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This study examines the effects of an evolving attractant field, due to the phenomenon
of autochemotaxis, on the stability of a dilute suspension of active swimmers in a
channel. Motile swimmers typically exhibit an orientation bias that is dependent upon the
local gradient in the attractant field. By modelling the autochemotactic behaviour of the
swimmers through a non-dimensional number Da that characterizes the rate of attractant
secretion, we are able to show that the active stress-driven instability predicted by Kasyap
& Koch (Phys. Rev. Lett., vol. 108, issue 3, 2012, p. 038101) for a suspension of pushers is
stabilized with increasing Da. We also show that the autochemotactic behaviour results in
an active stress-driven flow instability for a suspension of pullers. Furthermore, we show
analytically and numerically that in the absence of convective transport of the attractant,
pushers and pullers undergo a simultaneous switch of stabilities at a critical Da.

Key words: active matter, micro-organism dynamics

1. Introduction

The collective motion in an active suspension of chemotactic swimmers has been explored
through experiments in a variety of settings (Budrene & Berg 1991, 1995; Dombrowski
et al. 2004; Sokolov et al. 2007, 2009). In particular, the role of chemotaxis in symmetry
breaking and the triggering of an instability (Hillesdon & Pedley 1996; Saintillan &
Shelley 2008b; Kasyap & Koch 2012, 2014; Lushi 2016) has received wide attention due
to its relevance in a variety of natural systems. The current work explores the creation of
active stress-driven instabilities in a confined suspension of autochemotactic swimmers.

The modelling of self-propelled swimmers as force dipoles (Spagnolie & Lauga
2012) is adopted when the suspensions are dilute, with the flow field being accurately
represented by considering solely the far-field hydrodynamics of the individual swimmers.
A single Escherichia coli bacterium generates an extensile flow field as a result of
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its self-propulsion and is classified as a pusher-type swimmer. Conversely, the algae
Chlamydomonas reinhardtii creates a contractile flow field as it swims through the
beating of its twin flagella, and is classified as a puller. Pushers and pullers differ in
the sign of the dipole moment, with its actual magnitude being dependent on the cell
structure of the particular species under consideration. In addition, motile swimmers
rarely traverse along straight lines for long times and undergo sudden random changes
in orientation, a phenomenon known as tumbling, that allows them to sample their
surrounding environment in search of nutrients. The motion of the swimmers through
a medium can thus be thought of as a random walk with a diffusivity that arises from
the tumbling and is purely athermal in nature. The hydrodynamic flow field generated by
swimming and the phenomenon of tumbling are two important aspects to account for in
the modelling of swimmer dynamics at the microscopic scale.

In addition to performing a random walk, swimmers such as E. coli tend to migrate
to regions of favourable chemical concentration, a feature known as chemotaxis that
contributes to the survival of the organism (Berg 2008). The mechanism involved
in setting up the preferential migration of swimmers depends greatly on the species
under consideration. For example, swimmers such as E. coli and Bacillus subtilis alter
their tumbling frequency to tumble less frequently when they are aligned favourably
to an attractant gradient, and vice versa when they are aligned away from the
attractant gradient (Rivero et al. 1989; Chen, Ford & Cummings 2003). The chemotactic
response of the swimmers in a suspension thus plays a crucial role in determining
the orientation distribution of the swimmers, as in the absence of any such chemical
gradients the swimmers execute a random walk. In general, the stimulus dictating the
preferential swimming is not limited to gradients in a chemical concentration field. Many
Chlamydomonas species of algae exhibit phototaxis (Jékely 2009; Martin et al. 2016;
Brun-Cosme-Bruny et al. 2020), wherein the swimmers tend to migrate towards regions
of higher intensity of light. Magnetotaxis refers to the preferential swimming of organisms
along the local magnetic field as sampled by a swimmer (Blakemore 1975), and it has
been seen in species of Magnetococcus. While the effects of chemotaxis and phototaxis
are triggered through the sampling of the stimuli by the swimmer along its trajectory,
the magnetotactic response to the instantaneous magnetic field results in a far greater
migration speed.

In E. coli, the secretion of an attractant has been observed when individual swimmers
are subjected to cellular stresses that necessitate the formation of multicellular structures
for survival (Mittal et al. 2003), in which the phenomenon of autochemotaxis and
self-signalling play a critical role. Experiments by Budrene & Berg (1991, 1995) involving
suspensions of autochemotactic swimmers have revealed the formation of swimmer
clusters at specific locations in the domain. An early work that aims to explore the
instabilities arising in such systems was given by Keller & Segel (1970), wherein the
authors have attempted to model travelling bands of E. coli by considering a pair of
diffusion equations governing the swimmer density and substrate concentration fields,
with appropriate additional terms accounting for the chemotactic flux and the substrate
consumption by the swimmer. Brenner, Levitov & Budrene (1998) considered the system
of chemotactic swimmers, wherein the individual swimmers generate an attractant that
enables cluster formation through self-signalling. They showed that the solution for the
autochemotactic system exhibits a finite-time blowup and used it to describe the patterns
observed by Budrene & Berg (1991, 1995).

In the literature, the instabilities observed in active suspensions of pullers have
emerged from the preferential swimmer motility. For instance, the observed instabilities
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contributing to the formation of bioconvective patterns (Kessler 1984) were mostly enabled
by gyrotaxis. Gyrotaxis refers to the preference of algae such as Chlamydomonas nivalis to
swim vertically upwards, due to a balance between the viscous and gravitational torques
that arise due to the cells being bottom-heavy. Since the swimmers are denser than the
aqueous medium they are present in, an instability similar to Rayleigh–Bénard convection
has been observed experimentally (Kessler 1985a,b) and theoretically (Kessler 1986;
Pedley, Hill & Kessler 1988; Hill, Pedley & Kessler 1989; Pedley & Kessler 1990) in these
systems. In addition, this form of taxis is of ecological importance in the layer formation
in certain plankton species (Sullivan, Donaghay & Rines 2010) and the formation of algal
blooms (Nielsen, Kiørboe & Bjørnsen 1990) in coastal areas. Aside from chemotaxis, the
hydrodynamics associated with the self-propulsion of the swimmers also plays a critical
role in the growth of instabilities in active suspensions (Dombrowski et al. 2004; Sokolov
et al. 2007, 2009). In this regard, the instabilities in suspensions of pushers (Saintillan &
Shelley 2008a; Kasyap & Koch 2012, 2014) have largely been attributed to the creation of
an active stress-driven flow in the domain. The active stress arising from the propulsion
of these swimmers is dependent upon the instantaneous microstructure of the suspension.
The swimmers are suspended in the fluid medium and the term ‘microstructure’ refers
to the position and orientation of each individual swimmer (the suspended phase) at a
given time. By employing a kinetic-theory-based formulation, the subsequent works by
Saintillan & Shelley (2008a,b) and Subramanian & Koch (2009) introduce a probability
distribution function associated with the microstructure of the suspension. Thus Ω(x, p, t)
is a probability distribution function associated with finding a swimmer at a location
x having an orientation p and is governed by the kinetic equation as described in
Subramanian & Koch (2009) as follows:

∂Ω

∂t
+ ∇ · [(Usp + u)Ω

]+ ∇ · (ṗΩ
)+ (Ω

τ
− 1

4π

∫
Ω

τ
dp
)

= 0. (1.1)

Here, Us and L are the swimming speed and length of the organism, while τ−1 represents
the tumbling frequency associated with the individual swimmer motility. The first three
terms represent the material derivative of Ω in the six-dimensional phase space spanned
by the position and orientation of a swimmer. The last two terms act as a source and sink
with respect to the distribution function due to the tumbling behaviour of the swimmers.
The form of Ω is essential in estimating the active stress in the suspension and usually
requires solving the full kinetic equation (1.1).

Subramanian, Koch & Fitzgibbon (2011) were able to derive a form of the active stress
relevant to the continuum formulation adopted in this paper by arguing that the time scale
over which the material derivative becomes prominent is much larger than the time scale
associated with the tumbling events. Thus at leading order, for perfectly isotropic tumbles,
the distribution function Ω(x, p, t) is given by a balance between the source and sink terms
in the kinetic equation (1.1) that arises from the phenomenon of tumbling,(

Ω

τ
− 1

4π

∫
Ω

τ
dp
)

= 0. (1.2)

The biased migration of the swimmers, due to some form of taxis, has a direct effect on
the microstructure of the suspension. The preferential swimming is introduced into the
modelling by accounting for the variation in the tumbling frequency τ as a function of
the swimmer orientation p. Rivero et al. (1989) and Chen et al. (2003) have established
through experiments that τ−1 in chemotactic suspensions has a biphasic functional form
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as follows:

τ−1 =
{

τ−1
0 exp(−ξp · g) if p · g > 0,

τ−1
0 if p · g < 0.

(1.3)

Here, ξ = χUs|∇c| gives the strength of chemotaxis, where χ is the sensitivity of the
bacterium to the presence of an attractant gradient, and |∇c| indicates the magnitude
of the attractant gradient. In the current work, we adopt the model for the stopping rate
of swimming as given in Bearon & Pedley (2000), by considering g = ∇c/|∇c| to be
along the local spatial gradient of the concentration field. Using the linearized form of the
tumbling frequency shown in (1.3), which is justified for weakly chemotactic suspensions
(ξ � 1), Subramanian et al. (2011) and Kasyap & Koch (2012) have solved (1.2) to obtain
an analytical expression for the probability distribution function Ω(x, p, t) as follows:

Ω(x, p, t) =

⎧⎪⎪⎨
⎪⎪⎩

n
4π

[
1 +
(

p · g − 1
4

)
ξ

]
if p · g > 0,

n
4π

[
1 − 1

4
ξ

]
if p · g < 0.

(1.4)

The use of the linearized form of the tumbling frequency given in (1.3) citing weak
chemotaxis (ξ � 1) is justified when the channel width is sufficiently large (see Bearon &
Pedley (2000) for the estimate of the chemotactic strength ξ ). For the case of the channel
width being 500 μm, ξ ≈ 0.1, which makes the linearization appropriate.

The role of hydrodynamics in enabling pattern formation in confined suspensions of
active fluids was demonstrated by Kasyap & Koch (2012, 2014) through a continuum
formulation, wherein they showed that the biased migration of swimmers along an
imposed chemical gradient is capable of creating a flow instability that results in an
aggregation of swimmers. In both papers, the attractant field was fixed externally to vary
linearly across the domain height. Aside from these continuum formulations, Saintillan
& Shelley (2008a,b, 2013) make use of kinetic-theory-based simulations to explore the
pattern formation and clustering in active suspensions of fluids, wherein an equation
similar to (1.1) is solved in its entirety. More recently, Ezhilan, Pahlavan & Saintillan
(2012), Lushi, Goldstein & Shelley (2012) and Lushi (2016) have used kinetic simulations
to explore the hydrodynamic stability of an autochemotactic suspension of pushers and
pullers about a homogeneous base state.

In this paper, we are interested in the role of self-signalling between swimmers
through the secretion of an attractant, on the suppression and amplification of the active
stress-driven instabilities observed in these systems, through a continuum formulation. In
§ 2 the problem is formulated as a suspension of swimmers contained in a channel – the
top and bottom wall of which are maintained at a constant concentration of the attractant –
a set-up that was motivated by the hydrogel-based microfluidic device proposed by Cheng
et al. (2007). Section 3 begins with the formulation of linear stability calculation of the
system, wherein the attractant transport is governed by a pseudosteady state equation
that is devoid of the convective transport of the attractant. Subsequently, the base state
profiles are derived for different attractant secretion rates (Da). In § 3.1, the stability
equations are solved numerically and analytically in the long-wave regime (k � 1) and the
regions of stability are characterized. Section 3.2 addresses the finite wavenumber stability
calculation for the system. Finally, in § 4 we address the role of convective transport of the
attractant field due to the flow set up by the active stresses in the system, on the stability
calculation of § 3.
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2. Problem formulation

The flow resulting from the active stresses present in the suspension is incompressible and
is governed by the Stokes equation, with the inertial terms being absent due to the low
Reynolds number of the problem,

∇ · u = 0, (2.1)

−∇p + μ∇2u + ∇ · T B = 0. (2.2)

Here, T B represents the stress on the fluid arising due the motility of the swimmers within
the suspension and can be written as an orientational average of the stress contribution
from each individual swimmer (Subramanian & Koch 2009),

T B(x, t) = −CμUsL2
∫

Ω(x, p, t)
(

pp − I
3

)
dp, (2.3)

where C is the dipole moment associated with the hydrodynamic field generated by the
swimmers motility. Using the form of Ω given in (1.4) as derived in Kasyap & Koch
(2012), the active stress T B turns out to be

T B = nS, (2.4)

where

S = − C
16

μUsL2ξ

(
gg − 1

3
I
)

. (2.5)

Here, n is the swimmer density field and S is the single particle stresslet. While the second
moment of the distribution function Ω describes the active stress in the system, a zeroth
moment of (1.1) results in an advection–diffusion equation that governs the evolution of
the swimmer number density as seen in (2.6) (Kasyap & Koch 2012, 2014). In addition,
an advection–diffusion equation with an additional source term that accounts for the
attractant secretion by the swimmers is used to describe the evolution of the attractant
field c (2.7),

∂n
∂t

+ ∇ · [(U0 + u)n − D∇n] = 0, (2.6)

∂c
∂t

+ ∇ · [uc − Da∇c] = αn, (2.7)

where U0 = 1
6χU2

s ∇c is the mean velocity of the swimmer along the attractant gradient
and D is the athermal diffusivity associated with the run and tumble motion of the
swimmers. The rate of attractant secretion by the swimmers is given by α, with Da being
the diffusivity associated with the attractant transport due to the thermal fluctuations in the
system. The diffusivity of the attractant will have an enhanced hydrodynamic contribution
due to tracer–bacterium interactions – Dhydro

a ∼ nL3UsL (Kasyap, Koch & Wu 2014;
Krishnamurthy & Subramanian 2015). The current study will focus on the dilute limit
(nL3 � 1), and thus we will assume the attractant diffusivity to have only the thermal
contribution.

In the current work, all lengths in the system are scaled with the channel height, x =
x∗H and z = z∗H. The time t is scaled with the diffusive time scale, t = t∗H2/D, and the
chemotactic drift velocity along the attractant gradient is used to scale the velocity field,
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u = u∗U0 and w = w∗U0. Equations (2.1), (2.2), (2.6) and (2.7) are non-dimensionalized
using the following scaling, with an asterisk (*) used to indicate the non-dimensional
variables:

n = n∗〈n〉, c = c∗Δc + c0, p = −p∗ 3
2 Szz〈n〉,

Pe = U0H/D, β = −3C〈n〉L2H/8, Da = α〈n〉H2/(ΔcDa), ε = D/Da

}
. (2.8)

Here, Δc = c1 − c0, where c1 and c0 are the attractant concentration fields at the top and
bottom wall and 〈n〉 is the average concentration of swimmers in the channel. The ratio of
the diffusive time scale and the attractant secretion time scale of the swimmers given by
Da is analogous in its physical relevance to the Damköhler number as commonly defined
in reaction–diffusion equations. The parameter ε is a ratio of the strength of diffusion
in the swimmer and attractant transport. The equations can be written in the following
non-dimensional form with the asterisk (*) being dropped for the sake of convenience:

∂u
∂x

+ ∂w
∂z

= 0, (2.9a)

− β
∂p
∂x

+ ∂2u
∂x2 + ∂2u

∂z2 − β

[
∂

∂x

{
n

3|∇c|

(
2
(

∂c
∂x

)2

−
(

∂c
∂z

)2
)}

+ ∂

∂z

{
n

|∇c|
∂c
∂x

∂c
∂z

}]
= 0, (2.9b)

− β
∂p
∂z

+ ∂2w
∂x2 + ∂2w

∂z2 − β

[
∂

∂x

{
n

|∇c|
∂c
∂x

∂c
∂z

}

+ ∂

∂z

{
n

3|∇c|

(
2
(

∂c
∂z

)2

−
(

∂c
∂z

)2
)}]

= 0, (2.9c)

∂n
∂t

+ Pe
(

∂

∂x

{(
u + ∂c

∂x

)
n
}

+ ∂

∂z

{(
w + ∂c

∂z

)
n
})

−
(

∂2n
∂x2 + ∂2n

∂z2

)
= 0, (2.9d)

ε
∂c
∂t

+ εPe
(

∂

∂x
{uc} + ∂

∂z
{wn}
)

−
(

∂2c
∂x2 + ∂2c

∂z2

)
= Dan. (2.9e)

The value of the attractant secretion rate by the swimmer (α) is of the order of 103

molecules/s/swimmer for E. coli (Brenner et al. 1998). The difference in the attractant
concentration between the two walls (Δc) is typically 10−5–10−4 M (Cheng et al. 2007).
The diffusivity associated with an attractant such as methylaspartate is Da ≈ 103 μm2 s−1

(Cheng et al. 2007). For the average concentration of swimmers in the range of 〈n〉 ≈
108–1010 cm−3 (Sokolov et al. 2007), for channel heights H > 500 μm, the value of
Da ≈ 10−4–1.0. The continuum model is limited by the active stress becoming singular
when |∇c| � 1, but for the range of Da of physical relevance such a singularity is not
observed.

The athermal diffusivity for a swimmer is D ≈ 100 μm2 s−1, which yields an ε ≈ 0.1.
In § 3 we have approximated ε = 0, which corresponds to a pseudosteady attractant field
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wherein the attractant diffusion is balanced by its production by the swimmers, to isolate
the role of self-signalling autochemotaxis by swimmers on the stability of the system.
In § 4 we have probed the stability of the system for ε = 0.1. The magnitude of the
chemotactic drift velocity is typically 10 % of the swimming speed Us, U0 ≈ 3 μm s−1,
which yields a Péclet number Pe ≈ 15. The dipole moment C ≈ 0.57 for E. coli which
yields an activity, β ≈ 300. The boundary conditions for the above system (2.9) consist of
the no-slip and no-penetration conditions associated with the velocity field and the no-flux
condition for the swimmer density field at the top and bottom wall (at z = 0 and 1):

w = 0, (2.10a)

u = 0, (2.10b)

Pe n
∂c
∂z

− ∂n
∂z

= 0. (2.10c)

The value of attractant field is fixed at the top and bottom wall:

c = 0 at z = 0, (2.10d)

c = 1 at z = 1. (2.10e)

The fixed concentration of attractant at the two boundaries is motivated by the work
of Cheng et al. (2007), wherein they physically realized a linear variation of the
attractant concentration across the channel walls, for small channel thicknesses. For an
autochemotactic suspension of swimmers (finite Da), with increasing channel thickness,
the linear gradient is difficult to establish and maintain due to the emergence of
self-signalling behaviour and active stresses.

In the current study, we have considered the attractant field to be maintained at a fixed
concentration value at both boundaries. In the limit of zero attractant production by the
bacteria, it reproduces the linear attractant concentration profile as studied previously in
Kasyap & Koch (2012, 2014). In some scenarios, the attractant production is intrinsic,
and the appropriate boundary condition will be a no-flux one. There exist no stationary
solutions for (2.9d)–(2.9e) with a no-flux boundary condition. Stationary states would exist
if we were to include attractant degradation in (2.9e) (Childress & Percus 1981). Here we
want to explore the role of attractant production on the stabilization/destabilization of a
bacterial suspension and thus ignore the role of attractant degradation.

3. The role of self-signalling on the hydrodynamic stability of the system

In the current study, we are interested in probing hydrodynamic instabilities in a confined
autochemotactic suspension. In this section, to probe the role of autochemotaxis and
self-signalling on the creation and suppression of hydrodynamic instabilities in confined
active suspensions, we consider the case of ε = 0, wherein the attractant evolution is
governed by a pseudosteady state equation given by a balance between the attractant
secretion by the swimmers and its diffusion due to thermal fluctuations in the system.
There exists a quiescent base state due to a balance between the diffusive flux of swimmer
concentration and the attractant-induced chemotactic drift. We begin by linearizing about
this base state using disturbances of the normal mode form,

{u, w, p, n, c} = {0, 0, p̄(z), n̄(z), c̄(z)} + {û(z), ŵ(z), p̂(z), n̂(z), ĉ
}

exp(ikx + σ t), (3.1)
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with the perturbation amplitudes being assumed to be small compared with the base state
variables of the system:

n̂ � n̄, ĉ � c̄, p̂ � p̄, û � 1, ŵ � 1. (3.2a–e)

The base state number density and attractant concentration fields are governed by the
following equations:

Pe
∂

∂z

(
∂ c̄
∂z

n̄
)

− ∂2n̄
∂z2 = 0, (3.3)

∂2c̄
∂z2 + Da n̄ = 0. (3.4)

The boundary conditions for the above equations are obtained from (2.10). The analytical
solution of the system yields

n̄(z) = 2C2
1

Pe Da
sech(C2 + C1z))2, c̄(z) = 1

Pe
ln
(

n̄(z)
n̄(0)

)
. (3.5a,b)

The constants of integration C1 and C2 are determined by numerically solving a nonlinear
set of algebraic equations which arise when the boundary conditions are imposed. An
anisotropy in the base state of the active stress is observed due to the presence of the
attractant gradient. Suspensions of pushers (pullers) experience a tensile (contractile)
normal stress along g and a contractile (tensile) normal stress along the direction
perpendicular to g. The equations governing the perturbation are given as follows, and
are obtained by the algebraic eliminations of û and p̂:

(D2 − k2)2ŵ + βk2

[
D
{

(Dc̄)2 n̂ + 2n̄ (Dc̄)Dĉ
|Dc̄|

}
− 2(D2 − k2)

n̄ (Dc̄) ĉ
|Dc̄|

]
= 0, (3.6)

{
D2 + PeD(Dc̄) − k2 − σ

}
n̂ + Pe

{
n̄(D2 − k2)ĉ + (Dn̄)(ŵ + Dĉ)

}
= 0, (3.7){

D2 − k2
}

ĉ + Da n̂ = 0. (3.8)

The corresponding boundary conditions derived by linearizing (2.10) are given as

ŵ = 0,

û = 0,

Pe
(
n̄Dĉ + n̂Dc̄

)− Dn̂ = 0,

ĉ = 0,

⎫⎪⎬
⎪⎭ at z = 0 and 1. (3.9)

In the above system, D ≡ d/dz represents a derivative with respect to z. The momentum
equations (2.9b)–(2.9c) thus reduce to a form (3.6) that is reminiscent of the stability
equations encountered in Rayleigh–Bénard convection, albeit with significantly more
complicated ‘buoyancy’ forcing terms (Chandrasekhar 2013).

3.1. Long-wave stability calculation (k � 1)

To probe the stability characteristics of the system in the long-wave regime, we consider a
regular perturbation expansion of the system variables by considering the wavenumber k

934 A21-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1155


Instability of an autochemotactic active suspension

as a small parameter,

[
ŵ, n̂, ĉ, σ

] = [ŵ0, n̂0, ĉ0, σ0
]+ k2 [ŵ2, n̂2, ĉ2, σ2

]+ O(k4). (3.10)

For the sake of convenience we drop the ‘ ˆ ’ in the representation of the perturbation
amplitude here onwards. Since the equations governing the perturbation described by
(3.6)–(3.8) comprise of even powers of k, the O(k) terms have been neglected in the above
perturbation expansion as their inclusion gives rise to trivial solutions. The equations at
O(1) of the expansion comprise of

D4w0 = 0, (3.11a)

D {Pe (n0Dc̄ + n̄Dc0) − Dn0} + Pe (Dn̄) w0 − σ0n0 = 0, (3.11b)

D2c0 + Da n0 = 0, (3.11c)

with boundary conditions that are obtained from (3.9),

w0 = 0,

u0 = 0,

Pe (n̄Dc0 + n0Dc̄) − Dn0 = 0,

c0 = 0,

⎫⎪⎬
⎪⎭ at z = 0 and 1. (3.12)

The solution reveals the lack of flow at O(1) of the perturbation expansion, w0 = 0
and a leading-order growth rate σ0 = 0. This gives rise to a coupled set of equations
governing n0 and c0 that can be solved numerically to arrive at the swimmer density
and attractant concentration fields. At O(k2) of the perturbation expansion, the governing
system comprises of the following equations:

D4w2 + βD
{

1
|Dc̄|
(
(Dc̄)2 n0 + 2n̄ (Dc̄)Dc0

)}
− 2βD2

{
1

|Dc̄| n̄ (Dc̄) c0

}
= 0,

(3.13a)

Pe (Dn̄) w2 − D {Pe (Dc̄) n2 − Dn2 + Pe n̄Dc2} + (σ2 + 1) n0 − Pe n̄c0 = 0, (3.13b)

D2c2 − c0 + Da n2 = 0. (3.13c)

The boundary conditions derived from (3.9) are

w2 = 0,

u2 = 0,

Pe (n̄Dc2 + n2Dc̄) − Dn2 = 0,

c2 = 0,

⎫⎪⎬
⎪⎭ at z = 0 and 1. (3.14)

The above system can be solved analytically in the limit of k2 � Da � 1. This exercise
yields the following growth rate for the perturbation:

σ2 = −1 + βF1(Pe) + DaF2(Pe) + DaβF3(Pe) + O(Da2), (3.15)

934 A21-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1155


N. Murugan and A. Roy

where

F1 = ePe (−4
(
Pe2 − 6

)+ Pe
(
Pe2 + 24

)
sinh(Pe) − 8

(
Pe2 + 3

)
cosh(Pe)

)
(
ePe − 1

)2 Pe3
, (3.16)

F2 = 1
2

coth
(

Pe
2

)
− 1

Pe
, (3.17)

F3 = − e3Pe/2

6
(
ePe − 1

)3 Pe4

(
9Pe
(

36 − 13Pe2
)

cosh
(

Pe
2

)

− 9Pe
(

7Pe2 + 36
)

cosh
(

3Pe
2

)

+ 9
(

Pe2 − 2
) (

Pe2 + 24
)

sinh
(

Pe
2

)

+
(

7Pe4 + 222Pe2 + 144
)

sinh
(

3Pe
2

))
. (3.18)

In the above set of expressions, the growth rate for Da = 0, given by F1, is identical
to the contribution to the instability from the active stress driven flow in the absence of
attractant secretion by the swimmers, as calculated by Kasyap & Koch (2012). Here F2
represents the effect of preferential swimming along the perturbed attractant concentration
field; F3 depicts the modification due to attractant secretion that arises in the orientation
distribution of the swimmers and consequently the active stress. The growth rate σ

from (3.15) reveals the existence of a critical Da = −F1/F3 for |β| 
 1, beyond which
pushers and pullers undergo a switch of stability. However, the critical Da predicted by
(3.15) is Da = O(1) and thus breaks the assumption of Da � 1 employed in the regular
perturbation expansion in Da of (3.13). A better understanding of the instabilities at finite
Da is possible by considering the gap-averaged and linearized form of the swimmer
density conservation equation (2.9d):

∂ � n 

∂t

+ Pe
∂

∂x

(
�un̄ + ∂c

∂x
n̄ 

)

− ∂2 � n 

∂x2 = 0. (3.19)

Here, �
 denotes an averaging performed over the channel height. The growth rate of the
gap-integrated density field � n 
 is dictated by both the active stress-driven convective
transport � un̄ 
 and the migration of swimmers � n̄(∂c/∂x) 
 along the local spatial
gradient of the attractant field. The convective flow field u contains two components that
relate to the physics of the problem. One component of the flow field corresponds to
the Da = 0 limit, as calculated by Kasyap & Koch (2012, 2014), which gives rise to an
instability in suspensions of pushers with suspensions of pullers being unconditionally
stable. The other component arises from the modification of the active stress as a result
of the attractant varying nonlinearly of across the channel height, due to the attractant
secretion by swimmers. The stabilization of pushers and destabilization of pullers seen in
the problem is due to the component of the convective transport that arises due to the finite
value of Da. In the limit of β 
 1, the effects of � n̄(∂c/∂x) 
 become insignificant,
resulting in the system dynamics being fully dependent on the active stress driven flow
in the system. The critical Da at which pushers and pullers simultaneously undergo a
switch of stability thus corresponds to the limit wherein the flow field is dominated by the
component of the active stress related to the autochemotaxis in the problem.
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k = 0.1
β = 300

k = 0.5
β = −300

k = 0.1
β = −300

Perturbation expansion (k2 � Da � 1)

Finite wavenumber (k) numerics

Long-wave (k � 1) numerics

(a) (b) (c)

Figure 1. The neutral curves in the limit of k � 1 across Da for (a) pushers and (b) pullers. (c) The growth
rate σ as a function of Da for Pe = 15, β = 300 (pushers) and −300 (pullers) at k = 0.1 and 0.5. The solid
lines indicate the growth rate obtained from the numerical solution of (3.13). The dashed lines pertain to the
σ obtained from the perturbation expansion shown in (3.15). The dots refer to the numerical solution of the
stability equations given in (3.6)–(3.8) and are further discussed in § 3.2.

The growth rate for finite values of Da can be obtained numerically by solving the
system of equations described by (3.13). The numerical solution of the system given
by (3.13) yields the critical value of the activity number β required for the onset of an
instability in the long-wave regime (k � 1) for suspensions of pushers figure 1(a) and
pullers figure 1(b). Figure 1(c) shows the comparison between the long-wave numerical
solution for the growth rate, the analytical solution obtained through a perturbation of the
long-wave equations for Da � 1 (3.15), and the full numerical solution of the stability
equations (3.6)–(3.8) obtained using a finite k spectral solver (described further in § 3.2).

The stability characteristics reveal that the instability in the system for a suspension
of pushers is suppressed with increasing Da, as seen from figure 1(a). The mechanism
associated with the stabilization of this system is ascertained by looking at the streamlines
for the active stress-driven flow within the channel (figure 2a,b). The streamlines indicate
that with increasing Da, the flow field serves to dampen the perturbations to the swimmer
density field, thereby stabilizing the system. For an autochemotactic suspension of pullers,
an increase in Da destabilizes the system (figure 1b). The limit of Da → 0 pertains to the
Kasyap & Koch (2014) calculation and corresponds to a linear variation of the attractant
field across the channel. In this limit, the flow field that is set up by perturbing the puller
density field serves to nullify the perturbation, thus stabilizing the system. The situation is
reversed for higher values of Da, as seen from figure 2(c,d).

Figure 3 displays the neutral surface in the Pe–|β|–Da plane for pushers and pullers in
the long-wave limit. The numerical solution also gives the critical value of Da beyond
which a suspension of pushers switches from being unstable to stable, and vice versa for
pullers. For large values of activity (β), the critical value of Da required to stabilize a
suspension of pushers and that required to destabilize a suspension of pullers asymptote
towards the same value (see figure 3). This feature is also visible in the Da � 1 expressions
or the growth rate given in (3.15), when considered in the |β| 
 1 limit.

3.2. Finite wavenumber (k) stability calculation
The solution of the system of equations described by (3.6)–(3.8) yields the stability
characteristics at finite wavenumber. The system is numerically solved using a spectral
method by employing Lagrange polynomials, with the domain being discretized using
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Figure 2. The streamlines and number density field associated with the perturbation for a suspension of
swimmers for Pe = 15.0: (a) β = 300 and Da = 0.1; (b) β = 300 and Da = 1.0; (c) β = −300 and Da = 0.1;
(d) β = −300 and Da = 1.0.
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Figure 3. The neutral surface for pushers and pullers in the Pe–|β|–Da plane for k � 1.

Chebyshev grid points (Trefethen 2000),

w =
N−1∑
j=0

Lijwj, n =
N−1∑
j=0

Lijnj, c =
N−1∑
j=0

Lijcj, (3.20a–c)

where wj and nj are the values of w and n evaluated at the Chebyshev grid points, zj =
cos(jπ/N). The comparison between the spectral solution of (3.6)–(3.8), the numerical
solution of the long-wave stability equations (3.13) and the analytical solution of (3.13) by
a perturbation expansion in the limit of Da � 1 given in (3.15) is shown in figure 1(c).
The spectral solver is validated through the comparison shown in figure 1(c) and is then
used to probe the stability characteristics at finite wavenumber.

For an autochemotactic suspension of pushers, it can be seen from figure 4 that the
instability in the system stabilizes with both increasing k and Da. The stabilization with
increasing k is a feature that arises due to the magnification of the diffusive flux in the
system due to the larger gradients in the swimmer density field. It can additionally be
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Figure 4. The regions of instability in the Pe–β plane for a suspension of pushers for k = 0.1, 3.0 and k = 8.0
at Da = 0.1 and 1.0. The regions in the Pe–β plane shaded in green correspond to the parameter space wherein
there are no instabilities in the system. The regions shaded in blue, yellow and red correspond to regions
wherein there are one, two and three unstable modes, respectively.

seen from figure 4(a,b) that in the finite Da regime, the increased attractant secretion
rate serves to stabilize the system. At finite wavenumber k, the Pe 
 1 regime of weak
diffusive flux displays additional mode of instability regardless of the attractant secretion
rate. This is due to the weak strength of diffusion in the system, which allows for
sharper gradients in the perturbation to the swimmer density field resulting in greater
strength of the destabilizing active stress. The growth rates from figure 5(a) establish the
stabilization of the suspension with increasing Da. They also reveal the existence of a
cutoff wavenumber based on Da beyond which the instability is suppressed. Figure 5(b,c)
showcase the existence of a critical Da at which pushers and pullers undergo a switch of
stability even in the finite k regime for |β| 
 1.

In the case of pullers, the plot of the growth rate σ as a function of the wavenumber
in figure 6(a) reveals a specific cutoff wavenumber, dependent on Da, beyond which the
system is stable. Figure 6(b) displays the neutral curves in the Pe–β plane for specific
values of k and Da. The curves show that the athermal diffusivity associated with the
swimmers works to stabilize the system, as can be inferred from the lowering of the
critical β for an instability with increasing Pe. Figure 6(c) displays the cutoff wavenumber
(kcutoff) in the Pe–β plane, beyond which a suspension of pullers is stabilized. Contrary
to the results of Kasyap & Koch (2012, 2014) that predict that a suspension of pullers
are unconditionally stable, an instability manifests for a suspension of pullers due to the
self-signalling behaviour of the swimmers and autochemotaxis.
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Figure 5. (a) The growth rate as a function of k for Pe = 15 and β = 300 (pushers) across Da. The regions
of stability for Pe = 20 in the Da–k plane for (b) |β| = 30 and (c) |β| = 300. The abbreviations stand for the
following: pushers (PS); pullers (PL); unstable (U); stable (S).
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Figure 6. For a suspension of pullers with β = −300, (a) the growth rates for Pe = 15, panel (b) depicts the
critical value of β for the onset of an instability for k = 0.1 and 3.0 at Da = 0.8 and 1.0. Panel (c) depicts the
cutoff value of k for Da = 1.0 in the Pe–β plane, beyond which there is no instability.

4. The role of convective attractant transport (ε /= 0)

The strength of the convective transport of the attractant by the flow field generated by the
active stresses in the system is captured by the parameter ε (see (2.9e)). In the previous
section, ε was approximated to zero to isolate the effects of self-signalling on the stability
of the system. In this section, we present the results for hydrodynamic stability of the
system for non-zero values of ε. The linear stability equations for non-zero ε are

(D2 − k2)2ŵ + βk2

[
D
{

(Dc̄)2 n̂ + 2n̄ (Dc̄)Dĉ
|Dc̄|

}
− 2(D2 − k2)

n̄ (Dc̄) ĉ
|Dc̄|

]
= 0, (4.1)

{
D2 + PeD(Dc̄) − k2 − σ

}
n̂ + Pe

{
n̄(D2 − k2)ĉ + (Dn̄)(ŵ + Dĉ)

}
= 0, (4.2)

εPe
{D(n̄ŵ) + c̄Dŵ

}+ {D2 − k2 + εσ
}

ĉ + Dan̂ = 0. (4.3)

The boundary conditions governing the perturbation remain unchanged from (3.9) and
the above system of (4.1–4.3) can be numerically solved using the spectral solver
described in § 3.2. In the long-wave limit (k � 1), the stability characteristics of the
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Figure 7. For a suspension of pushers with Pe = 15 and β = 300, for ε = 0 and 0.1, the growth rates varying
with wavenumber k for (a) Da = 0.1 and (b) Da = 1.0. The dashed black lines in (a,b) are used to demarcate
the regions in the plot where the vertical axis is scaled linearly and logarithmically. The red and blue dots
indicate the wavenumber at which the most unstable mode in the system attains a maximum for ε = 0 and
ε = 0.1, respectively. Panel (c) depicts the eigenfunctions corresponding to the most unstable modes indicated
by the dots in (b).
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Figure 8. For a suspension of pullers with Pe = 15 and β = −300, for ε = 0 and 0.1, the growth rates for
(a) Da = 0.1 and (b) Da = 1.0. The red and blue dots indicate the wavenumber at which the most unstable
mode in the system attains a maximum for ε = 0 and ε = 0.1, respectively. Panel (c) depicts the eigenfunctions
corresponding to the most unstable modes indicated by the dots in (b).

suspension are unaltered by effects of convective attractant transport (ε /= 0). The
growth rates for the ε = 0 (red curve) and ε = 0.1 (blue curves) calculation from
figures 7(a), 7(b) and 8(b) support this result. Hence, a long-wave stability theory for
the system, through a perturbation expansion in k, as done in § 3, has not been pursued
for the above system. The growth rate for a suspension of pushers at ε = 0.1 across
wavenumbers is given in figure 7. From figure 7(a,b) it can be observed that regardless
of the strength of self-signalling among the swimmers in the suspension, the convective
transport of the attractant serves to amplify the growth rate of one of the unstable
modes while having a dampening effect on the growth rate of the other mode. While
there is indeed an amplification of the growth rate for finite ε, a comparison of the
eigenfunctions corresponding to the most unstable mode for ε = 0 and ε = 0.1 (see
figure 7c) reveals that the underlying mechanism associated with the instability remains
unchanged.
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Figure 9. For a suspension of swimmers, the critical Da for the onset of an instability at Pe = 20 and ε = 0.1
for (a) β = 300 (pushers) and (b) β = −300 (pullers). The region shaded in red represents the parameter space
for which there are two unstable modes for the system, whereas in the region shaded in blue there is a single
mode of instability.

In suspensions of pullers, the non-zero value of ε triggers an instability in the Da � 1
limit. This implies that suspensions of pullers exhibit an unstable mode in the absence
of self-signalling and autochemotaxis, wherein the evolution of the attractant by the
convective motion set up by the active stresses in the suspension gives rise to a clustering
of the swimmers. Figure 9 displays the critical Da for the onset of instability in suspensions
of pushers and pullers. It can be seen that the simultaneous switch in the stability of
suspensions of pusher- and puller-type swimmers, at a critical Da for β 
 1 observed
in the ε = 0 calculation of § 3 disappears at finite values of ε.

5. Discussion

In this paper, we have shown through a continuum formulation that the phenomenon of
autochemotaxis plays a critical role in both suppressing and creating flow instabilities
in active suspensions of pushers and pullers, respectively. In § 3.1 it has been shown
analytically and numerically that for a given value of Pe and k, there exists a critical
attractant secretion rate (Da) for |β| 
 1, beyond which suspensions of pushers are
stabilized and suspensions of pullers become destabilized. In § 3.2 the growth rates and
regions of stability for such suspensions have been characterized for varying strengths
of the attractant secretion (Da). Section 4 explores the role of attractant transport by the
convective flow field on the stability of the system. It is shown that the simultaneous switch
in stability of suspensions of pushers and pullers at a critical Da is no longer observed
when ε /= 0, a consequence of the fundamentally different flow field of pushers and pullers
aiding in the attractant transport.

A major assumption in the current work lies in neglecting the effects of viscous rotation
on the orientation distribution of the swimmers. This assumption is justified when the
active suspension under consideration is dilute O(〈n〉L3) � 1. The kinetic equation given
by (1.1), when non-dimensionalized using the channel height as the characteristic length
scale and H/Us as the characteristic time scale, yields the following equation: (Kasyap &
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Koch 2014),

H−1
{

∂Ω

∂t
+ ∇ · [(p + u)Ω

]+ ∇ · (ṗΩ
)}+
{

Ω

τ ∗ − 1
4π

∫
Ω

τ ∗ dp
}

= 0. (5.1)

Here, H = H/Usτ0 can be thought of as a Péclet number based on the swimming speed
of the organism, where τ0 is the average time-period associated with the tumbling of the
swimmer. A non-dimensional number similar to H has been defined in the recent work
of Vennamneni, Garg & Subramanian (2020), wherein a shear-induced mechanism of
instability for a confined active suspension of swimmers has been discussed. Kasyap &
Koch (2014) have further calculated the modification to the distribution function Ω(x, p, t)
and active stress T B due to the effects of the viscous torques in the suspension, in limit of
for H−1 � 1, through a perturbation expansion of Ω . Since τ0 ≈ 1 s and Us ≈ 20 μm s−1

(for E. coli) (Kasyap & Koch 2012), for a channel of height H ≈ 200 μm, H ≈ 0.1.
The limit of H−1 � 1 becomes more appropriate with increasing channel width H. The
modification to the active stress given by Kasyap & Koch (2014) is

T B = β

{
ξ

6

(
gg − I

3

)
n − 2

5
H−1ne
}

. (5.2)

Here, e = 1
2 (∇u + ∇u†) is the rate of strain tensor. The factor of ξ/6 in the above

expression represents the strength of chemotaxis and appears as a consequence of
scaling the velocity field in the system with the swimmer speed Us instead of the
chemotactic drift velocity. The modification to the active stress, due to the role of
viscous torques in influencing the orientation distribution of swimmers, is proportional
to β/H = O(〈n〉L3(Usτ0/L)) (Kasyap & Koch 2014). Since, Usτ0/L = O(1), for dilute
suspensions (〈n〉L3 � 1), neglecting the role of viscous torques in the calculation of the
active stress (T B) is justified. The calculation presented in this work is thus restricted to
dilute suspensions of autochemotactic swimmers.

An extension of this work lies in improving this calculation by accounting for the
role of viscous torques in altering the distribution function Ω(x, p, t). Such a calculation
would probe the role of autochemotactic instabilities in dense suspensions of swimmers. In
addition, a continuum formulation exploring the role of active stress and autochemotaxis
in suspensions of attractant consuming swimmers is of interest, particularly because of
the works by Hillesdon & Pedley (1996) and Sokolov et al. (2009). Additionally, the
calculation presented in this paper aims to motivate further experimental investigations
along the lines of Budrene & Berg (1991, 1995) using a set-up similar to the one described
in Chen et al. (2003). Such an experiment, aside from confirming the active stress-driven
autochemotactic instability predicted to occur in a suspension of pullers, would, in general,
aid in characterizing the role of active stresses in the pattern formation observed in
confined autochemotactic systems.
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