ON A PROBLEM OF ERDÖS AND MAHLER CONCERNING CONTINUED FRACTIONS

JEAN LELIS and DIEGO MARQUES ${ }^{\boxtimes}$

(Received 29 May 2016; accepted 25 June 2016; first published online 19 October 2016)

Abstract

In 1939, Erdös and Mahler ['Some arithmetical properties of the convergents of a continued fraction', J. Lond. Math. Soc. (2) $\mathbf{1 4}$ (1939), 12-18] studied some arithmetical properties of the convergents of a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the direction of this problem.

2010 Mathematics subject classification: primary 11J70; secondary 11J86.
Keywords and phrases: continued fractions, Liouville numbers, linear forms in logarithms.

1. Introduction

A real number ξ is called a Liouville number if, for any positive integer m, there exists a rational number p / q with $q \geq 1$ such that

$$
0<\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{m}}
$$

In 1939, Erdös and Mahler [2] studied some arithmetical properties of the sequence of convergents $\left(A_{n} / B_{n}\right)_{n}$ of the continued fraction of a real number ξ. In particular, they proved that if $P\left(B_{n-1} B_{n} B_{n+1}\right)$ is bounded for infinitely many n (where, as usual, $P(m)$ denotes the largest prime factor of m), then ξ is a Liouville number. Also, they conjectured that if $P\left(A_{n} B_{n}\right)$ is bounded for infinitely many n, then ξ is a Liouville number. (This problem also appeared as [1, Problem 43].) We refer the reader to $[3-6,9]$ for more results on this subject.

In this paper, we solve a particular case of this problem by proving the following theorem.

Theorem 1.1. Let ξ be a real number with sequence of convergents $\left(A_{n} / B_{n}\right)_{n}$. Suppose that $P\left(A_{n} B_{n}\right)$ is bounded for infinitely many different indices $n=n_{1}, n_{2}, \ldots$. If $n_{j+1}-n_{j}=o\left(\log B_{n_{j}}\right)$ for all sufficiently large j, then ξ is a Liouville number.

2. The proof of Theorem 1.1

Let $\left(n_{j}\right)_{j}$ be the sequence such that, for all j, all the prime factors of $A_{n_{j}} B_{n_{j}}$ belong to $\left\{p_{1}, \ldots, p_{k}\right\}$. We claim that there exists a positive constant c depending only on k and the p_{i} such that

$$
\begin{equation*}
\log B_{n_{j+1}} \geq B_{n_{j}}^{c} \tag{2.1}
\end{equation*}
$$

for all sufficiently large j.
Observe that we can prove that $P\left(A_{n} B_{n} A_{n+1} B_{n+1}\right) \rightarrow \infty$ as $n \rightarrow \infty$ by using Ridout's theorem [8] together with the fact that $\left|A_{n} B_{n+1}-A_{n+1} B_{n}\right|=1$ for all n. Consequently, we can suppose that $n_{j+1}>n_{j}+1$ and so $A_{n_{j}} / B_{n_{j}}$ and $A_{n_{j}+1} / B_{n_{j}+1}$ are convergents of the continued fraction of $A_{n_{j+1}} / B_{n_{j+1}}$. In particular,

$$
0<\frac{1}{2 B_{n_{j}} B_{n_{j}+1}}<\left|\frac{A_{n_{j+1}}}{B_{n_{j+1}}}-\frac{A_{n_{j}}}{B_{n_{j}}}\right|<\frac{1}{B_{n_{j}} B_{n_{j}+1}} .
$$

By multiplying by $B_{n_{j}} /\left|A_{n_{j}}\right|$,

$$
0<\left|\frac{A_{n_{j+1}} B_{n_{j}}}{B_{n_{j+1}} A_{n_{j}}}-1\right|<\frac{1}{B_{n_{j}}\left|A_{n_{j}}\right|} .
$$

By hypothesis, we can write

$$
\frac{A_{n_{j+1}} B_{n_{j}}}{B_{n_{j+1}} A_{n_{j}}}=p_{1}^{\beta_{1}^{(j)} \cdots p_{k}^{\beta_{k}^{(j)}}, ., ~}
$$

where $\beta_{i}^{(j)} \in \mathbb{Z}$. Thus,

$$
\begin{equation*}
0<\left|p_{1}^{\beta_{1}^{(j)}} \cdots p_{k}^{\beta_{k}^{(j)}}-1\right|<\frac{1}{B_{n_{j}}\left|A_{n_{j}}\right|} \tag{2.2}
\end{equation*}
$$

Now, we shall use Baker's method for obtaining a lower bound for $\left|p_{1}^{\beta_{1}^{(j)}} \cdots p_{k}^{\beta_{k}^{(j)}}-1\right|$ by means of the following result of Matveev (see [7]).

Lemma 2.1. Let a_{1}, \ldots, a_{m} be nonzero rational numbers and let b_{1}, \ldots, b_{m} be integers such that $a_{1}^{b_{1}} \cdots a_{m}^{b_{m}} \neq 1$. Then

$$
\left|a_{1}^{b_{1}} \cdots a_{m}^{b_{m}}-1\right| \geq(e B)^{-c^{\prime}}
$$

where $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right\}$ and $c^{\prime}=\frac{1}{2} e m^{4.5} 30^{m+3} \prod_{j=1}^{m} \max \left\{1, \log H\left(a_{j}\right)\right\}$ (where, as usual, $H(a / b)=\max \{|a|,|b|\})$.

In order to use this lemma, we take $m=k, a_{i}=p_{i}$ and $b_{i}=\beta_{i}^{(j)}$ for $1 \leq i \leq k$. Note that $H\left(p_{i}\right)=p_{i}$ and so

$$
\begin{equation*}
\left|p_{1}^{\beta_{1}^{(j)}} \cdots p_{k}^{\beta_{k}^{(j)}}-1\right| \geq(e B)^{-c^{\prime}} \tag{2.3}
\end{equation*}
$$

where c^{\prime} is a constant depending only on k and the p_{i}. By combining (2.2) and (2.3),

$$
\begin{equation*}
B>B_{n_{j}+1}^{c}\left|A_{n_{j}}\right|^{c} / e \tag{2.4}
\end{equation*}
$$

where $c=1 / c^{\prime}$. Suppose now that $B=B^{(j)}=\left|\beta_{\ell_{j}}^{(j)}\right|$. Then

$$
\begin{equation*}
B=\left|\beta_{\ell_{j}}^{(j)}\right| \leq v_{p_{\ell_{j}}}\left(A_{n_{j}} B_{n_{j}} A_{n_{j+1}} B_{n_{j+1}}\right) \leq \frac{5}{\log 2} \log B_{n_{j+1}}, \tag{2.5}
\end{equation*}
$$

observing that the p-adic valuation of $m, v_{p}(m)$, has upper bound $\log m / \log 2$ and that $\left|A_{n_{j+1}}\right|<(1+|\xi|) B_{n_{j+1}}$ for all sufficiently large j. By combining (2.4) and (2.5), we arrive at

$$
\log B_{n_{j+1}}>B_{n_{j}+1}^{c} \frac{\mid A_{n_{j}} c^{c} \log 2}{5 e}>B_{n_{j}}^{c}
$$

because $\mid A_{n_{j}}{ }^{c} \log 2 /(5 e)>1$ for all sufficiently large j (since $\left|A_{n_{j}}\right|$ tends to infinity as $j \rightarrow \infty$). In conclusion, we have proved (2.1), as desired.

Let m be a positive integer. In order to prove that ξ is a Liouville number, it suffices to prove the existence of a positive integer r such that $B_{r+1} \geq B_{r}^{m}$ (since $\left.0<\left|\xi-A_{r} / B_{r}\right|<1 /\left(B_{r} B_{r+1}\right)\right)$. Suppose, towards a contradiction, that $B_{r+1}<B_{r}^{m}$ for all positive integers r. In particular, this holds for $r \in\left\{n_{j}, \ldots, n_{j+1}-1\right\}$. Thus,

$$
B_{n_{j+1}}<B_{n_{j+1}-1}^{m}, B_{n_{j+1}-1}<B_{n_{j+1}-2}^{m}, \ldots, B_{n_{j}+1}<B_{n_{j}}^{m} .
$$

By iterating these inequalities, we obtain $B_{n_{j+1}}<B_{n_{j}}^{n_{j+1}-n_{j}}$. By taking the logarithm,

$$
\log B_{n_{j+1}}<m^{n_{j+1}-n_{j}} \log B_{n_{j}} .
$$

Now, we use (2.1) to arrive at $B_{n_{j}}^{c}<m^{n_{j+1}-n_{j}} \log B_{n_{j}}$. After some manipulation,

$$
\log m>\frac{c \log B_{n_{j}}-\log \log B_{n_{j}}}{n_{j+1}-n_{j}}
$$

Since $n_{j+1}-n_{j}=o\left(\log B_{n_{j}}\right)$, the right-hand side above tends to infinity as $j \rightarrow \infty$, which contradicts the fact that m is fixed. In conclusion, we obtain a positive integer r such that $B_{r+1} \geq B_{r}^{m}$ and, in particular, ξ is a Liouville number.

Acknowledgement

The authors are grateful to the referee for the suggestions which helped to improve the quality of this paper.

References

[1] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, New York, 2004).
[2] P. Erdös and K. Mahler, 'Some arithmetical properties of the convergents of a continued fraction', J. Lond. Math. Soc. (2) 14 (1939), 12-18.
[3] A. S. Fraenkel, 'On a theorem of D. Ridout in the theory of Diophantine approximations', Trans. Amer. Math. Soc. 105 (1962), 84-101.
[4] A. S. Fraenkel, 'Transcendental numbers and a conjecture of Erdös and Mahler', J. Lond. Math. Soc. (2) 39 (1964), 405-416.
[5] K. Mahler, 'Ein Analog zu einem Schneiderschen Satz, I', Proc. Kon. Ned. Akad. Wetensch. 39 (1936), 633-640.
[6] K. Mahler, 'Ein Analog zu einem Schneiderschen Satz, II’, Proc. Kon. Ned. Akad. Wetensch. 39 (1936), 729-737.
[7] E. M. Matveev, 'An explict lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II', Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180; English transl. Izv. Math. 64 (2000), 1217-1269.
[8] D. Ridout, 'Rational approximations to algebraic numbers', Mathematika 4 (1957), 125-131.
[9] T. N. Shorey, 'Divisors of convergents of a continued fraction', J. Number Theory 17 (1983), 127-133.

JEAN LELIS, Departamento de Matemática,
Universidade de Brasília, Brasília, 70910-900, Brazil
e-mail: jeancarlos@mat.unb.br
DIEGO MARQUES, Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil
e-mail: diego@mat.unb.br

