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Abstract
An online pattern recognition method of lower limb movements is proposed based on the personalized surface elec-
tromyography (sEMG) signals, and the corresponding experimental researches are performed in the rehabilitation
training. Further, a wireless wearable acquisition instrument is used. Based on this instrument, a host computer for
the personal online recognition and real-time control of rehabilitation training is developed. Three time-domain
features and two features in the nonlinear dynamics are selected as the joint set of the characteristic values for the
sEMG signals. Then a particle swarm optimization (PSO) algorithm is used to optimize the feature channels, and a
k-nearest neighbor (KNN) algorithm and the extreme learning machine (ELM) algorithm are combined to classify
and recognize individual sample data. Based on the multi-pose lower limb rehabilitation robot, the real-time motion
recognition and the corresponding rehabilitation training are carried out by using the online personalized classifier.
The experimental results of eight subjects indicate that it takes only 6 min to build an online personalized classi-
fier for the four types of the lower limb movements. The recognition between switches of different rehabilitation
training movements is timely and accurate, with an average recognition accuracy of more than 95%. These results
demonstrate that this system has a strong practicability.

1. Introduction
Surface electromyography (sEMG) signals are a kind of bioelectrical signals generated with muscle
contraction, which contains a large amount of information about various human movements. The differ-
ence between different limb movements produces different characteristics of sEMG signals. Therefore,
sEMG signals can directly reflect the state of muscle contractions [1]. sEMG signals are usually gener-
ated 30–150 ms ahead of limb movements [2] and can predict human behaviors. Researches show that
the human brain has plasticity. Through a certain amount of repeated training, patients can remember
muscle contractions and achieve a certain rehabilitation effect [3–5]. Therefore, it is of a great appli-
cation value to recognize the patient’s movement intention based on the sEMG signals, and then the
recognition results are used to control the lower limb rehabilitation robot to perform the corresponding
movement and drive the lower limb disabled patients to carry out the rehabilitation training. However,
the main key problems that have not been popularized and applied in clinical practice are as follows:

(1) sEMG signals have nonstationary and weak characteristics. To improve the recognition rate of
multiple lower limb motion patterns, it is usually necessary to collect sEMG signals from multiple mus-
cles of the lower limb. However, the sEMG disposable electrode is glued to the skin surface. When we
collect data, the electrode piece is loose due to sweat or large amplitude of motion, and the collected
data are inaccurate [6, 7]. At the same time, multichannel acquisition will multiply the data dimension
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and increase the calculation amount of the host computer and the time cost [8, 9]. More importantly,
it is not convenient for some muscles of special disabled people to attach EMG electrode, and it is
difficult to complete the multichannel acquisition. Therefore, both reducing the number of acquisition
channels and improving the accuracy of pattern recognition need to be considered at the same time.
Zheng et al. [10] collected the original sEMG signals of flexor carpi ulnaris and extensor carpi ulnaris
of five subjects (four men and one woman) by using the self-developed EMG acquisition system with
two channels, including fist clenching, palm extension, wrist extension, and wrist flexion. Further, the
original sEMG signals were processed with 277 ms sliding window and active end detection technol-
ogy, and the absolute mean, root mean square (RMS), and variance were extracted for the online pattern
recognition of gesture. Through comparative analysis, the highest recognition rates of random tree, k-
nearest neighbor (KNN), and support vector machine (SVM) could reach 95.19%, 97.12%, and 97.12%,
but the time of test set based on SVM was shorter. Therefore, the classifier based on SVM had the best
effect. Gupta et al. [11] used two channels to collect the sEMG signals of 25 subjects from 2 groups
of experiments for 5 lower limb movements, namely walking on the ordinary sidewalk, going up and
down stairs and going up and down ramps, respectively. In addition, an algorithm based on an iterative
feature selection was proposed to optimize the principal component analysis classifier for the offline
pattern recognition. Time-domain and frequency-domain characteristic values were selected as feature
vectors, and a 10-cross-validation technology was used to improve the stability of data. Through the
comparative analysis, the accuracy of the pattern recognition of the proposed algorithm (97.87%) was
better than that of the traditional SVM (96.83%), LDA (97.45%), and NN (97.61%). Especially in deal-
ing with the untrained data, it also showed some advantages. Tavakoli et al. [12] proposed a method
combining the high-dimensional feature space and SVM by using a single channel to collect four ges-
ture movements: hand closing, hand opening, wrist bending, and double wrist bending. Through pattern
recognition, the accuracy of different actions could reach 100% and 98%, and the recognition time
was less than 10 ms. The manipulator was successfully controlled by sEMG signals, which verified the
effectiveness of the active control. Aiming at the current situation of weak, unstable and difficult identifi-
cation of single-channel sEMG signals, Phinyomark et al. [13] proposed a detrended fluctuation analysis
(DFA) method for pattern recognition of forearm pronation and supination and wrist radial ulnar deflec-
tion, with a recognition rate of 90%. DFA could effectively improve the recognition rate with fewer
channels. Zhang et al. [14] proposed a method combining a single-channel sEMG decomposition strat-
egy with a long short-term memory cyclic neural network to solve the problem of the low recognition
rate of a single-channel sEMG acquisition mode. The action potential sequence of the multichannel
motor unit was decomposed through the collected sEMG signals of six subjects’ four movements of
extending palm, clenching fist, pinching index finger, and pinching middle finger, and the characteris-
tics of absolute value mean value and zero crossing number were extracted. The pattern recognition
results showed that the recognition rate of the proposed method was 90%, 11.53% higher than that
of SVM. Xiong et al. [15] decomposed the single-channel sEMG signals into six motor unit action
potential sequences by using a second-order difference filtering, threshold calculation, spike detection,
hierarchical clustering, and other processes. They fully excavated the relationship between data and
extracted absolute value integral, maximum value, nonzero median, half window energy, and other fea-
tures. SVM was used for pattern recognition of five hand movements, and the recognition rate was more
than 80%.

(2) There are two main technical routes to build a motion pattern classifier. One is to build a universal
motion pattern classifier offline to face many patients. The recognition accuracy of the classifier depends
on the size and diversity of datasets of patients. The accuracy of pattern recognition can be greatly
improved by obtaining the sEMG signals and selecting an appropriate classifier [16]. In the early stage
of the offline mode, it is necessary to collect EMG signals from different patients and environment. When
the constructed fixed classifier is used for a new patient, the recognition rate of movements will often
decline, resulting in the inconsistency between the rehabilitation training movement and the patient’s
intention and needs. To solve such problems, some researchers used the method of transfer learning
[17, 18], that is, to build a new classifier by adding a small amount of data from new patients to the
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original classifier. Because the acquisition of sEMG signals is largely affected by the individual’s own
state and the surrounding environment, sEMG signals not only have individual differences but also have
dynamic variability of time periods and batches even for the same individual. This is affected by the
current patch position, movement state, and environmental characteristics. Further, these seriously affect
the repeatability of the specific response of sEMG signals and reduce the generalization ability of the
classification algorithm. Based on this, another technical route is to build a personalized motion pattern
classifier online. By timely collecting the patient’s sEMG signals, the classifier is trained online to adapt
to the patient’s action pattern classification in the current period and overcome the cross-individual and
cross-time variability of the sEMG signals. Kalani et al. [19] and Zhang et al. [20] optimized the SVM
classifier through online real-time collection of the required sEMG signals and adaptive sample update
strategy. It was used to actively control the rehabilitation robot, drive the patient’s limbs to carry out the
corresponding rehabilitation training, and improve the flexibility of human–computer interaction.

(3) Most of the existing EMG acquisition methods are wired devices. For example, Sun et al. [21]
recognized human motion intention based on EMG signals and angle signals. When a set of wired
equipment is used to collect signals, it is necessary to hold PC to perform movements. This method
limits the subjects’ movements to a certain extent. The wired equipment has a great limit on the subject
in space. At the same time, in order to eliminate the power frequency interference caused by the electrode
wire in the wired equipment and meet the various movements and postures of the subject, the wireless
EMG acquisition equipment is more popular with researchers [22]. Zhou et al. [23] designed a wireless
system for the movement recognition of the ankle foot joint based on sEMG signals and acceleration
sensors. The wireless acquisition system has the characteristics of small structure and strong adhesion.
Three channels were used to collect the sEMG signals of lower limbs in dorsiflexion, plantar flexion,
valgus, and varus. In addition, data fusion based on the principal component analysis (PCA) was used to
complete the pattern recognition of different actions. Compared with SVM, ANN, and other algorithms,
the highest recognition rate could reach 99.8%, which verified the stability and effectiveness of the
designed system. Li et al. [24] used the portable wireless acquisition module and the acquisition of
sEMG signals of the subjects to complete the real-time control of the virtual reality scene. One channel
of the sEMG system was a module, so the modular design improved the flexibility of the system. The
sEMG signals were separated by mean square and sliding window, and the features were extracted. Using
SVM and a probabilistic NN classification, offline and online recognition rates could reach 95% and
90.31%, respectively, improving the immersion of the rehabilitation training. Bai et al. [25] developed
a flexible dry electrode with a wireless acquisition function by using a micro-electromechanical system
(MEMS). The system was light in weight, small in space, and strong in endurance, with a maximum
transmission distance of 50 m and a good biological compatibility.

Based on the above analysis, this paper aims to propose an online pattern recognition method of lower
limb movements based on the personalized sEMG signals and performs the corresponding experimental
researches in the rehabilitation training. The main contributions can be summarized as follows: (1)
wireless sEMG acquisition instruments are used to conduct experiments. On the basis of less collection
channels, the dimension of input variables in the sample data is expanded by using a variety of feature
indicators, so as to improve the classification and recognition rate. (2) A personalized classifier is built
for patients online. PSO-KNN and PSO-ELM algorithms are used to optimize the performance of the
classifier. (3) Based on the wireless sEMG acquisition instrument, a novel online training classification
and real-time recognition system for individual sitting and lying movements is developed.

The rest of this paper is organized as follows: in Section 2, the basic materials and methods are
introduced. In Section 3, results and discussion are presented. Conclusions of this study and future
works are drawn in Section 4.

2. Materials and methods
To ensure the reality of the experimental situations, the data collection and test were carried out on the
multi-posture lower limb rehabilitation robot [26] developed by our research group.
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SMA SAK CMKA SM

(a) (b) (c) (d)

Figure 1. Four movements in the sitting mode. (a) SMA, (b) SAK, (c) CMKA and (d) SM.

LA MA HA LM

(a) (b) (c) (d)

Figure 2. Four movements in the lying mode. (a) LA, (b) MA, (c) HA, and (d) LM.

2.1. System composition and workflow
For the rehabilitation problems of ankle joint, knee joint, and hip joint of lower limbs, we design
rehabilitation movements in two modes.

One is the sitting mode, as shown in Fig. 1, including four movements: single movement of ankle
(SMA), single movement of knee (SMK), combined movements of knee and ankle (CMKA), and sitting
motionless (SM). The subject sits on the lower limb rehabilitation robot. The sEMG signals of four
movements are collected in the sitting mode.

The other is the lying mode, as shown in Fig. 2, including four movements of lying: low amplitude
(LA), medium amplitude (MA), high amplitude (HA), and lying motionless (LM). The subject lies
flat on the rehabilitation robot, where one side of the affected limb is tied to the lower limb of the
rehabilitation robot, and the other lower limb of the healthy side is freely placed on the rehabilitation
robot. Then, sEMG signals of the healthy side lower limb of four movements are collected.

2.2. Software and circuit design
2.2.1 Hardware and software design of wireless EMG equipment
The hardware experimental equipment of this system includes silver/silver chloride electrode, wireless
muscle acquisition device, Bluetooth adapter, wireless muscle acquisition device charger, wireless mus-
cle acquisition device charger cable, USB serial port expander, and bandage. The size of the wireless
sEMG acquisition device is 51 mm long, 36 mm wide, 20 mm high, and 35 g weight. The one-time power
supply duration of the rechargeable lithium battery is 10 h. These parameters can be used in most envi-
ronments. It is easy to wear without any interference. The collector uses an electrode piece to stick it
on the skin surface and selects the tendon of the anterior tibialis muscle and the rectus femoris muscle
as the placement positions of the electrode pieces in Channel 1 and Channel 2. Examples of the two
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Figure 3. Positions of sEMG acquisition instruments.

Figure 4. Flowchart for the design of hardware.

channels’ unfixed bandages and fixed bandages are shown in Fig. 3. And the flowcharts for the design
of hardware and software are shown in Figs. 4 and 5, respectively.

The host computer software of this system is divided into two categories: online construction of a per-
sonalized classifier and real-time pattern recognition. Major elements of this system are the optimization
design of the human–computer interface, coding of serial communication, real-time waveform display
and data storage, simple processing of data, and calling Matlab program to extract the characteristics of
each EMG signal, calling algorithms to optimize the channels and carry out the pattern recognition.

2.2.2 Data acquisition of the lower limb sEMG signals
Eight healthy subjects of different genders, ages, and heights were recruited. The eight subjects included
six men and two women, aged between 23 and 30 years, and their heights ranged from 160 cm to 180 cm.

The system is mainly divided into two modules: one is the online construction of a personalized
classifier and the other is the real-time motion recognition and rehabilitation training module.

The online personalized classifier module is divided into two modes: sitting and lying. For each
subject, 24 groups of data are collected in 4 movements under one mode. Each movement has 6 groups of
data, each group has 10,240 samples, and the sampling rate is 1024 Hz. The duration of data acquisition
for each group is 10 s. The first 2 s are used as the test period, and the last 8 s are used as the formal
data acquisition time. In the order of movement extraction, random acquisition is conducted according
to the subject’s own intention and actions. The sEMG collection time for each subject under one mode
is 240 s, that is, 4 min. The sEMG signals of No. subject 1 are presented in Figs. 6 and 7.

It can be observed from Figs. 6 and 7 that the waveforms generated by sEMG signals are different for
different movements under the same mode. The amplitude and frequency of sEMG signals of different
movements differ greatly, indicating that sEMG signals can be used as a basis for the motion recognition.
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Figure 5. Flowchart for the design of software.
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Figure 6. Four movements of the sitting mode.
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Figure 7. Four movements of the lying mode.

2.2.3 Real-time motion recognition and the rehabilitation training system
In this paper, the implementation process of the online real-time rehabilitation training system is pre-
sented in Fig. 8. For any patient, first, we build a personalized classifier module online. Then the real-time
rehabilitation training module is performed. At this time, the system collects the patient’s sEMG sig-
nals every 10 s in real time, and then the effective data segment is selected, and the time-domain and
nonlinear features are extracted. Further, the personalized classifier is called to identify the action mode,
and the corresponding action label instructions are generated to drive the lower limb rehabilitation robot
to do the corresponding movements, that is, to conduct the rehabilitation training for the patient. The
specific control system is depicted in Fig. 9. In the online construction of building a personalized clas-
sifier module, a preprocessing program for sEMG signals is written based on LabVIEW2018, and a
program for feature extraction, pattern recognition, and channel optimization of sEMG signals is writ-
ten based on MatlabR2018. In the real-time rehabilitation training module, the real-time decoding of
sEMG signals is first performed based on the preprocessing program of LabVIEW2018, followed by
the feature extraction of sEMG signals based on MatlabR2018. Finally, the trained pattern recognition
program obtained from the personalized classifier module is used for the pattern recognition, and the
results of the pattern recognition are sent to the central control system. In the central control system,
based on LabVIEW2018, both the result display module and related motion mode command sending
module generated by the upper computer are written.

2.3. Algorithm design
2.3.1 KNN classification algorithm
In this paper, a KNN classification algorithm [27] is used for the supervised learning. The advantage
of KNN is that it is insensitive to abnormal values and suitable for multi-classification problems. There
are two important issues to be addressed in KNN. One is the similarity measurement of data points
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Figure 8. Online real-time rehabilitation training process.

Figure 9. Hardware and software control system of the lower limb rehabilitation robot.

to adjacent data points, and the other is the selection of K value [28]; however, K generally does not
exceed 20.

Suppose that the characteristic vector of EMG signals is Wm in the m-dimensional space. yi =
(x(1)

i , x(2)
i , . . . , x(m)

i )T and yj = (x(1)
j , x(2)

j , . . . , x(m)
j )T . Euclidean distance is used for the similarity measure-

ment between yi and yj, that is,

dist
(
yi, yj

)=
√√√√ n∑

i=1

(
yi − yj

)2
, (1)
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Figure 10. Structure diagram of ELM.

2.3.2 Extreme Learning Machine (ELM)
Here, extreme learning machine (ELM) [29] is selected as a different pattern recognition algorithm to
construct the classification algorithm.

Figure 10 presents that ELM is divided into three layers, namely the input layer, the hidden layer,
and the output layer. The sEMG data acquisition equipment has two channels, and each channel has five
features, so the joint feature channel is ten dimensions. The number of the training samples for each
subject is 24 groups. Since the input layer needs to match the number of data types, the input layer n is
10. The number of the hidden layer should be less than the number of samples. Thus, the number of the
hidden layer m is 20. The output layer is the number of the classification labels with k = 4.

For N training samples (Xi, ti), Xi = [xi,1, xi,2, . . . , xi,n], ti = [ti,1, ti,2, . . . , ti,k], yi = [yi,1, yi,2, . . . , yi,nk],
ELM with m hidden points is

m∑
j=1

βig

(
n∑

i=1

Wi · Xj + bi

)
= yi, (2)

where g(x) is the activation function. Wi = [wi,1, wi,2, . . . , wi,m]T denotes the weights of the input, bi is
the threshold of the ith hidden neuron, and Wi · Xj represents the product of Wi and Xj.

To make the classification correct and the error is minimum, it can be expressed as
∑N

j=1

∥∥yi − tj

∥∥= 0.
Namely, if

∑m
j=1 βig

(∑n
i=1 Wi · Xj + bi

)= ti exists, it can be expressed as Hβ = T , where T represents
the desired output. The input weight W and the node threshold b of the hidden layer are random numbers
between 0 and 1. After being randomly selected, the output expected value T is uniquely determined.

2.3.3 PSO-KNN algorithm
In this paper, three time-domain features and two nonlinear features are selected. The matrix composed
of features of two channels is a 10-dimensional matrix, and there are interference items or redundancy
items in the matrix, so it is necessary to optimize the characteristic components. Particle swarm opti-
mization (PSO) [30, 31] is a parallel global search strategy based on the population. Its advantages
are less adjustment parameters, fast convergence speed, wide application range, and optimization in a
high-dimensional space. Therefore, a classical PSO optimization algorithm is selected for the feature
component selection, and the processes are as below:

(1) Initialize different parameters. The parameter settings are as follows: the population size n is
20, the particle’s velocity range V∈[−10,10], the particle’s position range X∈[−10,10], D-dimensional
search space is 10, the number of evolution is 1, and the maximum iteration number is 50.

(2) The fitness function is defined as the classification accuracy, and the corresponding fitness
function value of the population is calculated.
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1) Set the position vector of the ith particle to Xi = (Xi1, Xi2, . . . , XiD). We use the Sigmaid function
S(x) = 1/((1 + ex)) to map the position vector linearly. The weight value of 10 characteristic elements
in the feature matrix is obtained, and the range is [0,1]. Then we set the threshold value as the median
0.5. When the position weight of a feature element is greater than 0.5, it is determined that the feature
element is selected and will be assigned a value of 1. When the position weight value is less than or
equal to 0.5, the feature element is not selected and will be assigned a value of 0.

2) For the selected feature elements, the KNN pattern recognition algorithm in Section 2.3.1 is used
to calculate the fitness (classification accuracy) corresponding to the ith particle.

3) Repeat the above 1) and 2) processes for all n particles to obtain the population fitness.
Definition: Pi = (Pi1, Pi2, . . . , PiD) is the optimal fitness position vector of the ith particle in the iteration
process. Pg = (Pg1, Pg2, . . . , PgD) is the global optimal solution, that is, the position vector corresponding
to the maximum population fitness. Then the speed and position are updated (let the learning factors
c1 = c2 = 1.49, inertia weight λ = 1).

(3) The processes will be ended when the number of evolution time is reached; otherwise, the above
steps are repeated.

Pattern recognition based on KNN shall be carried out according to the sitting mode and lying mode,
respectively. There are four movements in each mode, and each movement has six groups of data. Sixteen
groups of data (four groups of data for each movement) are randomly selected as the training set, and the
remaining eight groups of data (two groups of data for each movement) are selected as the test set, and
finally the personal optimal feature components (OFCs) are screened. Personal optimal characteristic
components, 24 groups of sEMG signals, and known tag numbers (24 groups of sEMG data) are taken as
the input samples. Using the KNN algorithm with the parameters determined in advance, a personalized
classifier is constructed and saved in the designated folder. When there are new sEMG signals, the
parameters in the personalized classifier are compared with the features of the sEMG signals of the
unknown action tag based on the KNN algorithm, and then the corresponding action tag number is
generated.

2.3.4 PSO-ELM algorithm
The PSO-ELM algorithm is basically the same as PSO-KNN in principle, but the difference is that
this algorithm uses the accuracy of the ELM pattern recognition as the fitness. Although the two clas-
sification algorithms have many similarities in the construction principle and data distribution, the
characteristics and advantages of each optimization algorithm combined with different pattern recog-
nition methods are different. The classification algorithm based on PSO-ELM is that the advantages of
PSO such as fast computing speed, strong search ability, and good generalization performance of ELM
are combined. It can quickly find the best joint feature vector for individuals to adapt to ELM and build
a personalized classifier for patients.

2.4. Rehabilitation training experiments
In this paper, the hardware environment is a host PC which can support the operation of the online
pattern recognition system. The algorithm design was implemented using LabVIEW 2018 and Matlab
R2018a. The experimental setup involves an Intel(R) Core(TM) i5-6500 CPU with 8 GB RAM with
Windows 10 Operating System.

2.4.1 Rehabilitation training experiment in the sitting mode
In the sitting mode, when the subject needs to perform the rehabilitation training for a certain movement,
the healthy side lower limb is used to continue to perform a certain movement (SMA, SMK, CMKA,
and SM) for 10 s. Then, the personalized classifier is used to conduct the real-time motion recognition,
the corresponding label number is generated, and the rehabilitation robot is driven to connect with the
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Table I. Corresponding relationship with the rehabilitation robot in the sitting mode.

Human body Rehabilitation robot
Four movements of
the sitting mode

Movements Angular displacement
range of ankle (◦)

Angular displacement
range of knee (◦)

Label
number

SMA SMA −7∼7 / 1
SMK SMK / 0∼45 2
CMKA CMKA −7∼7 0∼45 3
SM Perform the last rehabilitation movement 4

Figure 11. Real-time rehabilitation training in the sitting mode (“A” is the upper computer interface,
“B” is the healthy side limb of the subject, “C” is the affected limb of the subject (hypothesis), and “D”
is the left mechanism of the lower limb rehabilitation robot in the sitting training state).

affected side lower limb to perform the corresponding lower limb action rehabilitation training (Fig. 11).
When the healthy side of the lower limb of the subject remains in a SM state, the recognition will be
conducted once every 10 s. When the recognition result is a SM label value, the lower limb rehabilitation
robot will continue to perform the last rehabilitation movement. The transformation of joint angle of each
movement driven the rehabilitation robot in the sitting mode and the corresponding label value of each
movement are presented in Table I.

2.4.2 Rehabilitation training experiments in the lying mode
When the subject needs to perform a certain amplitude (LA, MA, and HA) rehabilitation training on
the affected lower limb in the lying mode, first the subject uses the healthy lower limb to perform a
10-s movement of this amplitude. Then the determined personalized classifier is adopted to conduct the
real-time motion recognition, and the corresponding label number is generated. Further, the rehabili-
tation robot connected to the affected lower limb is driven to perform the corresponding rehabilitation
movement (Fig. 12). When the healthy side of the lower limb of the subject remains in a motionless
state, the recognition will be performed once every 10 s. When the recognition result is a motionless tag
number, the lower limb rehabilitation robot will continue to perform the last rehabilitation movement.
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Table II. Corresponding relationship between the lying mode and rehabilitation robot.

Human body Rehabilitation robot
Four movements
of the lying mode

Movements Angular displacement
range of hip joint (◦)

Label number

LA Intermediate frequency
low amplitude (IFLA)

0∼35 1

MA IFMA 0∼55 2
HA IFHA 0∼75 3
LM Perform the last rehabilitation movement 4

Figure 12. Real-time rehabilitation training in the lying mode (“A” is the upper computer interface,
“B” is the healthy side limb of the subject, “C” is the affected limb of the subject (hypothesis), and “D”
is the left mechanism of the lower limb rehabilitation robot in the lying training state).

The four movements in the lying mode are labeled as 1, 2, 3, and 4, respectively, and the corresponding
relationship is depicted in Table II.

We collected six sets of data for the four types of movements both in the sitting and lying modes,
with the collection time accounting for 2/3 of the total time (6 min) for the two modes. The time for
data processing, pattern recognition, and driving the robot accounts for 1/3 of the total time, so the
collection of a single movement and a single group of movements always takes 10 s + 5 s = 15 s to drive
the robot’s movement. The total time from the sEMG acquisition to the robot actuation of each cycle
is 15 s.

3. Results and discussion
3.1. Feature analysis of the lower limb sEMG signals
3.1.1 Methods of feature extraction
How to extract useful features from sEMG signals is the crucial process of pattern recognition. Feature
extraction is a necessary step for information prediction of human bioelectrical signals. The perfor-
mance of any learning system is widely dependent on the selection of input signals and the quality of
feature extraction [32]. Here, the similarity and difference of eight subjects’ features between the same
or different movements are analyzed by using the distribution maps of the features.
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Time-domain features
Three features are selected: integrated EMG (IEMG) value, RMS value, and first-order difference

(FD) absolute value mean. The formulas are given from Eqs. (3) to (5):

IEMG = 1

N

N∑
i=1

|xi| , (3)

FMS =
√∑N

i=1 x2
i

N
, (4)

FD = 1

N − 1

N−1∑
i=1

∣∣x(i+1) − xi

∣∣ , (5)

where xi is the voltage amplitude at the ith point of a movement, and i = 1, 2 . . . , N is a time sample
sequence of sEMG signals with a length of N.

Nonlinear features
(1) Approximate entropy

The value of approximate entropy (AE) indicates the complexity of a group of data. A more complex
data yields a greater AE, whereas a more regular data yields a smaller AE. The AE [34] is calculated as
follows:

1) Let the original signals be {x(1), x(2), . . . , x(N)}, with N points in total. Then follow the steps
below to reconstruct a set of m-dimensional vectors ym(i), where ym(i) = x(i), x(i + 1), . . . , x(i + m −
1), i = 1 ∼ (N − m + 1). The maximum contribution distance between the components of y(i) and y(j)
is recorded as D{y(i), y(j)}, where j = 1 ∼ (N − m + 1), and j �= i.

2) Let the similarity threshold be denoted as r. Caculate the ratio Cm
i (r) of the number of vectors

that meet the conditions D{y(i), y(j)} < r to the total number N − m + 1. Then calculate the logarithmic
mean value of Cm

i (r) and record it as �m(r), namely:

�m(r) = 1

n − m + 1

n−m+1∑
i=1

ln Cm
i (r), (6)

3) Let increase the window length m to m + 1 and repeat the above steps to get Cm+1
i (r) and �m+1(r).

The theoretical AE is ApEn(r) = lim
N→∞

[�m(r) − �m+1(r)]. However, as N is 10,240, the AE can be
simplified as:

ApEn(m, r, N) = �m(r) − �m+1(r), (7)

(2) Singular entropy of the wavelet (SEW)
The signal with length N is decomposed by S-layer wavelet, and a number of m wavelet coefficients
with length n are obtained to form the time-frequency matrix Wm×n. According to the singular value
decomposition, Wm×n can be decomposed into an (m × l)-dimensional matrix U, an (l × l)-dimensional
matrix �, and an (l × n)-dimensional matrix V . Therefore, the matrix Wm×n can be decomposed
into Eq. (8):

Wm×n = Um×l�l×lVl×n, (8)

where m = 2S, n = N/2S and �= diag(λ1, λ2, . . . , λl) are the diagonal matrices of the singular values.
The singular values satisfy the inequality λ1 > λ2 . . . > λn.

To describe the signal complexity, the wavelet singular entropy is

Wi =
l∑

i=1

�pi (9)
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where �pi is the incremental wavelet singular entropy of the ith nonzero singular value, defined as:

�pi = −
(

λi/

l∑
j=1

λj

)
log

(
λi/

l∑
j=1

λj

)
(10)

3.1.2 Feature analysis of the lower limb EMG signals
The collected sample data of the sEMG signals are preprocessed and substituted into Eqs. (3)–(10) to
calculate the corresponding features.

Feature analysis of the sitting mode
Feature extraction is performed by the sEMG signals of four sitting movements under the online training
module. Here, the sEMG signals of eight subjects through dual channels were collected, including four
movements: SMA, SMK, CMKA, and SM (the sampling rate is set to 1024 Hz, and the total number of
samples is set to 10,240). A total of 24 sets of data were collected for each subject’s four movements
(each with six sets of data), and the collection of sEMG signals during the sitting training took a total
of 240 s or 4 min. To test the quality of the feature extraction results, the collected sEMG signals were
preprocessed and brought into the five time-domain and nonlinear feature values determined in the paper.
The average and standard deviation of the four time-domain and nonlinear feature values of eight subjects
in the sitting mode were calculated. As shown in Table III, the first channel for each participant was
selected to display the differences in the same characteristic values under different movements, as well
as the differences in different characteristic values for the same movements. Further, Fig. 13 and Fig. 14,
respectively, present the time-domain and nonlinear feature space distributions of four movements in
the sitting mode.

It can be noticed from Table III that the features of different subjects under the same movement have
similarities, while the results of different movements have differences. The absolute value of the FD
in the time-domain features exhibits the most obvious difference, while the IEMG values are not too
obvious. The discriminability of the two nonlinear features is good, where the wavelet singular entropy
has a better discriminability. In addition, Figs. 13 and 14 present that the characteristic values of RMS
and FD of the eight subjects are clearly distinguished, and there is a small amount of superposition of
IEMG. However, the distribution of two nonlinear features of the eight subjects is quite distinct, and
there is no superposition of features.

Feature analysis of the lying mode
For the four movements in the lying mode under the online training module, the sampling rate and sam-
pling number of LA, MA, HA, and LM are consistent with the parameters under the sitting mode.
The number of the training groups and acquisition time for each movement are consistent, that is,
the training time in the lying mode is still 4 min. In order to demonstrate the advantages and dis-
advantages of extracting the five characteristic values of the four movements in the lying mode in
the time and nonlinear domains, the features of the first channel sEMG signals of each subject were
selected for analysis, and the average and standard deviation of the five characteristic values of differ-
ent movements of eight subjects were calculated, as shown in Table IV. Further, Fig. 15 and Fig. 16,
respectively, show the time-domain and nonlinear feature space distributions of four movements in the
lying mode.

It can be intuitively observed from Table IV that the most obvious difference of the time-domain
features between different movements of the eight subjects is the FD. The AE and wavelet singular
entropy (WSE) perform better in nonlinear features, and the contribution of the time and nonlinear
domains to different movements is different. Moreover, Figs. 15 and 16 present that there is no overlap in
the time-domain feature distribution between different movements of each subject, which shows a good
discrimination effect. In the nonlinear feature distribution of Fig. 16, except for the overlap between the
middle and high lying postures of the eighth subject, all the other subjects performed well.
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Table III. Features of the four movements in the sitting mode.
Features of the first channel for each subject

Subject Movement IEMG RMS FD AE SEW
The average ± standard deviation

No.1 SMA 101.4040±0.3283 102.5405±0.5770 4.7790±0.7984 0.8769±0.0740 0.7933±0.0578
SMK 100.2928±0.0300 100.3228±0.0307 0.7495±0.1018 0.9477±0.0686 0.2724±0.0757

CMKA 100.888±0.3995 101.7200±0.7484 3.6826±1.1103 0.7432±0.0865 0.6977±0.1224
SM 100.1596±0.0310 100.1611±0.0312 0.1747±0.0195 0.4010±0.0156 0.1247±0.0750

No.2 SMA 101.4877±0.3796 102.6491±0.4960 4.9594±0.5540 0.8556±0.0601 0.8047±0.0480
SMK 99.8395±0.0103 99.8897±0.0199 0.9830±0.1452 1.1521±0.0586 0.2744±0.0437

CMKA 101.6524±0.5401 102.7165±0.7226 4.4608±0.3793 0.7824±0.0231 0.7744±0.0414
SM 99.9172±0.0082 99.9180±0.0081 0.1369±0.0635 0.2641±0.0524 0.0903±0.0449

No.3 SMA 102.3698±0.5445 103.3244±0.8078 3.7079±0.6442 0.7610±0.0549 0.7168±0.0869
SMK 101.0409±0.0143 101.0629±0.0147 0.6181±0.1915 0.8952±0.1927 0.2556±0.0660

CMKA 101.4985±0.2702 102.0151±0.3664 2.5972±0.3221 0.7384±0.0534 0.5921±0.0482
SM 101.0289±0.0569 101.0301±0.0571 0.2609±0.1512 0.3670±0.0845 0.1850±0.0972

No.4 SMA 101.0846±0.5690 102.2174±0.7999 4.2764±0.6095 0.8877±0.0684 0.7370±0.0615
SMK 99.9004±0.0122 99.9154±0.0159 0.6497±0.1538 0.9128±0.0698 0.2957±0.0635

CMKA 100.1669±0.2060 100.6576±0.3972 2.5807±0.5638 0.7519±0.0609 0.5615±0.0766
SM 99.9311±0.0101 99.9317±0.0099 0.1570±0.1372 0.1592±0.0333 0.1219±0.1028

No.5 SMA 94.0863±0.1989 94.8543±0.2717 3.3476±0.2666 0.9018±0.0494 0.6577±0.0327
SMK 93.4538±0.0181 93.4810±0.0190 0.8030±0.0950 1.1871±0.0440 0.2718±0.0603

CMKA 93.8884±0.0584 94.4999±0.0853 2.9839±0.2135 0.8307±0.0402 0.6331±0.0224
SM 93.4492±0.0207 93.4517±0.0207 0.3164±0.1064 0.6345±0.0157 0.1409±0.0700

No.6 SMA 102.3658±0.0277 102.4664±0.0568 1.0018±0.1903 1.1017±0.0540 0.2457±0.0399
SMK 102.3700±0.0330 102.4123±0.0500 0.6930±0.1903 1.0519±0.1183 0.1731±0.0358

CMKA 102.3872±0.0319 102.6332±0.0842 1.5800±0.2346 1.0430±0.1982 0.3547±0.373
SM 102.3157±0.0261 102.3174±0.0261 0.2234±0.0666 0.4697±0.0224 0.1015±0.0386

No.7 SMA 99.7378±0.0475 100.1193±0.1162 3.1164±0.3583 1.0286±0.0561 0.5805±0.0679
SMK 99.6661±0.0095 99.6761±0.0082 0.4520±0.0297 0.8554±0.0605 0.1629±0.0291

CMKA 99.6683±0.0157 99.7887±0.0232 1.1899±0.1170 1.1728±0.0402 0.3170±0.0373
SM 99.6689±0.0076 99.6776±0.0079 0.4423±0.1160 0.8878±0.2037 0.1390±0.0227

No.8 SMA 102.7642±0.0527 103.1209±0.1176 2.7397±0.2899 0.9023±0.0640 0.5394±0.0459
SMK 102.7051±0.0264 102.7619±0.0108 1.0187±0.2747 1.2996±0.1031 0.2239±0.0485

CMKA 102.8382±0.1125 103.2872±0.2470 2.4777±0.5766 0.8241±0.0797 0.5212±0.0585
SM 102.7698±0.0449 102.7718±0.0441 0.2586±0.0828 0.4461±0.0739 0.1506±0.0684

Figure 13. Spatial distribution of the time-domain features of the four movements under the sitting
mode.
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Figure 14. Spatial distribution of the nonlinear features of the four movements under the sitting mode.

3.2. Analysis of the construction results of the personalized classifier
To simplify the representation of the optimal characteristic components of eight subjects under two
modes, the corresponding abbreviations of the 10 dimensional features of the 2 channels are adopted,
as shown in Table V.

3.2.1 The results of the experiments under the sitting mode
Table VI presents the results of the OFCs based on PSO-KNN and PSO-ELM classification algorithms
for eight subjects in the sitting mode, as well as the recognition accuracy of each subject. In the PSO-
KNN algorithm, the individual OFCs of five subjects are five dimensions and of other three subjects are
six dimensions. In the PSO-ELM algorithm, the individual OFCs of four subjects are four dimensions
and of other four subjects are three dimensions. The results of the OFC of each subject are different, and
it can be observed that the OFCs in the sitting mode are personalized.

As shown in Table VI, when the classifier is tamed based on the PSO-KNN classification algorithm,
the value of the optimal fitness for each subject (the accuracy of pattern recognition of KNN) is obtained,
respectively, in which the highest recognition accuracy was 100%, the lowest recognition accuracy was
86%, the average accuracy (AA) was 96.50%, the high-frequency channel (HFC) is 2-FD, and the aver-
age time for domesticating the classifier (ATDC) is 61.0042 s. When the classifier is tamed based on
the PSO-ELM classification algorithm, the value of the optimal fitness for each subject (the correct
rate of the ELM pattern recognition) is obtained, respectively, in which the highest recognition accu-
racy is 100%, the lowest recognition accuracy is 94%, the AA is 97.38%, the HFC is 2-WSE, and the
ATDC is 4.3115 s. Combined the recognition accuracy and calculation efficiency, PSO-ELM is selected
to conduct the online pattern recognition of the sitting mode and the corresponding rehabilitation
training.

3.2.2. The results of the experiment under the lying mode
Similarly, the results of the OFCs of each subject are different in the lying mode as well. It can be noticed
that the OFCs are also personalized.

As shown in Table VII, when the classifier is tamed based on the PSO-KNN classification algorithm,
the value of the optimal fitness for each subject (the accuracy of the pattern recognition of KNN) is
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Table IV. Features of the four movements in the lying mode.
Features of the first channel for each subject

Subject Movement IEMG RMS FD AE SEW
The average ± standard deviation

No.1 LA 100.6352±0.0484 100.7754±0.2343 1.4879±0.7456 1.2870±0.1893 0.3246±0.1305
MA 100.6239±0.0416 100.9385±0.1164 2.6223±0.5068 0.9178±0.1023 0.5244±0.0687
HA 101.0251±0.1251 101.9868±0.2740 5.5039±0.5295 1.0327±0.0410 0.8200±0.0453
LM 100.7920±0.0162 100.7932±0.0161 0.1755±0.0309 0.3708±0.0237 0.1095±0.0604

No.2 LA 100.0355±0.0157 100.1042±0.0348 1.2831±0.2596 1.4261±0.0870 0.2799±0.0532
MA 100.4032±0.1674 100.8629±0.2033 3.0106±0.2096 0.8519±0.0823 0.6240±0.0368
HA 101.4193±0.0748 102.3232±0.1225 5.4558±0.4012 0.9331±0.0609 0.8449±0.0245
LM 100.0662±0.0141 100.0676±0.0142 0.1654±0.0300 0.3892±0.0349 0.0949±0.0523

No.3 LA 101.1316±0.0170 101.1694±0.0179 0.5302±0.1036 0.9966±0.0744 0.1466±0.0220
MA 101.1955±0.0811 101.4765±0.2009 1.9582±0.6279 0.9603±0.1232 0.4296±0.898
HA 101.8090±0.2070 102.4745±0.3129 3.0225±0.3098 0.8322±0.0274 0.6400±0.0407
LM 100.9928±0.0172 100.9957±0.0218 0.1908±0.1689 0.3151±0.1669 0.0971±0.0531

No.4 LA 100.3282±0.0159 100.3562±0.0236 0.7437±0.0849 1.1845±0.0648 0.1779±0.0140
MA 100.3360±0.0311 100.5437±0.1075 1.7982±0.4356 0.9366±0.1472 0.4181±0.0740
HA 100.9962±0.1755 101.8537±0.2897 4.7176±0.3261 0.8753±0.0484 0.7864±0.0197
LM 100.2562±0.0532 100.2585±0.0539 0.2693±0.1901 0.4386±0.0616 0.1331±0.1134

No.5 LA 93.8570±0.0463 93.8838±0.0384 0.6343±0.1148 1.1123±0.1213 0.1942±0.0681
MA 93.9451±0.1308 94.2415±0.2057 1.9525±0.3768 0.8528±0.1446 0.4749±0.0721
HA 94.8684±0.3883 95.6391±0.5868 4.2577±0.6044 0.8656±0.0643 0.7804±0.0454
LM 93.8819±0.0175 93.8830±0.0174 0.1483±0.0319 0.3437±0.0744 0.0973±0.0540

No.6 LA 102.4305±0.0144 102.4424±0.0167 0.3338±0.0657 0.6984±0.1059 0.1366±0.0589
MA 102.4201±0.0136 102.4983±0.0254 1.0672±0.1803 1.2367±0.0820 0.2498±0.0341
HA 102.4533±0.0481 102.6683±0.1450 2.2836±0.5492 1.1758±0.1990 0.4520±0.0660
LM 102.4452±0.0220 102.4470±0.0220 0.2524±0.0245 0.5322±0.0295 0.1392±0.0655

No.7 LA 100.8373±0.0048 100.8601±0.0125 0.7649±0.1417 1.1373±0.0814 0.1983±0.0425
MA 100.8506±0.0365 101.0516±0.0955 1.8707±0.3142 1.2063±0.1797 0.4118±0.0532
HA 100.8578±0.0183 101.0186±0.0446 1.6658±0.1702 1.2402±0.0415 0.3773±0.0326
LM 100.8520±0.0125 100.8543±0.0121 0.3213±0.1302 0.5519±0.0719 0.1669±0.0719

No.8 LA 103.1369±0.0681 103.1441±0.0757 0.2523±0.1645 0.5397±0.2432 0.0975±0.0477
MA 103.2187±0.0229 103.4206±0.0734 1.5852±0.3419 0.8495±0.2330 0.3902±0.0497
HA 103.2203±0.0531 103.4734±0.1116 2.1448±0.2097 0.8963±0.2523 0.4594±0.0200
LM 103.0509±0.0504 103.052±0.0507 0.1594±0.0373 0.3350±0.0597 0.1019±0.0595

obtained, respectively, in which the highest recognition accuracy was 100%, the lowest recognition
accuracy was 86%, the average recognition accuracy was 96.50%, and the ATDC is 61.0042 s. When
the classifier is tamed based on the PSO-ELM classification algorithm, the value of the optimal fitness
for each subject (the accuracy of the ELM pattern recognition) is obtained, respectively, in which the
highest recognition accuracy is 100%, the lowest recognition accuracy is 94%, the average recognition
accuracy is 97.38%, and the ATDC is 4.3115 s. Combined the recognition accuracy and calculation
efficiency, PSO-ELM is selected to conduct the online pattern recognition of the sitting mode and the
corresponding rehabilitation training.

3.3. Analysis of the online rehabilitation training results
Figure 17 presents the real-time recognition results of random sequence training test of eight subjects’
four movements in the sitting mode, and the test time is 1000 s.

It can be noticed from Fig. 17 that the No. subject 6 has the highest recognition accuracy, and the real
action label numbers are highly consistent with the ones of the pattern recognition, with a recognition
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Table V. Abbreviations of 10 dimensional features for 2 channels (here, “α-β” denotes
the βth (β=1,2,. . .,5) feature of the αth (α=1,2) channel.

Feature β

Channel α IEMG RMS FD WSE ApEn
1 1-IEMG 1- RMS 1-FD 1-WSE 1-ApEn
2 2-IEMG 2- RMS 2-FD 2-WSE 2-ApEn

Figure 15. Spatial distribution of the time-domain features of the four movements under the lying mode.

Figure 16. Spatial distribution of the nonlinear features of the four movements under the lying mode.
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Table VI. Selection of optimal feature components of eight subjects in the sitting mode.

PSO-KNN PSO-ELM
OFC Accuracy ATDC (s) OFC Accuracy ATDC (s)

1 1-WSE 1-IEMG 1-WSE 2-RMS
1-ApEn 2-RMS 86.00% 60.7322 1-ApEn 2-ApEn 94.00% 4.0793

2-FD
2 1-WSE 2-IEMG 1-IEMG

1-ApEn 2-RMS 100.00% 61.6648 1-ApEn 2-FD 96.00% 4.1905
2-FD

3 1-IEMG 1-IEMG
1-RMS 2-RMS 97.00% 59.8142 1-WSE 2-WSE 100.00% 4.4512
1-WSE 2-WSE 1-ApEn
1-ApEn

4 2-IEMG
2-RMS 98.00% 59.8002 2-IEMG 99.00% 4.2872

1-ApEn 2-FD 1-ApEn 2-WSE
2-WSE
2-ApEn

5 1-WSE 2-IEMG 1-FD 2-IEMG
1-ApEn 2-RMS 97.00% 61.3809 1-WSE 2-WSE 96.00% 4.1607

2-FD
6 1-IEMG

1-RMS 2-FD 97.00% 60.6922 1-ApEn 2-IEMG 100.00% 4.6168
1-WSE 2-WSE 2-WSE
1-ApEn

7 2-IEMG 1-IEMG
1-ApEn 2-FD 100% 63.9465 2-FD 97.00% 4.4881

2-WSE 1-WSE
2-ApEn

8 1-WSE 2-IEMG 1-WSE 2-RMS
1-ApEn 2-RMS 97.00% 60.0027 1-ApEn 2-WSE 97.00% 4.2187

2-FD
HFC = 2-FD AA = 96.50% 61.0042 HFC = 2-WSE AA = 97.38% 4.3115

accuracy of 99%. No. subject 1 has the lowest recognition accuracy, the recognition accuracy is 94%,
and the average recognition accuracy of eight subjects is 96.63%. The real-time pattern recognition
based on the personalized classifier constructed for each subject can better achieve the timeliness and
recognition accuracy between switches of different movements.

In the real-time experiment of the No. subject 6, the rehabilitation training process of driving the
lower limb rehabilitation robot to perform the corresponding movements is shown in Fig. 18. The label
number corresponding to the human limb movements, the label number corresponding to the real-time
recognition results, and the angle changes of the ankle and knee joints of the rehabilitation robot can
be well matched. The real-time response of the rehabilitation robot’s joint movement mechanism meets
the actual rehabilitation training requirements.

For the four movements of LA, MA, HA, and LM in the lying mode, we conducted a random sequence
training test on eight subjects, with the test time of 1000 s. The real-time recognition results of the
training test are presented in Fig. 19.
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Table VII. Selection of optimal feature components of eight subjects in the lying mode.

PSO-KNN PSO-ELM
OFC Accuracy ATDC (s) OFC Accuracy ATDC (s)

1 1-RMS 2-FD 1-IEMG
1-FD 2-ApEn 1-FD
1-WSE 97.00% 63.7724 1-WSE 2-RMS 92.00% 4.7845

1-ApEn
2 1-WSE 2-FD 1-RMS

1-ApEn 2-IEMG 94.00% 68.6454 1-FD 2-IEMG 96.00% 4.1262
2-RMS 1-WSE

3 1-IEMG
1-RMS 2-FD 98.00% 61.2505 1-RMS 2-WSE 90.00% 4.4021
1-WSE 2-WSE 1-WSE 2-ApEn
1-ApEn 2-ApEn

4 1-RMS
1-WSE 2-FD 100.00% 62.0138 1-FD 2-IEMG 85.00% 4.4536
1-ApEn 1-WSE 2-RMS
1-RMS

5 1-RMS 2-FD 1-IEMG
1-FD 2-ApEn 98.00% 72.8986 1-FD 2-FD 87.00% 4.3392
1-WSE 1-WSE

6 1-IEMG
1-RMS 2-FD 1-RMS
1-FD 2-ApEn 97.00% 69.7576 1-FD 2-ApEn 100.00% 4.2133
1-WSE 1-WSE

1-ApEn
7 2-IEMG

1-IEMG 2-FD 2-WSE
1-RMS 2-ApEn 97.00% 70.4955 1-FD 2-WSE 85.00% 4.3315
1-WSE 2-ApEn

8 1-IEMG
1-RMS 2-WSE 1-RMS
1-WSE 2-ApEn 98.00% 73.6057 1-WSE 2-ApEn 92.00% 4.3375
1-ApEn
HFC =
1-WSE

HFC =
2-FD

AA = 97.38% 67.8049 HFC = 1-FD AA = 90.63% 4.3735

It can be observed from Fig. 19 that the real action label numbers of the No. subject 7 are completely
consistent with the ones of the pattern recognition, and the recognition accuracy is 100%. There are
many inconsistencies for the No. subject 2, and the recognition accuracy is 94%. The average recogni-
tion accuracy of eight subjects in a random sequence is 97.25%, which can better realize the real-time
movement recognition.

In the real-time experiment of the No. Subject 7, the lower limb rehabilitation robot was driven to
perform the rehabilitation training process of the corresponding movements in the lying mode, as shown
in Fig. 20. The label number corresponding to the human limb actions, the label number corresponding
to the real-time recognition results, and the hip joint angle change of the lower limb rehabilitation robot
can be highly consistent, which have the actual rehabilitation effect.
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Figure 17. Real-time recognition results of eight subjects in the sitting mode (the green and red lines
indicate the label numbers for the pattern recognition and the real movement, respectively).

3.4. Discussions
There have been significant developments in the collection, analysis, and application of sEMG signals;
however, there are still many problems in human–machine interactions and deciphering human motion
intentions. There are differences between individuals, especially differences in sEMG signals between
healthy individuals and patients. When a constructed fixed classifier encounters new testers, the accu-
racy of human motion recognition will greatly decrease. However, when faced with such problems,
researchers usually choose to increase the training sample data size. For example, Fan et al. [34] used
traditional methods to collect a large amount of lower limb EMG signal data from subjects through wired
collectors, but the recognition rate still cannot be stable at over 90%, and it increases the workload of
data collection in the early stage and increases the data dimension. Faced with the problem of large data
collection and long classifier construction time, some researchers have adopted the transfer learning
method [17, 18] to reduce the amount of data, which adds a small amount of data from new testers to
the original classifier to construct a new classifier. Although this method reduces data dimensions and
data collection workload, it still requires continuous classifier construction.

The results in Sections 3.1 and 3.2 reveal that based on the wireless sEMG acquisition instrument
and two muscles of lower limbs as the acquisition channels, a personalized classifier and online reha-
bilitation training system for individual sitting and lying movements is well developed in this paper. On

https://doi.org/10.1017/S0263574723001509 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001509


410 Ye Ye et al.

L
ab

el
 n

um
be

r

Time

Human movement corresponding to the label number

L
ab

el
 n

um
be

r

Time
Myoelectric signal pattern recognition results corresponding to label number

Time

Time
Knee joint movement angle change

A
ng

le
 / 

de
g

A
ng

le
 / 

de
g

Ankle joint movement angle change

(a)

(b)

(c)

(d)

Figure 18. Real-time rehabilitation training results of No. subject 6 in the sitting mode.

the basis of less collection channels and the joint feature vector, the dimension of input variables in the
sample data is expanded by using a variety of feature indicators. As there are redundant and similar
information in the joint feature vector, this information will affect the classification recognition accu-
racy and efficiency [35–37]. Thus, we have extracted the OFCs from the joint feature vector based on the
PSO-KNN algorithm and PSO-ELM algorithm, so as to maximize the performance of the classifier. We
observe that the technical requirements for building a personalized classifier online are effective (high
accuracy of motion recognition) and fast (less data collection of sEMG signals and short training time
of the classifier).

4. Conclusions and future works
The lower limb rehabilitation training experiments were conducted for eight different subjects to test the
recognition accuracy and efficiency of the online personalized classifier. The identified motion results
were generated as the corresponding tag numbers, and the lower limb rehabilitation robot was actively
controlled to make the corresponding movements to complete the rehabilitation training. The experi-
mental results indicate that the online pattern recognition and real-time rehabilitation training system
for the lower limb movements based on the wireless sEMG sensors has the following advantages and
characteristics:

(1) The wireless sEMG signal acquisition instrument is selected to get rid of the power frequency
interference, space limitation, and other defects caused by the wired acquisition. Based on the wireless
sEMG acquisition instrument, a multifunction host computer is developed to achieve the functions of
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Figure 19. Real-time recognition results of eight subjects in the lying mode (the green and red lines
indicate the label numbers for the pattern recognition and the real movement, respectively).

real-time data storage, real-time display, online personalized classifier, and the real-time rehabilitation
training.

(2) In terms of both recognition accuracy and recognition efficiency, we first use a few (only two)
channels of sEMG signal acquisition modes. Then, multiple characteristic indexes (IEMG value in time
domain, RMS value, absolute value of FD, and wavelet singular entropy and AE in nonlinear char-
acteristic value) are used to form a joint feature vector to enrich the information of input variables in
the sample data. Finally, based on the PSO-KNN and PSO-ELM algorithms, feature components are
optimized to reduce redundant information in joint feature vectors, and the classification accuracy and
recognition efficiency are both improved.

(3) The traditional offline method to build a universal motion pattern classifier has a large amount of
data. In this paper, it takes a short time (6 min) to build a personalized classifier online, without offline
processing of the data. This method reduces the workload before the rehabilitation training and the data
is real time.

(4) Using the personalized classifier constructed online and based on the multi-position lower limb
rehabilitation robot, the real-time motion pattern recognition and the corresponding rehabilitation train-
ing are carried out. The experimental results show that the real-time recognition accuracy of subjects
is high (the average recognition accuracy is more than 95%), and the joint motion mechanism of the
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Figure 20. Real-time rehabilitation training results of No. subject 7 in the lying mode.

rehabilitation robot responds in a timely manner. These features meet the requirements of the actual
rehabilitation training and have a strong practicability.

In summary, we have achieved many improvements in the traditional sEMG signals control of the
rehabilitation robot, enabling the sEMG signals to be quickly trained online, recognized online, and
obtain better recognition results. However, the clinical rehabilitation based on the sEMG signals using
the rehabilitation robot is still not widely carried out. How to use the sEMG signals to obtain the patient’s
movement intention more quickly and identify more and more complex movements is still a problem
worth studying in this field.
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