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B O U R G A I N A L G E B R A S O F SPACES OF 
rc-HARMONIC FUNCTIONS IN THE UNIT POLYDISK 

KEIJIIZUCHI, KAZUHIRO KASUGA AND YASUO MATSUGU 

ABSTRACT. Let h°°(D") denote the space of all bounded «-harmonic functions on 
the unit polydisk D" ofC1. In this paper we prove that the Bourgain algebra h°°{D,\ 
and h°°(iyi)f,b relative to the Lebesgue space L°°(Dn) are of the following forms: 

h°°(D")h = C+ V(DP) and h°°(D")hh = L°°(D") for n > 2. 

Here V(D") is the space of those functions/ G Z , 0 0 ^ ) such that \\fxo"\rD
n lloo ^ 0 as 

r / 1, where \E denotes the characteristic function of a subset E of Dn. 

1. Introduction. Let n > 1 be a fixed integer. Let D" and T" denote the open 
unit polydisk in the complex «-dimensional Euclidean space C" and the distinguished 
boundary of D", respectively. We write D = D1 and T = T1. L°°(Tn) and L°°(Dn) 
denote the usual spaces of essentially bounded functions with respect to the normalized 
Lebesgue measures mn and vn on T" and Dw, respectively. Let Pn be the Poisson kernel 
for D", that is, 

P»(?,Q - ft i1 ~ J ? L Z = <?u~->zn) € D \ C = (Ci,.-.,£») e T\ 
7=1 \ZJ Vl 

In short, we write m — mn, v — vn and P — Pn. For a function/ G L°°(Tn) we write 
/ to denote the Poisson integral off, that is, 

f(z) = fTJ{QP(z,Qdm{Q 

for zGD". For any nonempty subset S ofL°°(Tn) we write 

S={f:fES}. 

h°°(Dn) stands for the space of all bounded «-harmonic functions in D". It holds that 

(L°°(Tn))A= h°°(Dn). 

(See [11], Theorems 2.1.3 and 2.3.2.) Let V(Dn) be the closed ideal of vanishing func
tions in L°°(Dn) as defined in Cima, Stroethoff and Yale [2], that is, 

V(D") ={fe L°°(D") : lim |1/XD»VD»IU = 0}, 
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where rW = {z = (z\,... ,z„) G C" : ||z|| = max\<j<n \zj\ < r}, 0 < r < 1. As usual, 
for any topological space Q, C(Q) stands for the space of all continuous functions in Q. 

In [3], Cima and Timoney introduced the concept of Bourgain algebra. Let X be a 
commutative Banach algebra with unit element and let Y be a closed subspace of X. A 
sequence {//}/GN in Y is called weakly null if F(/J) —• 0 as / —> oo for every bounded 
linear functional F on 7. We denote by Yb the set of/ G Jf such that for every weakly null 
sequence {//}/€N in 7 there exists a sequence {g/}/eN in 7 with \\ff—g/\\ —> 0 as / —-» oo. 
Then 7/, is a closed subalgebra of X. Yb is called the Bourgain algebra of Y relative to 
X. Let Ybb = {Yb)b- When Y is a closed subalgebra of X, moreover we have Y C Yb 
[3]. Recently there are many studies of Bourgain algebras [1,2,3,4,5,6,7,8,9,10]. In this 
paper, we study Bourgain algebras on D". In [7], the first author showed that H°°(Dn)b — 
H°°(Dn) for n > 2, where H°°(Dn) is the space of bounded analytic functions in Dw. In 
[8], the authors determined the Bourgain algebras of (H°° + Q(Tn) and //°°(D") + C(D«). 

On the other hand, the first author, Stroethoff and Yale [9] studied the Bourgain algebra 
of h°°(D) relative to L°°(D) and proved the theorems below. h°°{D)b has a connection 
with VMO on T. VMO denotes the space of those functions/ E Ll(T) which satisfy the 
condition 

Jim JT \f(Q -fe)\P\ (*,0dm, (Q = 0. 

We note that VMOnZ,°°(T) coincides with QC = (H°° + Q(T) n (H°° + Q(T) (see 
[13]). 

THEOREM A. If S is a closed linear subspace ofL°°(T) containing C(T) and Sb is 
the Bourgain algebra of S relative to L°°(T), then the Bourgain algebra of S relative to 
L°°(D) is: 

(% = (^nVMO) A + F(D). 

As a corollary to this theorem they obtained the following theorem: 

THEOREM B. The Bourgain algebra ofh°°(D) relative to L°°(D) is: 

h°°(D)b = h°°(D)bb = (L°°(T) H VMO)A + V(D). 

We note that h°°(D) is not an algebra and h°°(D)b is a fairly small space. The purpose 
of this paper is to determine the Bourgain algebras h°°(Dn)b and h°°(Dn)bb for n>2At is 
greatly surprising that the VMO space does not appear in the representation ofh°°(Dn)b 
and h°°(Dn)bb coincides with the whole space L°°(Dn). Our main result is the following: 

h°°(Dn)b = C + V(Dn) and h°°(Dn)bb = L°°(D") for n > 2, 

where C denotes the set of constant functions. 
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2. Preliminaries. Let / G L°°(Dn). For a measurable subset E of D'\ let 

R(f,E) = {weC: for every e > 0, //({z G E : /(z) - w| < e}) > 0}, 

utf9E) = sup{|a - /3| : <*,/? G *(/",£)}. 

For £ G T" and 5 > 0, we write 

E(Ç,8)={zeW:\\z-Cl\<ô}. 

For ( e T and 0 < p < 1 let Tp(0 be the interior of the convex hull of ( and pD. For 
C = ( C i , . . . , C i ) e T " a n d O < p < 1, let 

r;(C) = nr„(0)cD", 
7=1 

o;p(/-, 0 = Jim u(f, E(C, è) n T/C)). 

We say that/ has essentially non-tangential limit L G C at ( G Tw if 

l imsup{ |a -L | : a e ^ ^ C ^ n ^ O ) } = 0 

for every p G (0,1), in which case we write f*(Q for L. We define #F(DW) to be the set 
of functions g G L°°(Dn) for which an essential non-tangential limit g*(Q G C exists for 
almost every ( Ç T " . We note that the following lemma holds: 

LEMMA 1. Letfg G L°°(D") and Ce Tn. 
(i) f has non-tangential limit f*(Q G C ^ ( if and only if 

uPtf,Q = 0 

forallpe(0,\). 
(ii) Iff has non-tangential limitf*{Q G C at Ç then 

"PVk,Q = If (OkfeO 
for every p G (0,1). 

(Hi) IfuJp(g9Q — 0 for some p G (0,1), then 

Let A(T>") denote the polydisk algebra, the algebra of continuous functions on D" 
which are analytic in D". 

LEMMA 2. Suppose that {C^}/GN is a sequence of distinct points in Tn which con
verges to a point £ G Tn. Then there exists a weakly null sequence {//}/eN in A(Dn) such 
that for each l G N / is a peak function at C^!\ 

PROOF. See Cima, Stroethoff and Yale [2], p.30. 
Using Lemma 1 and Lemma 2, we can prove the following lemma by the same way 

in the proof of Theorem 8 [2] (see also Remark 9). 
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LEMMA 3. Let Y and Yb be a closed linear subspace ofL°°(Dn) and its Bourgain 
algebra relative to L°°(W), respectively. IfA(Vn) CYC BV(D"), then Yh C BV(W). 

The following lemma is easily shown as a corollary to the previous lemma (see [9], 
Corollary 9). 

LEMMA 4. Let S and (S)b be a closed linear subspace ofL°°(Tn) containing C(Tn) 
and the Bourgain algebra of S relative to L°°(Dn), respectively. Iff G (S)b* then f G 
BV{W) andf G Sb, the Bourgain algebra of S relative to L°°(Tn). 

LEMMA 5. Let S and (S)b be a closed linear subspace ofL°°(Tn) containing C(Tn) 
and the Bourgain algebra of S relative to L°°(Dn), respectively. Iff G (S)b and {//}/GN is 
a weakly null sequence in S, then 

,lim||/#-(Ty/)A||oo = 0. 

PROOF. This lemma easily follows from the previous one (see [9], the proof of 
Lemma 11). 

LEMMA 6. Let {Z(/)}/GN be a sequence in Dn which converges to a point £ G dDn = 
Dw \ D". Then there exists a sequence {g/}/eN in C(Tn) such that: 

(i) ||g/||oo=l,/ora///GN; 
(ii) gi^O weakly in C(Tn); 

(Hi) l i m ^ JT„ |1 -gi(0\P(z([),Odm(0 = 0. 

PROOF. Since C = (Çi,...,C) G dV", \Ç\ = 1 for some y G { l , . . . , / i } . Without 
loss of generality we can assume |£ | = 1. If we write z(/) = (z(,Z),... ,z^), then for each 
j G {1, . . . ,«} , {z^}i^ is a sequence in D which converges to Q. By [9], Lemma 12, 
there exists a sequence {//}/GN in C(T) such that: 

(i) ll/JHoo = l . fora l l /e N; 
(ii) f, -> 0 weakly in C(T); 

(iii) lim/^ooST |1 -gi{t)\Px{z{^t)dm\{t) = 0. 
For / G N and £ = (£, , . . . , £„) G Tn, we define 

Then {g/}/GN is a sequence in C(T'2) which satisfies (i),(u) and (iii). 
The following is a key lemma of this paper. 

LEMMA 7. Let n > 2 and letf G L°°(Tn) be a non-constant function. Then there 
exists a sequence {Z^}/€N in Dn such that ||z(/)|| —> 1 as I —> oo and 

liminf [ \f(Q -f(z^)\P(z«\Qdm(Q > 0. 

PROOF. Let/ G L°°(Tn) be a non-constant function. Then m({( G Tw : f(Q = c}) < 
1 for every c G C and there exists a measurable subset T\ C T with mi (7^ ) = 1 such that 
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/Cl G L°°(Tn-]) for every Ci G Tu where/Cl(C') = /(£,,Ç) for Ç' G T"-' . Without loss of 
generality, we may assume that there is a measurable subset^ C ^ with nt\(A\) > 0 
such that /w„-i({C' G T""1 : /Cl(C') - c}) < 1 for (i G ^i and c G C. We define the 
function F on T\ by 

Then F G L°°(T). By Fatou's theorem, there exists a measurable subset Ai C >4i with 
^1(^2) > 0 such that F has radial limit 

(1) limF(rCi) = F(0) 
r/\ 

at each point Ci G ̂ 2. By Lusin's theorem, there exists a compact subset A3 C A2 with 
m\ {A3) > 0 such that F is continuous on A3. For (Ci, £{) G F] x Fi, we define 

(̂Ci,Ci) = jpi. l|/
r
Cl-^Cj)k«B-i-

Since A3 C A2 <Z A\ (Z T\9 we have </?(Ci,Ci) > 0 for (1 G A3. Hence there exist a 
measurable subset^ C A3 and a positive number e > 0 such that m\(A) > 0 and 

(2) ^(0,Ci)>eforC. Gy*. 

Since F is continuous on the compact set A3, we may assume that 

(3) |F(Ci)-F(CÎ) |<^forCi,CÎG^. 

ForzGD, 

/(z, 0') = [jn P, (z, Ci /(Ci, C) <*"(Ci, C') 

= X p i (z> Ci ) ̂  1 (Ci ) /^ , /<, dmn-1 

= /TF1(z,Ci)F(C,)Jm,(C,) = F(z), 

where 0' is the origin of Cn~l. Let A be a point of density of A. Since A C ^2» by (1), 
there exists radial limit 

(4) lim/(rA,0/) = F(A). 
r/V 

By (2) and (3), we have for Ci G A 

fjni \fCl - F(X)\ dmn-i > ( ^ \fCl - F(C,)| </«„_, - [^ |F(C) - F(X)\ dm„^ 

= f(<:uCi)-\m)-F(X)\>€-e- = ^. 
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This yields that for r G (0,1) 

[ \f(Q-m\Pi(r\Xi)dm(Q > I>,(rA,C,)^i(Ci) L , |& - ^(A)! rf/fiw_, 
. / I" ./A •/ I'7—1 

> i i F , ( r A ' C i M w i ( C i ) ' 
Since A is a point of density of A, 

l im/>,(rA, 0 ) ^ , ( 0 = 1 . 

Hence 
liminf / \f(Q-FM\Pi(rX,Ci)dm(Q > f 

Thus we get our assertion. 

3. The Main Theorems. 

THEOREM 1. Let n > 2 and let S be a closed linear subspace ofL°°(T") containing 
C(Tn). Then the Bourgain algebra of S relative to L°°(Dn) is 

(S)b = c + v(Dny 

PROOF. The essential idea of the proof is the same as the one in [9] except using 
Lemma 7. For the sake of completeness, we give the proof. Le t / G V(Dn) and fi —> 0 
weakly in S. Then {//}/GN is a norm bounded sequence in S, so that for any e > 0 there 
exists an r G (0,1) such that sup/GN \\ffiXw\rD" IU < e. Since |$XrD»||oo —» 0 as / —> oo, 
we have ||/#||oo -^ 0 as / —> oo, and s o / G (5%. This implies (5% D F(D"). Since 
(S)b D C evidently, we have 

(1) (S)bDC+V(Dn). 

Next we claim that 

(2) if g G L°°(Tn ) and g G (S)*, then g G C. 

To prove g G C, assume contrarily g ^ C. By Lemma 7, there exists a positive number 
e > 0, a sequence {z(/)}/GN in Dw, a point £ G dBn and a complex number c such that 

(3) lim z(/) = C, lim g(z(/)) = c, 

(4) J |g(0 - g(z(/))|P(z«/), O M » M e N . 
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By Lemma 6, there exists a sequence {g/}/eN in C(TW) such that 

(5) ||g/||oo= 1, forall /GN, 

(6) gi->0 weakly in C(T"), 

(7) lim [ 11 - gi(0\P(z{l\ O dm(0 = 0. 
/—+oo JT" 

Puth=g-c. Then h G (S)b and 

(8) lim /i(z(/)) = 0, 
/—>oo 

(9) liminf jf I M O I ^ . O ^ O > £, 
/—+00 JT" 

because of (3) and (4). Let G be a function in L°°(Tn) such that Gh = \h\ and \G\ = 1 on 
Tn. By Lusin's theorem (e.g., [12], p.56), there exists a sequence {/Î/}/GN in C(TW) such 
that 

(10) W l o o < 1, forall /GN, 

(11) lim / |G(0 - h,(0\P(^,Qdm(0 = 0. 
I—*oo JT" 

For each / G N we put// = gjhj. Then/ G C(T'7) and 

(i2) \(\h\glw>)-(hf,n^)\ 

= I JT.{(Gkg,M) - (te/*/XO W \ 0<MOl 

< I H L /T„ |G(0 - W O l ^ A 0 < M O - 0 as / — oo, 

by virtue of (11). By (5), (10) and (6), it holds that/; - • 0 weakly in C(T"). Hence./; -> 0 
weakly in S, because S D C(T"). Since & 6 (S)^, by Lemma 5, we have 

(13) Hm||Â/ï-(A/ï)Al|oo = o. 
/—->oo 

Noting {hfi - (hfi)A}izn C C(D"), we have, by (13), (8), (12), (7) and (9), 
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0 = limsup \\hfi - (/^)A||oo > Hmsup |(/z/)(z(/)) - (///)A(z(/))| 
/-—*oo l—>oo 

= limsup |(/^)A(z(/))| = limsup KlAlg,)^)! 

= limsupl / {|A(0| - ( 1 -gi(0)\KO\}P(z{l\Odm(0\ 
/—oo l / T 

= limsup /" |A(0 | / > (z ( / ) ,0^(0 > e > 0. 

This is a contradiction. Thus we have g G C. This shows that (2) is valid. 
Now we see that 

â c C + F(D"). 

Let/ G (5V Then Lemma 4 implies that/ G BV(D") and/* G S*. Put g = /* . We claim 
that/ - | G F(DW). Suppose/ — g $ V(Dn). Then there exists an e > 0, a sequence 
{r/} /eN in (0,1) and a sequence {^/}/€N of measurable subsets of D" with v{Ai) > 0 and 
a density point z(/) of A/ such that 

(14) lk( /) | |-> l a s / ^ o o , 

(15) / ( z ) - g ( z ) | > e f o r z G l ^ / . 

By passing to a subsequence (if necessary) we may assume thatz(/) —> £ G <9D" as / —•» oo. 
By Lemma 6, there exists a sequence {g/}/eN in C(Tn) such that 

(16) IIS/||oo=l, for all/G N, 

(17) gi - • 0 weakly in C(T\ 

(18) lim J |1 -g /(0 |P(z ( / ) ,0^(0 = 0. 

By (18), we have 

(19) \img,(z^)=]. 

By (18) and (19), we have 

(20) lim |g(z^)g/(z^) - (gg,)A(z(/))| = 0. 
/-^oo 

By continuity there exists a positive number 6/ with 0 < 6/ < 1 — ||z(/)|| such that if 
zGD" , | | z - zW| |<^ , then 

(21) W))-g{z)\<\, 
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(22) \g&'))-gi(z)\<7éi 

(23) \(ggi)A(^)-(gglf(z)\<-. 

Put fi, = J , n { z 6 C " : \\z - z(/>|| < èi}. Since z(/) is a point of density of A,, v(B,) > 0. 
Choose a point z G 5/. Then, by ( 15), (22), (23), ( 16) and (21 ), we have 

e|g/(z , / ))|<|/-(z)-g(z)||â(z«)| 

< \f(z)\\gl(z('}) - â(2)| + |/"(2)g/(2) " (gg/)A(^)| 

+ te/)A(z) - (gg/) V*) ! + l(gg/) V ) - g(z(/))g/(z(,))| 
+ |g/(z</))|g(zw)-g(z)| 

< \t + | | /g/ - (gg/)A||oo + |(gg/)A(z ( / )) - g(z ( / ))g/(z ( / )) | . 

It follows from (19) and (20) that 

€ 
(24) -A<^mf\\fg,-(ggl) 

4 /—*oo 

Al 
oo-

On the other hand, (17) implies that gj —> 0 weakly in S. Since/ G (S)b, by Lemma 5, 
we have 

(25) lim \\fg, -(fgtt ||oo = 0. 

Since g = /*, (25) contradicts (24). We have thus / - g G J^D"). By (1), this yields 
f-ge (S)b, and so g =f-(f- g) G (S)b. It follows from (2) that g G C. Hence 

/ = g + ( f - g ) € C + K(D"). 

This means that 

(26) ftCC + F(D"). 

(26) and (1) complete the proof. 
Since h°°(Dn) = (Z,°°(TW)) , the first part of the following theorem is a special case 

of Theorem 1: 

THEOREM 2. Let n>2. Then 

h°°(Dn)h = C + V(Dn) and h°°(Y>n)hh = L°°(Y)n). 

PROOF. Since C n V(Dn) = {0}, every h G /^(D11)*, has a unique decomposition 
h = ah+ gh into a sum of a:/, G C andg/, G F(D"). By the definition of V(W), we also 
have |a/j | < ||/*||oo- Hence h i—> a^ is a bounded linear functional on /2°°(D/7)6. 
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We need to prove that L°°(Dn) C h°°(W)hb. Le t / G L°°{W) and / -> 0 weakly 
in h°°(Dn)b. Then there exist sequences {a/} / e N in C and {g/}/eN in V(Dn) such that 
fi = a/ + g, (/ G N). Since/ —» 0 weakly in h°°(Dn)b, we have a/ —• 0 as / —> oo. Thus 

IU77 -/g/lloo = |«/||l/1|oo - 0 as / - , ex). 

Since {/g/}/eN C F(D") C /^(D71)*, it follows that/ G /?°°(D")^. This completes the 
proof. 
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