
DUAL INTEGRAL EQUATIONS 

E. R. LOVE 

1. Introduction. Erdélyi and Sneddon (4) have reduced the dual integral 
equations (4, (1.4)) 

(1) 
f °Y2a{l - E(t)} Jv(Pt) *(t) dt = F(p) if 0 < p < 1, 

J»oo 

0 
r" Jv(Pt)*(t)dt = G(p) if p > l, 

where ^ is unknown, to a single Fredholm integral equation (4, (4.4)), from 
the solution of which ^ is explicitly obtainable. Their work extended and 
clarified an investigation by Cooke (1), placing it in a context of standard 
integral transforms. Cooke's reduction was obtained after consideration of 
the Fredholm integral equation obtained by Love (8) in discussing Nicholson's 
problem of the electrostatic field of two equal circular coaxial conducting 
disks (9). 

I propose to show (§ 3) that Erdélyi and Sneddon's Fredholm equation is, 
after some recasting, a generalization of Love's; and (§§5-9) that it too 
possesses, under suitable conditions, a unique solution given by a Liouville-
Neumann series. The work is restricted to cases in which E is a decaying 
exponential and G is zero, but the conditions on F, v, a, and fi are of a general 
character, more than wide enough to include applications that have been 
discussed in the literature. 

Probably the most interesting and central part is § 6, where it is shown 
that the kernel, (25), of the recast Fredholm equation has a norm less than 1. 

I am very grateful to Professor Erdélyi, who kindly showed me a copy of 
his paper (4) at the Summer Research Institute of the Australian Mathe
matical Society, and who later read my work and suggested a useful simpli
fication in § 8. 

2. Erdélyi and Sneddon's Fredholm equation (4, (4.4)) is 

(2) hi(u) - I Ko(u, v) hx{v) dv = R0(u) if 0 < u < 1, 

where hi is the unknown function, K0 and R0 are known functions given by 
(4, (4.3)) and (4, (4.2)) respectively as follows: 
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(3) Ko(ti,v) = ( - ) I Jv+p-a(2\/uz) Jp+fi-aQy/vz) e(z) dz 

and 

( 4 ) R0 = I \ v+a ,/S-o / — S i „_« , /5+ a { £ S i „+£ ,-a-/3 ( i £ i v-a ,a-/3 g ) } , 

where, according to (4, (1.6)) and (4, (1.2)), 

(e(z) = £(2Va) , /(*) = 2**tr*F(y/t), 
( 5 ) \g(*) = 0 if t < 1, g(/) = 2n-?GWt) if / > 1; 

while i i£, and 5 are integral operators discussed in (4, (2.2)-(2.10)). The 
original unknown function ^ of the dual integral equations (1) is expressed 
in terms of hi by a complicated formula, of which we shall consider only the 
simplified version (18) appropriate to (6). 

From here on we shall suppose that 

(6) £ ( 0 = ±e-*1 and G if) = 0, 

where K is a positive constant. 
Under these conditions we now simplify (3), first making the substitutions 

(7) x = \/u, y = y/Vy t = 2y/z: 

(8) db Ko(x\ y2) = | ( j j + J " Jv+^a(xt) J^-a(yt) e~Kttdt 

a+0 
= l U TK JO J«*-W J ^-«« e~" dt 

= _i(yY* A i n (** + x2 + y ' \ 
2 W OK *V(*y) ^"+3-a-A 2xy I 

provided v -\- /3 — a > —§ for the validity of both steps taken (10, § 13.22), 
Q being the Legendre function of the second kind. Thus 

(9) ±ZD (X , , ) - _ ^ — ^ Q ^ ^ _ j 

provided that 

(10) v + p-a + i>0. 

Instead of hi we take as unknown function 

(11) 4>(x) =x"+2^+1A1(x2); 

the reason for choosing the first factor will appear at (18). Now (2) becomes 
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(12) <t>(x) T I K(x, y) 0(y) dy = R(x) if 0 < x < 1, 
^o 

where 

and 
yy/ irxy 2 \ 2x3/ 

i?(x)=x'+23+1i?„(x2). 

Next we simplify (4) under conditions (6). Let n denote zero or a positive 
integer such that 

(13) 0 - a + n > 0. 

Omitting for the moment the case of equality, and using (4, (2.4) and (2.2)), 
we obtain 

(14) *.(,) = w . / ( « ) = « ^ j L Jo ^ _ ° t t + w ) ^ + 7 ( 0 * . 

It is convenient to define (compare (5)) the function 

(15) f,(t) = WtY FWt) = 2 - * **•+-/(*); 

then for the right side of (12) we have 

dw Jo r(/3 — a + w)J 

[22a«*/?)(«) if 0 - a + * = 0. 

(16) i?(uè) = 

It is better not to replace u by x2 in (16) ; the nth derivative expresses the 
(a — /3)th derivative of fv(u) with respect to u but not with respect to x. 

The original unknown function ^ in equations (1) is expressible in terms 
of 0, the unknown function in (12), as follows. By (4, (3.3)), 

(17) V(x) = hx \f/(ix2) and ^ = S^v+^-a-^(hi + h2) = Si „+/?,-«-/? h 

since &2 = Kiv-aa-pg2 vanishes on (1, » ) because g = 0 by (6). Then by 
(4, (2.5)) 

lK«) = «*(,rW> f »*<œW> / H ^ ( 2 \ ^ ) *I (W) * , 

so 

(18) ¥(*) = 2-°-? xa+*+1 J]' y—s+a /*^(*y) *(y) dy, 

a Hankel transform. This formula has meaning, whether for all x or almost 
all, if and only if <£ is integrable ; for the other factor in the integrand is bounded, 
and its reciprocal is also bounded for any sufficiently small fixed x. 
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3. Special cases. Cooke (1) gave special attention to equations (1) in 
the cases 

/19N (a = h P = 0, v = 0 and 1, 
\E{t) = ±er«, F(t) = t\ G{t) = 0. 

For v = 1 this is the hydrodynamic problem of flow caused by two equal 
coaxial circular disks rotating in a viscous fluid, solved by Cooke; while for 
v — 0 it is the electrostatic problem of a circular disk condenser, considered 
by Nicholson (9) and Love (8). 

The reduction of (2) made in § 2 above is applicable to the hydrodynamic 
case v = 1 since the requirement (10) for the steps from (8) to (9) is fulfilled. 
But this requirement is just not fulfilled in the electrostatic case v = 0; we 
proceed to show that Erdélyi and Sneddon's equation then reduces to the 
Fredholm equation obtained by Love (8, (2)). This equation is 

(20) *(*) =F \ J K2 + (* _ )2- 4>{y) dy=l if - 1 < x < 1. 

To make the identification complete we must insert a constant multiplier 
2/\Ar on the left side of (11). 

Cooke makes a similar reduction of his Fredholm equation. We are largely 
repeating his work in the next dozen lines, but we do so in order to make 
an opportunity for some remarks. 

We suppose that (19) holds with v = 0, then. The reductions of § 2 apply 
except for (8)-(12), which we replace. Proceeding from (8), 

J ±KQ(x\ y2) = i | / 1 £ J-iixt) J-h{yt) e~Kt tdt 

1 f °° 
= — I cos xt cos yt e Kt dt 

7TX J 0 

(21) 

V + (x + yf +
 K2 + (x - y)2) • 2irx V + (x + y) K + (x - y ) ' 

Also (13) is fulfilled by n = 1, (15) gives f„(t) = 1, and so (16) becomes 

Instead of hi we use a constant multiple of the unknown function defined 
in (11), extended to negative x so as to be even: 

(22) 4>(x) = W* \x\hxix2). 

Now (2) becomes 

<23> * W T £ \ 0+(x + 3 » ' + S + (x - y)) Hy) dy = h 
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to hold for 0 < x < 1 and consequently for 0 > x > — 1 ; and this becomes 
(20) when we separate the integral into a sum of two integrals and replace 
y by — y in one of them. 

4. Remarks on (12) and (20). We have just seen that (20) is a special 
case of (2). It is also the limiting case of (12) as ^ + /3 — a + % tends to zero. 
This is seen if we compare the right-hand sides of (12) and (23), interpreting 
<2'-i(£) by putting y = 0 in the recurrence relation 

<2Vifô = ÉQ'T(£) - 7&(É). 

Indeed, this interpretation makes (9) correct for v + /3 — a + \ = 0. 
In (8) it is shown that (20) has just one solution, that this is continuous, 

and that it is the sum of a uniformly convergent Neumann series. The rest 
of the present paper is devoted to establishing like properties of (12). In fact 
we demonstrate the applicability of the following theorem associated with 
the Neumann series solution. 

If K(x, y) is continuous i w 0 < x < l , 0 < y < l , and satisfies 

suo I \K(x, y)\dy < 1, 
0<z<l «/0 

and R(x) is integrable, then the Fredholm equation, for unknown $, 

4>{x) - K(x, y) <t*(y) dy = R(x) for 0 < x < 1, 
J o 

has just one integrable solution. This solution shares with R any llproperties of 
discontinuity" it may have {such as being in Lp, or behaving like x~x as x —•» 0) 
because it differs from R by a continuous junction. 

Using this theorem we conclude, in § 9, with conditions under which the 
dual integral equations (1), when specialized in accordance with (6), possess 
a unique solution, obtainable by solving (12). 

We do not discuss, in this paper, any form of solution of (12) except the 
Neumann series. For purposes of numerical solution, however, a more con
venient form of (12) may be the following integral equation, whose kernel is 
symmetric: 

W ^ ^ J»1 ̂  ftH^(',+£+30 ^ dy " X"+ni R^' 
to hold for 0 < x < 1. This is obtained from (12) by using, instead of 4> defined 
by (11), the unknown function 

X(x) = x-v-P+a-* <t>{x) = ^ + U i ( x 2 ) ; 

and its kernel is that of (12) without the factor (x/y) v+^~a+\ Like (12), (24) 
has (20) as limiting case as *> + /? — a + î tends to zero ; so the numerical 
methods of Fox and Goodwin (5) and of Elliott (2) may be successful in 
solving (24) as they have been with cases of (20). 
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5. The kernel of (12). In applying the theorem quoted in § 4 we shall 
use the following lemma. 

If K > 0 and y = v + 13 — a + | > 0, then the kernel of (12), namely 

is positive in the quadrant x > 0, y > 0, and continuous in the closed quadrant 
% > 0> J > 0 i/ suitably defined on the frontier. 

That i£ is positive in the open quadrant follows from the expansion 

(IM o' m - Y r(7 + 2» + i)r(è) 
n = 0 r(T + w + è)-w! (2$)T+2,,+1' 

which is applicable with, and because, 

That K is continuous in the open quadrant is apparent. For the frontier, 
as x —* + 0 or y —» + 0 , £ —> +°° ; so the first term of (26) gives the asymp
totic behaviour of — <2'7-i(£), and we find that 

o*\ K(V ,A ~ 2K r ( 7 + i)r(j) x2T 

(28) * ( * , y ) ~ - - r ( ( y + | ) • ( j t . + x . + y . ) 7 F i . 

This indicates the desired continuity on the frontier if we define 

( K(0,y) = 0 f o r y > 0 , 
(29) < „ , m 2K r (T + i ) r q ) x27 , ^ . 

77ze a&cw£ lemma is equally true of (y/x)yK(x, y), the kernel of (24) ; the bound
ary values being 0 on both axes, instead of the values given by (29). 

6. A norm of the kernel (25). In establishing the existence and unique
ness of the solutions of (12) we shall use the following: 

If K > 0 and 7 > 0, then (25) satisfies 

(30) sup I \K(x, y)\dy < 1. 
0 < x < l •* Q 

On account of § 5 we may omit the modulus signs and the value x = 0. 
Substituting x = KS and y = ut, s and / are positive and 
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The convergence of this integral will be assured by subsequent work, but we 
can also infer it directly from (27) and (28). For as /-»«>, y —> œ, and so 
£-+co by (27); thus (28) applies with K replaced by 1, giving the integrand 
of (31) as 0((1 +t2)-v~1). 

Substituting t = (1 + s2)^ tan \6 and also 5 = cot a, both or and §0 being 
in (0, |7r), and then using (26), (31) becomes 

Jo \ ^ 2 / ITS ^y l \ ssmd / 

/o^x tan o- r^ _. /sec <r\ , - „. 

sin 0 

de 
sin 0 

7 r ( i ) fT ^ r ( 7 + 2n + 1) ^ sin 0 Y+2*+1 2 cot 7 ^ Jik 

= tano-cosV 2^ w . — . i\ i Ô j — r ~T~ ^ 
7T Jo S r ( 7 + w + i)-w! \2 sec a/ sin 0 

7 1 f, T( 7 + 2n + l) r ( sin 6 \+2n _ .. 

sin . c o s 2 : , ^ _T(7_+.2n + 1)_ _ * _ T ^ , ) T f * ^ ^ 
«Jo 

COS G 
r ( i ) S r ( 7 + n + i ) -n! 

f 'sin2"iecos27+2ree0^ 
sin o- cos2V -A r ( 7 + 2w + 1) 2» 

r(|) è i r(7 + « + |)-w!cos °" 

sin a cos2V fv r(7 + 2w + l) 2B r(w + è)r(7 + w + è) 
r(i) ^t T(y + n + *) •«! C°S ff T(7 + 2W + 1) 

27 \ ^ 1 3 2n — 1 2w 
= sin o- cos o- >, TT-T* . . . —?: cos o-

^ 2 4 2w 

= sin c cos V (1 — cos a)~* 

(33) = cos2V 

The term-by-term integration is correct because all terms are positive, and 
the standard integral is quoted from (3, 1.5.1 (19)). 

We now have (30) since, for 0 < x < 1, 

(34) £K(x, y) dy < cos2V = ( ^ = (-^J < ( j ^ . 

This proof actually holds at all stages except the last if 0 > y > —J. 

7. Integrability of the right side of (12). The usefulness of (12) is 
limited by the necessity that the integral it involves should exist. Since the 
kernel K(x, y) is continuous and positive for each x > 0, as shown in § 5, 
the integral exists if and only if <£ is integrable. For this it is necessary and 
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sufficient that R(x) be integrable. We give sufficient conditions for this in 
terms of fv(t), the function defined by (15), and its derivatives. 

For R(x), specified by (16), to be integrable on 0 < x < 1, either of the following 
conditions is sufficient: 

(i) that fv(t) be integrable on 0 < / < 1 and (3 — a > 0; 
(ii) that f v

{n~l) (t) be absolutely continuous and fi — a > — n, for some positive 
integer n; and, if n > 1 and ft — a > —n, also fv

{r)(0) = 0 for r = 0, 1, . . . , 
n - 2. 

First suppose that conditions (i) hold. Then n = 0 fulfils (13), and (16) 
becomes 

(35) 2-M-^)={r %-7m dt « * - « > °« 
\f,(u) i f / 3 - a = 0. 

This shows that the left side is integrable on 0 < u < 1, in the lower case by 
data, and in the upper case by (6, p. 10), since the right side is a convolution 
of integrable functions. So, putting u = x2, R(x) is integrable on 0 < x < 1. 

Next suppose that conditions (ii) hold. Then n is a positive integer satisfying 
(13). Supposing (3 — a > —n, and writing 8 = 13 — a + n > 0, the integral 
in (16) is, on integrating by parts n times, 

Differentiating this n times, (16) becomes 

(36) 2-2"W-ii?(M*) = Y^f^ (0) + / J (" "g*"V 1 0 (0 * 
almost everywhere, using a property of fractional integrals and also the data 
regarding/„ ( r )(0). Both terms on the right of (36) are integrable, the con
volution as before; so again R(x) is integrable as required. 

If /5 — a > —n and n = 1, (36) is obtained without need for any of the 
jf„(r)(0) to vanish, and the rest of the argument is unaffected. 

If j8 — a = — n, instead of (36) we have, directly from (16), 

(37) 2- a V*R(« i ) =fSn\u), 

which is integrable by data. So again R(x) is integrable, without need for any 
conditions on fv

{r)(0)-

8. Continuity of the right side of (12). We supplement the conditions 
of § 7 by conditions sufficient for continuity of R, since this is necessary and 
sufficient for continuity of the solution <j>. Such conditions are, as (16) shows, 
no more than conditions for fv(u) to have a continuous derivative of order 
a — /?, except possibly at u = 0. They might well be capable of refinement 
using the theorems of (7), as well as in other ways. 
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For R(x), specified by (16), to be continuous in 0 < x < 1, any one of the 
following three sets of conditions is sufficient: 

(i) /„ is integrable on (0, 1), 
fv(t) = 0{P~l) as t -> +0,for some 77 > 0, 
/„ is in Lp(e, 1) for each small positive e, and some p > 1, 
p - a> max(J - 77, 1/p); 

(ii) fv
(n~l) is absolutely continuous on (0, 1), for some positive integer n, 
/ , ( r )(0) = 0 for r = 0, 1, . . . , n - 2, n - 1, 
/, (w)(0 = O^"-1) as *-> +0 , /o r some 77 > 0, 
/„(w) w m £p(e, 1) /or each small positive e, awd some p > 1, 
0 — a > — » + max ( | - 77, 1//?); 

(iii) Pfv
{n) (t) is continuous in 0 < t < 1 /or some non-negative integer n, and 

fi — a = — ». 

Under conditions (iii) the result is immediate; for, by (16) or (37), R(u?) 
is a continuous function of u, and u — x2 is a continuous function of x. 

Suppose conditions (i) hold. Then ft — a > 1//? > 0, so §7(i) applies; 
writing 8 = 13 — a > 0, (35) gives 

(ft. (38) 2-*ï(S)2î(t**) = uh (U (u- t)B~lfv(t) 

This is continuous at w = 0; in fact it tends to zero a s w - > + 0 , because for 
small u its modulus is majorized by 

uh (U (u - t)*-1 r 1 dt = u-*+v f (1 - s)5-1 s"'1 ds (t = us). 
J 0 t / 0 

In proving continuity of R{tfi) at w = [/, where 0 < U < 1, we may omit 
the factor u* in (38). Our aim will be achieved by showing that 

I (u-tY^f^dt (m = 1,2,3,...) 
U/4m 

is a uniformly convergent sequence of continuous functions on \TJ < u < 1. 
For the continuity,/,, is in Lp(£//4ra, 1) and £5-1 is in the conjugate Lebesgue 

class since (8 — 1)/(1 — 1/p) > — 1 by the datum regarding ($ — a. So we 
have a convolution which, by (6, p. 11), is continuous on (Z7/4w, 1) and hence 
on (it / , 1). 

For the uniform convergence on (Jf/, 1), we have for sufficiently large m: 

*U/4m I pU/Am 

^dt 
nU/im nU/im 

(« - *) ,_7»(0 * < I (« - 0a _ 1 Aft'-1. 
«^ 0 I *J 0 

< — o. «">">•?(£)' 
whether 5 — 1 is positive or negative. 
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Finally, suppose conditions (ii) hold. Then ($ — a + n > 1/p > 0, so 
§ 7(ii) applies; writing ô = /3 — a -{- n > 0, (36) gives 

2~2ar(ô)i?(^) = «* f (u - t)h-ljv
{n\t) dt, 

Jo 

and this is continuous in 0 < u < 1 by the arguments used above. 

9. Conclusion. The theorems of §§4-8 establish the conclusions: 
For the integral equation (12) to have just one solution it is sufficient that 

K > 0, fi — a > —v — \, and that R be integrable on (0, 1). Conditions sufficient 
for the last requirement are given in § 7. 

For the solution to be continuous it is sufficient that R also be continuous on 
[0, 1]. Conditions sufficient for this are given in § 8. 
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