(/0e2mM 

where 

Cm{h) = h[ fh(X)e-2mhfnXdX. 

We have also the 

LEMMA 2. (See [4, proof of Theorem 1] or [3, Lemma 2]). If hf{^/2) < 0 then 
Cm(h) = 0 for -N < m < - 1 . 

https://doi.org/10.4153/CMB-1986-056-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-056-4


1986] ENTIRE FUNCTIONS 367 

Theorem 2 is in fact an extension of an inequality on algebraic polynomials which 
is a consequence of the following interpolation formula: 

LEMMA 3. Let P(z) : = 2JL0 a^ be a polynomial of degree < n. If p > 0 is given 
then, for any number R > (p'7 + p~")/(pn~ ' + p~{n~])) and any real 7, we have 

(8) eiy[p"(P(Reid) - P(eiB)) + p"(P(Rp2 e*) - P(pVe))] 
1 2" 

= ~ 2 ( - I f ^(/?,7,p)P(^ (e + ( ^ + ^ ) , 

/<?r «// real 0, w/zere 

A^(/?,7,p) := *" - 1 + S (A"-'" - 1) (p' + p-J) œsj(Klï + 7 ) . 
7 = 1 " 

77ze coefficients AK(R,-y,p) are non negative and 

1 2" 
(9) — 2 A,(/?,7,p) = Rn- 1. 

2 " * = i 

PROOF. Substituting for p(9e
i{d + (k^ + ^/n)) and A*(fl, 7, p) we have 

1 2n 

- 2 (-l)*A jk(/?,7,p)P(p^ (e + (*w + ^ ) / , , ) ) 

= (/T 1) 2 2 (-l)kaep'em + {k^^ 

. In n-\ n 

+ - S 2 S (-D* (*'-' - 1) (pi + p-') cos/1T + 7 ) a^ e'M + ^ + ^">. 
n k=l j=] (=0 n 

Interchanging the order of summation, replacing cos7'(&7T + y)/n by (e'Jik'n + y)/n + 
e-ij(k-n + y)/ny2 and using the identity 

2» f 2« if m = 0 (mod 2AZ) 
AmkTtD/n _ J 2> 

.0 if m ^ 0(mod 2n) 

three times (with an appropriate integer m), we obtain 

1 2n 

~ 2 (-l)M,(/?,7,p)P(p^ (e + (^ + ^ ) ) 
n— \ n 

2(R" - \ ) a n p" e,nB + iy + X 2 (Rn~j ~ 1) M p 7 + p"7') é -j\ JM + iU + e)* 

= S (^€ - 0 Mp" + P2^"") ^ ° + '7 = eh[pn{P{Rei%) - P(e'»)) + p~" 
€= 1 

X (P(tfp2 é>'0) - P (p2 e'6))]. 
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The identity (9) follows from (8) if we set P(z) = z". To show that the coefficients 
Ak(R, 7, p) are non negative we may use a result of Rogosinski and Szegô [9, p. 75] 
according to which 

(10) \ 0 + 2 X KjCosjQ > 0 (0 G K) 

if \w > 0, \„_ i — 2\„ > 0 and Xy_ i — 2Xy + \ / f , > 0 for 0 <y < n. In order to verify 
the third condition we are led to show that 

0 < j < n, 

for/? > (p" + p '^Ap"" 1 + P"("_l)) ( ^ 1 , P > 0). But the function <)>(/?) := p ^ 1 

(1 - p/R)2 + (1/p7 ]) [1 -(1/p/?)]2 is increasing for/? > (p" + p '^Ap"" 1 + P"("_1)) 
so that (10) is satisfied with X; : = (Rn~J - 1) (py + p_/)/2. This completes the proof 
of the lemma. 

It follows from Lemma 3 that if P is an algebraic polynomial of degree < n such that 
m a x , ^ 2 | | \P(eiM/")\ < 1 then, for all real 6, 

(11) |p" (p ( — ) - p ( — )) + p " (P(*p e/e) - P(p ^ ) ) | < 2(/T - 1), 

/ ^ p" + p~" , P > o . 
p""1 + p-(l,-»> 

REMARKS. 

1. Szegô [10] had proved that the inequality 

(12) \P (Reid) - P (eid)\ < (/?" - 1), R > 1, 9 G R 

holds for all polynomials P such that max x <k<2n I/
3 (eaTr/)//7) | ^ 1. Using (12) we deduce 

that the left member of (11) is less or equal to p"(R" - 1) MP (1/p) + p~'! (Rn - 1) 
MP(p) where MP(p) := max|z| = p |P(z)|. But, in view of Hadamard's three circles 
theorem, 2MP(\) < p" MP (1/p) + p " MP(p) for all p > 0, so that (11) is effectively 
a refinement of (12). 

2. If 5(6) := 2|U_„ fr,„ e""9 is a trigonometric polynomial of degree < n then for 
6, 7 G R, p > 0 and/? > (p" + p~")/(pn~x + p_(/7_1)) we have 

n - 1 

(13) en 2 (/T - 1) M p " + P2'""'!) ^,we + e~'7 S (R~m ~ 1) 
m = 1 w — —n 

x Mp 2 m + " + p-'V'"0 = - I (-l)*At(J?,-Y,p) 

x 5 ( e + *2L±jr_ I . l o g p y 
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Thus, the inequality 

(14) 2 (Rm ~ 1) Mp" + p2'"~") el(m~n)" + E (R~m - 1) bm(p2m + n + p"") 

is satisfied for 

R > 
P" + P" 

< 2(R" - 1) max 
1 <k<2n 

P > o, e 

s [ ~f ~ [ loê P 

p/I- l + p - < H - l , 

3. Proof of the theorems. As mentioned in the introduction we will prove 
Theorem 1 with an additional hypothesis on the roots of the function/. If/has some 
kind of zero at infinity it may happen that the approximating functions (7) have a 
sequence of zeros in Im(z) > 0 (which tends to infinity). In that case, since the 
transformation z •-» elz maps any rectangle of the form {z E C : — X0 < Re(z) < X0, 
0 < Im(z) < F0}, X0, F0 > 0, on a domain contained in {z G C : |z | < l}/{0}, the 
following argument seems not to apply easily. 

PROOF OF THEOREM 1. We shall prove the result by requiring that there is no curve 
C in the upper half-plane for which/(z) approaches zero as \z\ —» o°, z E C. 

Since Ay(ir/2) = 0 we have (by Lemma 2)fh(z) = Ph (e
27;hlz) where PA is an algebraic 

polynomial of degree < TV. If/(z) ^ 0 in Im(z) > 0 then//,(z) ^ 0 in Im(z) > 0 
whenever h is made sufficiently small. The polynomials Ph(z) are thus ^ 0 in | z | < 1. 
Applying (2) we obtain that 

(15) ( É - z ) P J ( z ) + M>A(Z) * 0 , < 1, \s\<u 
or, equivalently 

(16) &- eh)P'h{e,:) +NPh(en*0, 

that is 

Im(z) > 0, |£ | < 1, 

(17) ( £ - * "^fe) + 2nhNifh 2irh 
ï 0, Im(z) > 0, I £| < 1. 

If we change z to 2irhz, in (17), we obtain that the functions gh(z) : = (£ — ^27r/?/z) 
//'(z) + 2uhNi e2*hlzfh(z) have no zero in Im(z) > 0. In view of Hurwitz's theorem 
we conclude that g(z) : = lim^o £A(Z) is different from 0 in Im(z) > 0, or g(z) = 0. 
But (using Lemma 1) g(z) = (£ - l) / ' (z) + /T/(Z) = 0 if and only if/(z) = c e

i7z/{X~^ 
for some constant c (a function of that form is in B7 if | £ — 1 | > 1) which are not 
admissible functions in (1). Thus, (£ — l ) / ' ( z ) + /T/(Z) =£ 0 for Im(z) > 0 and 

l € l < i-
Finally, if/(z) ^ 0 only in Im(z) > 0 then we may apply the result just proved to 

a function of the form/(z + ei), e > 0, and the result follows. 
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REMARKS. It is possible to find many/ E B7 such that hf(^/2) = 0,/(z) ^ 0 in 
Im(z) > 0, but limr^oo/(W) = 0; an example is/(z) = (elJZ - l)/z. Also, in the case 
hf(Tï/2) < 0, we have necessarily limr_x/(r/) = 0 (if we let 8 > 0 such that hf{ii/2) = 
- 8 then \f(ri) \ < <T(ÔT)/2, r —» oo); in that case it is known [8] that (1) may not hold. 

It is also to be noted that if the polynomials Ph(z) happens to have a zero of 
multiplicity k at z = 0, with lim/,_*0 kh = 0, then the preceeding argument may be used; 
we need only to observe that (2) may then be applied to the polynomials Ph(z)/zk 

instead of Ph(z). 

PROOF OF THEOREM 2. If hf(nr/2) < 0 then (by Lemma 2)fh(z/(2uh)) = Ph(e
iz) 

where Ph is an algebraic polynomial of degree < N. Applying (11) and Lemma 1 we 
readily obtain (we may assume that max_oo<,<oo | / ( 0 | — !)• 

(18) 

< 2 (RN - 1), R > P* + P-" 
p - ' + p" (N-\) 

That inequality may be written in the form 

(19) P" U 
e - / log R/p 

4 
2-nh 

6 — ;' log p 
ïïrh 

• / * 

6 + / log p 
) ) 2-nh 

< 2(7?" - 1), R 

p 
-»(<{*-
V*\ 

PN + p-N 

nog 
2TTh 

Rp\ 
) 

e 
p"-' + p-

(N-\)7 

Put 6 = 2-nhX and change R to R2lT\ p to p27r/j; we obtain that 

(20) | p2*hN(fh(X - i log R + i log p) - fh(X + i log p)) 

+ p - 2 ^ ( A ( X - / l o g / ? - / l o g p ) 

-fh(X- i\ogp))\<2(R2 
1), 

p 2 ^ + p -

2>nh(N- 1) _j_ -2-nh(N- 1) 
, - o o < X < oo. 

The condition 

R2nh > 
2-rr/îA/ _•_ -2-rthN 

J2.tth(N-l) -2ith(N- 1) P̂  ' + P" 

is certainly satisfied if R > p in the case p > 1 and if /? > 1/p in the case p < 1. Thus, 
letting h —> 0 in (20) (and using Lemma 1) we are led to the inequality 

(21) | pT (f(X + iT + i log p) - /(X + i log p)) + p-T (/(X + IY ~ i log p) 

- / (X - i log p)) | < 2(e~7Y - 1), -oo < X < oo, p > 0, 

where e_K : = R > e,logp|, from which (3) follows (with T] : = log p). 
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