Canad. Math. Bull. Vol. 39 (3), 1996 pp. 284-293

BOURGAIN ALGEBRAS OF SPACES OF *n*-HARMONIC FUNCTIONS IN THE UNIT POLYDISK

KEIJI IZUCHI, KAZUHIRO KASUGA AND YASUO MATSUGU

ABSTRACT. Let $h^{\infty}(D^n)$ denote the space of all bounded *n*-harmonic functions on the unit polydisk D^n of C^n . In this paper we prove that the Bourgain algebra $h^{\infty}(D^n)_h$ and $h^{\infty}(D^n)_{hb}$ relative to the Lebesgue space $L^{\infty}(D^n)$ are of the following forms:

 $h^{\infty}(D^n)_b = C + V(D^n)$ and $h^{\infty}(D^n)_{bb} = L^{\infty}(D^n)$ for $n \ge 2$.

Here $V(D^n)$ is the space of those functions $f \in L^{\infty}(D^n)$ such that $||f\chi_{D^n}|_{VD^n}||_{\infty} \to 0$ as $r \nearrow 1$, where χ_E denotes the characteristic function of a subset E of D^n .

1. Introduction. Let $n \ge 1$ be a fixed integer. Let \mathbf{D}^n and \mathbf{T}^n denote the open unit polydisk in the complex *n*-dimensional Euclidean space \mathbf{C}^n and the distinguished boundary of \mathbf{D}^n , respectively. We write $\mathbf{D} \equiv \mathbf{D}^1$ and $\mathbf{T} \equiv \mathbf{T}^1$. $L^{\infty}(\mathbf{T}^n)$ and $L^{\infty}(\mathbf{D}^n)$ denote the usual spaces of essentially bounded functions with respect to the normalized Lebesgue measures m_n and ν_n on \mathbf{T}^n and \mathbf{D}^n , respectively. Let P_n be the Poisson kernel for \mathbf{D}^n , that is,

$$P_n(z,\zeta)=\prod_{j=1}^n\frac{1-|z_j|^2}{|z_j-\zeta_j|^2}, z=(z_1,\ldots,z_n)\in\mathbf{D}^n, \zeta=(\zeta_1,\ldots,\zeta_n)\in\mathbf{T}^n.$$

In short, we write $m = m_n$, $\nu = \nu_n$ and $P = P_n$. For a function $f \in L^{\infty}(\mathbf{T}^n)$ we write \hat{f} to denote the Poisson integral of f, that is,

$$\hat{f}(z) = \int_{\mathbf{T}^n} f(\zeta) P(z,\zeta) \, dm(\zeta)$$

for $z \in \mathbf{D}^n$. For any nonempty subset S of $L^{\infty}(\mathbf{T}^n)$ we write

$$\hat{S} = \{\hat{f} : f \in S\}.$$

 $h^{\infty}(\mathbf{D}^n)$ stands for the space of all bounded *n*-harmonic functions in \mathbf{D}^n . It holds that

$$(L^{\infty}(\mathbf{T}^n))^{\wedge} = h^{\infty}(\mathbf{D}^n).$$

(See [11], Theorems 2.1.3 and 2.3.2.) Let $V(\mathbf{D}^n)$ be the closed ideal of vanishing functions in $L^{\infty}(\mathbf{D}^n)$ as defined in Cima, Stroethoff and Yale [2], that is,

$$V(\mathbf{D}^n) = \{ f \in L^{\infty}(\mathbf{D}^n) : \lim_{r \geq 1} \| f \chi_{\mathbf{D}^n \setminus r \mathbf{D}^n} \|_{\infty} = 0 \},$$

Received by the editors March 10, 1995.

AMS subject classification: Primary: 32A35; Secondary: 46J15.

© Canadian Mathematical Society 1996.

where $r\mathbf{D}^n = \{z = (z_1, \dots, z_n) \in \mathbf{C}^n : ||z|| = \max_{1 \le j \le n} |z_j| < r\}, 0 < r < 1$. As usual, for any topological space Ω , $C(\Omega)$ stands for the space of all continuous functions in Ω .

In [3], Cima and Timoney introduced the concept of Bourgain algebra. Let X be a commutative Banach algebra with unit element and let Y be a closed subspace of X. A sequence $\{f_l\}_{l \in \mathbb{N}}$ in Y is called weakly null if $F(f_l) \to 0$ as $l \to \infty$ for every bounded linear functional F on Y. We denote by Y_b the set of $f \in X$ such that for every weakly null sequence $\{f_l\}_{l \in \mathbb{N}}$ in Y there exists a sequence $\{g_l\}_{l \in \mathbb{N}}$ in Y with $||f_lf - g_l|| \to 0$ as $l \to \infty$. Then Y_b is a closed subalgebra of X. Y_b is called the Bourgain algebra of Y relative to X. Let $Y_{bb} = (Y_b)_b$. When Y is a closed subalgebra of X, moreover we have $Y \subset Y_b$ [3]. Recently there are many studies of Bourgain algebras [1,2,3,4,5,6,7,8,9,10]. In this paper, we study Bourgain algebras on \mathbb{D}^n . In [7], the first author showed that $H^{\infty}(\mathbb{D}^n)_b = H^{\infty}(\mathbb{D}^n)$ for $n \ge 2$, where $H^{\infty}(\mathbb{D}^n)$ is the space of bounded analytic functions in \mathbb{D}^n . In [8], the authors determined the Bourgain algebras of $(H^{\infty} + C)(\mathbb{T}^n)$ and $H^{\infty}(\mathbb{D}^n) + C(\overline{\mathbb{D}^n})$.

On the other hand, the first author, Stroethoff and Yale [9] studied the Bourgain algebra of $h^{\infty}(\mathbf{D})$ relative to $L^{\infty}(\mathbf{D})$ and proved the theorems below. $h^{\infty}(\mathbf{D})_b$ has a connection with VMO on **T**. VMO denotes the space of those functions $f \in L^1(\mathbf{T})$ which satisfy the condition

$$\lim_{|z| \ge 1} \int_{\mathbf{T}} |f(\zeta) - \hat{f}(z)| P_1(z,\zeta) \, dm_1(\zeta) = 0.$$

We note that VMO $\cap L^{\infty}(\mathbf{T})$ coincides with $QC = (H^{\infty} + C)(\mathbf{T}) \cap \overline{(H^{\infty} + C)(\mathbf{T})}$ (see [13]).

THEOREM A. If S is a closed linear subspace of $L^{\infty}(\mathbf{T})$ containing $C(\mathbf{T})$ and S_b is the Bourgain algebra of S relative to $L^{\infty}(\mathbf{T})$, then the Bourgain algebra of \hat{S} relative to $L^{\infty}(\mathbf{D})$ is:

$$(\hat{S})_b = (S_b \cap \text{VMO})^{\wedge} + V(\mathbf{D})$$

As a corollary to this theorem they obtained the following theorem:

THEOREM B. The Bourgain algebra of $h^{\infty}(\mathbf{D})$ relative to $L^{\infty}(\mathbf{D})$ is:

$$h^{\infty}(\mathbf{D})_b = h^{\infty}(\mathbf{D})_{bb} = (L^{\infty}(\mathbf{T}) \cap \mathrm{VMO})^{\wedge} + V(\mathbf{D}).$$

We note that $h^{\infty}(\mathbf{D})$ is not an algebra and $h^{\infty}(\mathbf{D})_b$ is a fairly small space. The purpose of this paper is to determine the Bourgain algebras $h^{\infty}(\mathbf{D}^n)_b$ and $h^{\infty}(\mathbf{D}^n)_{bb}$ for $n \ge 2$. It is greatly surprising that the VMO space does not appear in the representation of $h^{\infty}(\mathbf{D}^n)_b$ and $h^{\infty}(\mathbf{D}^n)_{bb}$ coincides with the whole space $L^{\infty}(\mathbf{D}^n)$. Our main result is the following:

$$h^{\infty}(\mathbf{D}^n)_b = \mathbf{C} + V(\mathbf{D}^n)$$
 and $h^{\infty}(\mathbf{D}^n)_{bb} = L^{\infty}(\mathbf{D}^n)$ for $n \ge 2$,

where C denotes the set of constant functions.

2. **Preliminaries.** Let $f \in L^{\infty}(\mathbf{D}^n)$. For a measurable subset *E* of \mathbf{D}^n , let

$$R(f, E) = \{ w \in \mathbb{C} : \text{ for every } \epsilon > 0, \nu(\{z \in E : |f(z) - w| < \epsilon\}) > 0 \},$$
$$\omega(f, E) = \sup\{ |\alpha - \beta| : \alpha, \beta \in R(f, E) \}.$$

For $\zeta \in \mathbf{T}^n$ and $\delta > 0$, we write

$$E(\zeta,\delta) = \{z \in \mathbf{D}^n : ||z - \zeta|| < \delta\}.$$

For $\zeta \in \mathbf{T}$ and $0 < \rho < 1$ let $\Gamma_{\rho}(\zeta)$ be the interior of the convex hull of ζ and $\rho \mathbf{D}$. For $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbf{T}^n$ and $0 < \rho < 1$, let

$$\Gamma_{\rho}^{n}(\zeta) = \prod_{j=1}^{n} \Gamma_{\rho}(\zeta_{j}) \subset \mathbf{D}^{n},$$
$$\omega_{\rho}(f,\zeta) = \lim_{\delta \searrow 0} \omega(f, E(\zeta,\delta) \cap \Gamma_{\rho}^{n}(\zeta))$$

We say that f has essentially non-tangential limit $L \in \mathbf{C}$ at $\zeta \in \mathbf{T}^n$ if

$$\lim_{\delta \searrow 0} \sup\{ |\alpha - L| : \alpha \in R(f, E(\zeta, \delta) \cap \Gamma_{\rho}^{n}(\zeta)) \} = 0$$

for every $\rho \in (0, 1)$, in which case we write $f^*(\zeta)$ for *L*. We define $BV(\mathbf{D}^n)$ to be the set of functions $g \in L^{\infty}(\mathbf{D}^n)$ for which an essential non-tangential limit $g^*(\zeta) \in \mathbf{C}$ exists for almost every $\zeta \in \mathbf{T}^n$. We note that the following lemma holds:

LEMMA 1. Let $f, g \in L^{\infty}(\mathbf{D}^n)$ and $\zeta \in \mathbf{T}^n$. (i) f has non-tangential limit $f^*(\zeta) \in \mathbf{C}$ at ζ if and only if

 $\omega_{\rho}(f,\zeta) = 0$

for all $\rho \in (0, 1)$. (ii) If f has non-tangential limit $f^*(\zeta) \in \mathbb{C}$ at ζ , then

$$\omega_{\rho}(fg,\zeta) = |f^*(\zeta)|\omega_{\rho}(g,\zeta)|$$

for every $\rho \in (0, 1)$. (iii) If $\omega_{\rho}(g, \zeta) = 0$ for some $\rho \in (0, 1)$, then

$$\omega_{\rho}(f,\zeta) = \omega_{\rho}(f-g,\zeta).$$

Let $A(\mathbf{D}^n)$ denote the polydisk algebra, the algebra of continuous functions on $\overline{\mathbf{D}^n}$ which are analytic in \mathbf{D}^n .

LEMMA 2. Suppose that $\{\zeta^{(l)}\}_{l\in\mathbb{N}}$ is a sequence of distinct points in \mathbb{T}^n which converges to a point $\zeta \in \mathbb{T}^n$. Then there exists a weakly null sequence $\{f_l\}_{l\in\mathbb{N}}$ in $A(\mathbb{D}^n)$ such that for each $l \in \mathbb{N}$ f_l is a peak function at $\zeta^{(l)}$.

PROOF. See Cima, Stroethoff and Yale [2], p.30.

Using Lemma 1 and Lemma 2, we can prove the following lemma by the same way in the proof of Theorem 8 [2] (see also Remark 9).

LEMMA 3. Let Y and Y_b be a closed linear subspace of $L^{\infty}(\mathbf{D}^n)$ and its Bourgain algebra relative to $L^{\infty}(\mathbf{D}^n)$, respectively. If $A(\mathbf{D}^n) \subset Y \subset BV(\mathbf{D}^n)$, then $Y_b \subset BV(\mathbf{D}^n)$.

The following lemma is easily shown as a corollary to the previous lemma (see [9], Corollary 9).

LEMMA 4. Let S and $(\hat{S})_b$ be a closed linear subspace of $L^{\infty}(\mathbf{T}^n)$ containing $C(\mathbf{T}^n)$ and the Bourgain algebra of \hat{S} relative to $L^{\infty}(\mathbf{D}^n)$, respectively. If $f \in (\hat{S})_b$, then $f \in BV(\mathbf{D}^n)$ and $f^* \in S_b$, the Bourgain algebra of S relative to $L^{\infty}(\mathbf{T}^n)$.

LEMMA 5. Let S and $(\hat{S})_b$ be a closed linear subspace of $L^{\infty}(\mathbf{T}^n)$ containing $C(\mathbf{T}^n)$ and the Bourgain algebra of \hat{S} relative to $L^{\infty}(\mathbf{D}^n)$, respectively. If $f \in (\hat{S})_b$ and $\{f_l\}_{l \in \mathbb{N}}$ is a weakly null sequence in S, then

$$\lim_{l\to\infty} \|f\hat{f}_l - (f^*f_l)^\wedge\|_\infty = 0$$

PROOF. This lemma easily follows from the previous one (see [9], the proof of Lemma 11).

LEMMA 6. Let $\{z^{(l)}\}_{l \in \mathbb{N}}$ be a sequence in \mathbb{D}^n which converges to a point $\zeta \in \partial \mathbb{D}^n = \overline{\mathbb{D}^n} \setminus \mathbb{D}^n$. Then there exists a sequence $\{g_l\}_{l \in \mathbb{N}}$ in $C(\mathbb{T}^n)$ such that:

(*i*) $||g_l||_{\infty} = 1$, for all $l \in \mathbf{N}$;

(ii) $g_l \rightarrow 0$ weakly in $C(\mathbf{T}^n)$;

(*iii*) $\lim_{l\to\infty} \int_{\mathbf{T}^n} |1 - g_l(\xi)| P(z^{(l)}, \xi) dm(\xi) = 0.$

PROOF. Since $\zeta = (\zeta_1, \ldots, \zeta_n) \in \partial \mathbf{D}^n$, $|\zeta_j| = 1$ for some $j \in \{1, \ldots, n\}$. Without loss of generality we can assume $|\zeta_1| = 1$. If we write $z^{(l)} = (z_1^{(l)}, \ldots, z_n^{(l)})$, then for each $j \in \{1, \ldots, n\}, \{z_j^{(l)}\}_{l \in \mathbb{N}}$ is a sequence in **D** which converges to ζ_j . By [9], Lemma 12, there exists a sequence $\{f_i\}_{l \in \mathbb{N}}$ in $C(\mathbf{T})$ such that:

- (i) $||f_l||_{\infty} = 1$, for all $l \in \mathbf{N}$;
- (ii) $f_l \rightarrow 0$ weakly in $C(\mathbf{T})$;

(iii) $\lim_{l\to\infty} \int_{\mathbf{T}} |1-g_l(t)| P_1(z_1^{(l)},t) dm_1(t) = 0.$

For $l \in \mathbf{N}$ and $\xi = (\xi_1, \ldots, \xi_n) \in \mathbf{T}^n$, we define

$$g_l(\xi) = f_l(\xi_1).$$

Then $\{g_l\}_{l \in \mathbb{N}}$ is a sequence in $C(\mathbb{T}^n)$ which satisfies (i),(ii) and (iii).

The following is a key lemma of this paper.

LEMMA 7. Let $n \ge 2$ and let $f \in L^{\infty}(\mathbf{T}^n)$ be a non-constant function. Then there exists a sequence $\{z^{(l)}\}_{l \in \mathbf{N}}$ in \mathbf{D}^n such that $||z^{(l)}|| \to 1$ as $l \to \infty$ and

$$\liminf_{l\to\infty}\int_{\mathbf{T}^n}|f(\zeta)-\hat{f}(z^{(l)})|P(z^{(l)},\zeta)\,dm(\zeta)>0.$$

PROOF. Let $f \in L^{\infty}(\mathbf{T}^n)$ be a non-constant function. Then $m(\{\zeta \in \mathbf{T}^n : f(\zeta) = c\}) < 1$ for every $c \in \mathbf{C}$ and there exists a measurable subset $T_1 \subset \mathbf{T}$ with $m_1(T_1) = 1$ such that

 $f_{\zeta_1} \in L^{\infty}(\mathbf{T}^{n-1})$ for every $\zeta_1 \in T_1$, where $f_{\zeta_1}(\zeta') = f(\zeta_1, \zeta')$ for $\zeta' \in \mathbf{T}^{n-1}$. Without loss of generality, we may assume that there is a measurable subset $A_1 \subset T_1$ with $m_1(A_1) > 0$ such that $m_{n-1}(\{\zeta' \in \mathbf{T}^{n-1} : f_{\zeta_1}(\zeta') = c\}) < 1$ for $\zeta_1 \in A_1$ and $c \in \mathbf{C}$. We define the function *F* on T_1 by

$$F(\zeta_1)=\int_{\mathbf{T}^{n-1}}f_{\zeta_1}\,dm_{n-1}.$$

Then $F \in L^{\infty}(\mathbf{T})$. By Fatou's theorem, there exists a measurable subset $A_2 \subset A_1$ with $m_1(A_2) > 0$ such that *F* has radial limit

(1)
$$\lim_{r \nearrow 1} \hat{F}(r\zeta_1) = F(\zeta_1)$$

at each point $\zeta_1 \in A_2$. By Lusin's theorem, there exists a compact subset $A_3 \subset A_2$ with $m_1(A_3) > 0$ such that *F* is continuous on A_3 . For $(\zeta_1, \zeta_1') \in T_1 \times T_1$, we define

$$\varphi(\zeta_1,\zeta_1') = \int_{\mathbf{T}^{n-1}} |f_{\zeta_1} - F(\zeta_1')| \, dm_{n-1}.$$

Since $A_3 \subset A_2 \subset A_1 \subset T_1$, we have $\varphi(\zeta_1, \zeta_1) > 0$ for $\zeta_1 \in A_3$. Hence there exist a measurable subset $A \subset A_3$ and a positive number $\epsilon > 0$ such that $m_1(A) > 0$ and

(2)
$$\varphi(\zeta_1,\zeta_1) > \epsilon \text{ for } \zeta_1 \in A.$$

Since F is continuous on the compact set A_3 , we may assume that

(3)
$$|F(\zeta_1) - F(\zeta_1')| < \frac{\epsilon}{2} \text{ for } \zeta_1, \zeta_1' \in A.$$

For $z \in \mathbf{D}$,

$$\begin{split} \hat{f}(z,0') &= \int_{\mathbf{T}^n} P_1(z,\zeta_1) f(\zeta_1,\zeta') \, dm(\zeta_1,\zeta') \\ &= \int_{\mathbf{T}} P_1(z,\zeta_1) \, dm_1(\zeta_1) \int_{\mathbf{T}^{n-1}} f_{\zeta_1} \, dm_{n-1} \\ &= \int_{\mathbf{T}} P_1(z,\zeta_1) F(\zeta_1) \, dm_1(\zeta_1) = \hat{F}(z), \end{split}$$

where 0' is the origin of \mathbb{C}^{n-1} . Let λ be a point of density of A. Since $A \subset A_2$, by (1), there exists radial limit

(4)
$$\lim_{r \neq 1} \hat{f}(r\lambda, 0') = F(\lambda).$$

By (2) and (3), we have for $\zeta_1 \in A$

$$\begin{aligned} \int_{\mathbf{T}^{n-1}} |f_{\zeta_1} - F(\lambda)| \, dm_{n-1} &\geq \int_{\mathbf{T}^{n-1}} |f_{\zeta_1} - F(\zeta_1)| \, dm_{n-1} - \int_{\mathbf{T}^{n-1}} |F(\zeta_1) - F(\lambda)| \, dm_{n-1} \\ &= \varphi(\zeta_1, \zeta_1) - |F(\zeta_1) - F(\lambda)| > \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}. \end{aligned}$$

This yields that for $r \in (0, 1)$

$$\begin{aligned} \int_{\mathbf{T}^n} |f(\zeta) - F(\lambda)| P_1(r\lambda, \zeta_1) \, dm(\zeta) &\geq \int_{\mathbf{A}} P_1(r\lambda, \zeta_1) \, dm_1(\zeta_1) \int_{\mathbf{T}^{n-1}} |f_{\zeta_1} - F(\lambda)| \, dm_{n-1} \\ &> \frac{\epsilon}{2} \int_{A} P_1(r\lambda, \zeta_1) \, dm_1(\zeta_1). \end{aligned}$$

Since λ is a point of density of A,

$$\lim_{r \nearrow 1} \int_A P_1(r\lambda,\zeta_1) \, dm_1(\zeta_1) = 1.$$

Hence

$$\liminf_{r \neq 1} \int_{\mathbf{T}^n} |f(\zeta) - F(\lambda)| P_1(r\lambda, \zeta_1) \, dm(\zeta) \geq \frac{\epsilon}{2}.$$

Thus we get our assertion.

3. The Main Theorems.

THEOREM 1. Let $n \ge 2$ and let S be a closed linear subspace of $L^{\infty}(\mathbf{T}^n)$ containing $C(\mathbf{T}^n)$. Then the Bourgain algebra of \hat{S} relative to $L^{\infty}(\mathbf{D}^n)$ is

$$(\hat{S})_b = \mathbf{C} + V(\mathbf{D}^n).$$

PROOF. The essential idea of the proof is the same as the one in [9] except using Lemma 7. For the sake of completeness, we give the proof. Let $f \in V(\mathbf{D}^n)$ and $\hat{f}_l \to 0$ weakly in \hat{S} . Then $\{\hat{f}_l\}_{l\in\mathbb{N}}$ is a norm bounded sequence in \hat{S} , so that for any $\epsilon > 0$ there exists an $r \in (0, 1)$ such that $\sup_{l\in\mathbb{N}} ||f\hat{f}_l\chi_{\mathbf{D}^n/r\mathbf{D}^n}||_{\infty} < \epsilon$. Since $||\hat{f}_l\chi_{r\mathbf{D}^n}||_{\infty} \to 0$ as $l \to \infty$, we have $||f\hat{f}_l||_{\infty} \to 0$ as $l \to \infty$, and so $f \in (\hat{S})_b$. This implies $(\hat{S})_b \supset V(\mathbf{D}^n)$. Since $(\hat{S})_b \supset \mathbf{C}$ evidently, we have

(1)
$$(\hat{S})_b \supset \mathbf{C} + V(\mathbf{D}^n).$$

Next we claim that

(2) if
$$g \in L^{\infty}(\mathbf{T}^n)$$
 and $\hat{g} \in (\hat{S})_b$, then $g \in \mathbf{C}$.

To prove $g \in \mathbf{C}$, assume contrarily $g \notin \mathbf{C}$. By Lemma 7, there exists a positive number $\epsilon > 0$, a sequence $\{z^{(l)}\}_{l \in \mathbf{N}}$ in \mathbf{D}^n , a point $\zeta \in \partial \mathbf{D}^n$ and a complex number c such that

(3)
$$\lim_{l\to\infty} z^{(l)} = \zeta, \lim_{l\to\infty} \hat{g}(z^{(l)}) = c,$$

(4)
$$\int_{\mathbf{T}^n} |g(\xi) - \hat{g}(z^{(l)})| P(z^{(l)}, \xi) \, dm(\xi) > \epsilon, l \in \mathbf{N}.$$

By Lemma 6, there exists a sequence $\{g_l\}_{l \in \mathbb{N}}$ in $C(\mathbb{T}^n)$ such that

(5)
$$||g_l||_{\infty} = 1$$
, for all $l \in \mathbf{N}$,

(6)
$$g_l \to 0$$
 weakly in $C(\mathbf{T}^n)$,

(7)
$$\lim_{l\to\infty}\int_{\mathbf{T}^n}|1-g_l(\xi)|P(z^{(l)},\xi)\,dm(\xi)=0.$$

Put h = g - c. Then $\hat{h} \in (\hat{S})_b$ and

290

(8)
$$\lim_{l\to\infty} \hat{h}(z^{(l)}) = 0,$$

(9)
$$\liminf_{l\to\infty}\int_{\mathbf{T}^n}|h(\xi)|P(z^{(l)},\xi)\,dm(\xi)\geq\epsilon,$$

because of (3) and (4). Let G be a function in $L^{\infty}(\mathbf{T}^n)$ such that Gh = |h| and |G| = 1 on \mathbf{T}^n . By Lusin's theorem (*e.g.*, [12], p.56), there exists a sequence $\{h_l\}_{l \in \mathbb{N}}$ in $C(\mathbf{T}^n)$ such that

(10)
$$||h_l||_{\infty} \leq 1$$
, for all $l \in \mathbf{N}$,

(11)
$$\lim_{l \to \infty} \int_{\mathbf{T}^n} |G(\xi) - h_l(\xi)| P(z^{(l)}, \xi) \, dm(\xi) = 0.$$

For each $l \in \mathbf{N}$ we put $f_l = g_l h_l$. Then $f_l \in C(\mathbf{T}^n)$ and

(12)
$$|(|h|g_l)^{\wedge}(z^{(l)}) - (hf_l)^{\wedge}(z^{(l)})|$$

= $|\int_{\mathbf{T}^n} \{ (Ghg_l)(\xi) - (hg_lh_l)(\xi) \} P(z^{(l)}, \xi) dm(\xi)|$
 $\leq ||h||_{\infty} \int_{\mathbf{T}^n} |G(\xi) - h_l(\xi)| P(z^{(l)}, \xi) dm(\xi) \to 0 \text{ as } l \to \infty,$

by virtue of (11). By (5), (10) and (6), it holds that $f_l \to 0$ weakly in $C(\mathbf{T}^n)$. Hence $f_l \to 0$ weakly in *S*, because $S \supset C(\mathbf{T}^n)$. Since $\hat{h} \in (\hat{S})_b$, by Lemma 5, we have

(13)
$$\lim_{l\to\infty} \|\hat{h}\hat{f}_l - (hf_l)^{\wedge}\|_{\infty} = 0.$$

Noting $\{\hat{hf}_{l} - (hf_{l})^{\wedge}\}_{l \in \mathbb{N}} \subset C(\mathbb{D}^{n})$, we have, by (13), (8), (12), (7) and (9),

$$0 = \limsup_{l \to \infty} \|\hat{h}f_{l} - (hf_{l})^{\wedge}\|_{\infty} \ge \limsup_{l \to \infty} |(\hat{h}f_{l})(z^{(l)}) - (hf_{l})^{\wedge}(z^{(l)})|$$

=
$$\limsup_{l \to \infty} |(hf_{l})^{\wedge}(z^{(l)})| = \limsup_{l \to \infty} |(|h|g_{l})^{\wedge}(z^{(l)})|$$

=
$$\limsup_{l \to \infty} |\int_{\mathbf{T}^{n}} \{|h(\xi)| - (1 - g_{l}(\xi))|h(\xi)|\} P(z^{(l)}, \xi) dm(\xi)|$$

=
$$\limsup_{l \to \infty} \int_{\mathbf{T}^{n}} |h(\xi)| P(z^{(l)}, \xi) dm(\xi) \ge \epsilon > 0.$$

This is a contradiction. Thus we have $g \in \mathbf{C}$. This shows that (2) is valid.

Now we see that

$$(\hat{S})_b \subset \mathbf{C} + V(\mathbf{D}^n).$$

Let $f \in (\hat{S})_b$. Then Lemma 4 implies that $f \in BV(\mathbf{D}^n)$ and $f^* \in S_b$. Put $g = f^*$. We claim that $f - \hat{g} \in V(\mathbf{D}^n)$. Suppose $f - \hat{g} \notin V(\mathbf{D}^n)$. Then there exists an $\epsilon > 0$, a sequence $\{r_l\}_{l \in \mathbb{N}}$ in (0, 1) and a sequence $\{A_l\}_{l \in \mathbb{N}}$ of measurable subsets of \mathbf{D}^n with $\nu(A_l) > 0$ and a density point $z^{(l)}$ of A_l such that

(14)
$$||z^{(l)}|| \to 1 \text{ as } l \to \infty,$$

(15)
$$|f(z) - \hat{g}(z)| > \epsilon \text{ for } z \in \bigcup_{l=1}^{\infty} A_l.$$

By passing to a subsequence (if necessary) we may assume that $z^{(l)} \to \zeta \in \partial \mathbf{D}^n$ as $l \to \infty$. By Lemma 6, there exists a sequence $\{g_l\}_{l \in \mathbb{N}}$ in $C(\mathbf{T}^n)$ such that

(16)
$$||g_l||_{\infty} = 1, \text{ for all } l \in \mathbf{N},$$

(17)
$$g_l \to 0$$
 weakly in $C(\mathbf{T}^n)$,

(18)
$$\lim_{l\to\infty}\int_{\mathbf{T}^n}|1-g_l(\xi)|P(z^{(l)},\xi)\,dm(\xi)=0.$$

By (18), we have

(19)
$$\lim_{l \to \infty} \hat{g}_l(z^{(l)}) = 1.$$

By (18) and (19), we have

(20)
$$\lim_{l\to\infty} |\hat{g}(z^{(l)})\hat{g}_l(z^{(l)}) - (gg_l)^{\wedge}(z^{(l)})| = 0.$$

By continuity there exists a positive number δ_l with $0 < \delta_l < 1 - ||z^{(l)}||$ such that if $z \in \mathbf{D}^n$, $||z - z^{(l)}|| < \delta_l$, then

$$|\hat{g}(z^{(l)}) - \hat{g}(z)| < \frac{\epsilon}{4},$$

(22)
$$|\hat{g}_l(z^{(l)}) - \hat{g}_l(z)| < \frac{\epsilon}{4\|f\|_{\infty}}.$$

(23)
$$|(gg_l)^{\wedge}(z^{(l)}) - (gg_l)^{\wedge}(z)| < \frac{\epsilon}{4}.$$

Put $B_l = A_l \cap \{z \in \mathbb{C}^n : ||z - z^{(l)}|| < \delta_l\}$. Since $z^{(l)}$ is a point of density of $A_l, \nu(B_l) > 0$. Choose a point $z \in B_l$. Then, by (15), (22), (23), (16) and (21), we have

$$\begin{split} \epsilon |\hat{g_l}(z^{(l)})| &\leq |f(z) - \hat{g}(z)||\hat{g_l}(z^{(l)})| \\ &\leq |f(z)||\hat{g_l}(z^{(l)}) - \hat{g_l}(z)| + |f(z)\hat{g_l}(z) - (gg_l)^{\wedge}(z)| \\ &+ |(gg_l)^{\wedge}(z) - (gg_l)^{\wedge}(z^{(l)})| + |(gg_l)^{\wedge}(z^{(l)}) - \hat{g}(z^{(l)})\hat{g_l}(z^{(l)})| \\ &+ |\hat{g_l}(z^{(l)})|\hat{g}(z^{(l)}) - \hat{g}(z)| \\ &\leq \frac{3}{4}\epsilon + ||f\hat{g_l} - (gg_l)^{\wedge}||_{\infty} + |(gg_l)^{\wedge}(z^{(l)}) - \hat{g}(z^{(l)})\hat{g_l}(z^{(l)})|. \end{split}$$

It follows from (19) and (20) that

(24)
$$\frac{\epsilon}{4} \leq \liminf_{l \to \infty} \|fg_l - (gg_l)^{\wedge}\|_{\infty}.$$

On the other hand, (17) implies that $g_l \to 0$ weakly in S. Since $f \in (\hat{S})_b$, by Lemma 5, we have

(25)
$$\lim_{l\to\infty} \|f\hat{g}_l - (f^*g_l)^\wedge\|_{\infty} = 0.$$

Since $g = f^*$, (25) contradicts (24). We have thus $f - \hat{g} \in V(\mathbf{D}^n)$. By (1), this yields $f - \hat{g} \in (\hat{S})_b$, and so $\hat{g} = f - (f - \hat{g}) \in (\hat{S})_b$. It follows from (2) that $g \in \mathbf{C}$. Hence

$$f = \hat{g} + (f - \hat{g}) \in \mathbf{C} + V(\mathbf{D}^n).$$

This means that

(26)
$$(\hat{S})_b \subset \mathbf{C} + V(\mathbf{D}^n).$$

(26) and (1) complete the proof.

Since $h^{\infty}(\mathbf{D}^n) = (L^{\infty}(\mathbf{T}^n))^{\wedge}$, the first part of the following theorem is a special case of Theorem 1:

THEOREM 2. Let $n \ge 2$. Then

$$h^{\infty}(\mathbf{D}^n)_b = \mathbf{C} + V(\mathbf{D}^n)$$
 and $h^{\infty}(\mathbf{D}^n)_{bb} = L^{\infty}(\mathbf{D}^n)$.

PROOF. Since $\mathbf{C} \cap V(\mathbf{D}^n) = \{0\}$, every $h \in h^{\infty}(\mathbf{D}^n)_b$ has a unique decomposition $h = \alpha_h + g_h$ into a sum of $\alpha_h \in \mathbf{C}$ and $g_h \in V(\mathbf{D}^n)$. By the definition of $V(\mathbf{D}^n)$, we also have $|\alpha_h| \leq ||h||_{\infty}$. Hence $h \mapsto \alpha_h$ is a bounded linear functional on $h^{\infty}(\mathbf{D}^n)_b$.

We need to prove that $L^{\infty}(\mathbf{D}^n) \subset h^{\infty}(\mathbf{D}^n)_{bb}$. Let $f \in L^{\infty}(\mathbf{D}^n)$ and $f_l \to 0$ weakly in $h^{\infty}(\mathbf{D}^n)_b$. Then there exist sequences $\{\alpha_l\}_{l\in\mathbb{N}}$ in \mathbb{C} and $\{g_l\}_{l\in\mathbb{N}}$ in $V(\mathbf{D}^n)$ such that $f_l = \alpha_l + g_l \ (l \in \mathbb{N})$. Since $f_l \to 0$ weakly in $h^{\infty}(\mathbf{D}^n)_b$, we have $\alpha_l \to 0$ as $l \to \infty$. Thus

$$||f_l - fg_l||_{\infty} = |\alpha_l|||f||_{\infty} \to 0 \text{ as } l \to \infty.$$

Since $\{fg_l\}_{l \in \mathbb{N}} \subset V(\mathbb{D}^n) \subset h^{\infty}(\mathbb{D}^n)_b$, it follows that $f \in h^{\infty}(\mathbb{D}^n)_{bb}$. This completes the proof.

REFERENCES

- **1.** J. Cima, S. Janson and K. Yale, *Completely continuous Hankel operators on H[∞] and Bourgain algebras*, Proc. Amer. Math. Soc. **105**(1989), 121–125.
- 2. J. Cima, K. Stroethoff and K. Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160(1993), 27-41.
- 3. J. Cima and R. Tiomoney, *The Dunford-Pettis property for certain planar uniform algebras*, Michigan Math. J. 34(1987), 99–104.
- 4. G. Ghatage, S. Sun and D. Zheng, A remark on Bourgain algebras on the disk, Proc. Amer. Math. Soc. 114(1992), 395–398.
- **5.** P. Gorkin and K. Izuchi, *Bourgain algebras on the maximal ideal space of* H^{∞} , Rocky Mount. J., to appear.
- 6. P. Gorkin, K. Izuchi and R. Mortini, *Bourgain algebras of Douglas algebras*, Canad. J. Math. 44(1992), 797-804.
- 7. K. Izuchi, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math. J. 66(1992), 503-519.
- **8.** K. Izuchi and Y. Matsugu, *Multipliers and Bourgain algebras of* $H^{\infty} + C$ *on the polydisk*, Pacific J. Math. **171**(1995), 167–208.
- 9. K. Izuchi, K. Stroethoff and K. Yale, *Bourgain algebras of spaces of harmonic functions*, Michigan Math. J. 41(1994), 309–321.
- R. Mortini and R. Younis, Douglas algebras which are invariant under Bourgain map, Arch. Math. 59 (1992), 371–378.
- 11. W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.
- 12. _____, Real and complex analysis, 3rd edition, McGraw-Hill, New York, 1987.
- D. Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Blacksburg, Va., 1978.

Department of Mathematics Faculty of Science Niigata University Niigata 950-21 Japan Department of Mathematics Faculty of Science Shinshu University Matsumoto 390 Japan