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Abstract

In 1939, Erdös and Mahler [‘Some arithmetical properties of the convergents of a continued fraction’,
J. Lond. Math. Soc. (2) 14 (1939), 12–18] studied some arithmetical properties of the convergents of
a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville
numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the
direction of this problem.
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1. Introduction

A real number ξ is called a Liouville number if, for any positive integer m, there exists
a rational number p/q with q ≥ 1 such that

0 <
∣∣∣∣∣ξ − p

q

∣∣∣∣∣ < 1
qm .

In 1939, Erdös and Mahler [2] studied some arithmetical properties of the sequence
of convergents (An/Bn)n of the continued fraction of a real number ξ. In particular,
they proved that if P(Bn−1BnBn+1) is bounded for infinitely many n (where, as usual,
P(m) denotes the largest prime factor of m), then ξ is a Liouville number. Also, they
conjectured that if P(AnBn) is bounded for infinitely many n, then ξ is a Liouville
number. (This problem also appeared as [1, Problem 43].) We refer the reader
to [3–6, 9] for more results on this subject.

In this paper, we solve a particular case of this problem by proving the following
theorem.

Theorem 1.1. Let ξ be a real number with sequence of convergents (An/Bn)n.
Suppose that P(AnBn) is bounded for infinitely many different indices n = n1, n2, . . . . If
n j+1 − n j = o(log Bn j ) for all sufficiently large j, then ξ is a Liouville number.
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2. The proof of Theorem 1.1

Let (n j) j be the sequence such that, for all j, all the prime factors of An j Bn j belong
to {p1, . . . , pk}. We claim that there exists a positive constant c depending only on k
and the pi such that

log Bn j+1 ≥ Bc
n j

(2.1)

for all sufficiently large j.
Observe that we can prove that P(AnBnAn+1Bn+1)→∞ as n→∞ by using Ridout’s

theorem [8] together with the fact that |AnBn+1 − An+1Bn| = 1 for all n. Consequently,
we can suppose that n j+1 > n j + 1 and so An j/Bn j and An j+1/Bn j+1 are convergents of
the continued fraction of An j+1/Bn j+1 . In particular,

0 <
1

2Bn j Bn j+1
<

∣∣∣∣∣An j+1

Bn j+1

−
An j

Bn j

∣∣∣∣∣ < 1
Bn j Bn j+1

.

By multiplying by Bn j/|An j |,

0 <
∣∣∣∣∣An j+1 Bn j

Bn j+1 An j

− 1
∣∣∣∣∣ < 1

Bn j |An j |
.

By hypothesis, we can write

An j+1 Bn j

Bn j+1 An j

= p
β

( j)
1

1 · · · p
β

( j)
k

k ,

where β( j)
i ∈ Z. Thus,

0 < |pβ
( j)
1

1 · · · p
β

( j)
k

k − 1| <
1

Bn j |An j |
. (2.2)

Now, we shall use Baker’s method for obtaining a lower bound for |pβ
( j)
1

1 · · · p
β

( j)
k

k − 1|
by means of the following result of Matveev (see [7]).

Lemma 2.1. Let a1, . . . , am be nonzero rational numbers and let b1, . . . , bm be integers
such that ab1

1 · · · a
bm
m , 1. Then

|ab1
1 · · · a

bm
m − 1| ≥ (eB)−c′ ,

where B = max{|b1|, . . . , |bm|} and c′ = 1
2 em4.530m+3 ∏m

j=1 max{1, log H(a j)} (where, as
usual, H(a/b) = max{|a|, |b|}).

In order to use this lemma, we take m = k, ai = pi and bi = β
( j)
i for 1 ≤ i ≤ k. Note

that H(pi) = pi and so

|p
β

( j)
1

1 · · · p
β

( j)
k

k − 1| ≥ (eB)−c′ , (2.3)

where c′ is a constant depending only on k and the pi. By combining (2.2) and (2.3),

B > Bc
n j+1|An j |

c/e, (2.4)
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where c = 1/c′. Suppose now that B = B( j) = |β
( j)
` j
|. Then

B = |β
( j)
` j
| ≤ νp` j

(An j Bn j An j+1 Bn j+1 ) ≤
5

log 2
log Bn j+1 , (2.5)

observing that the p-adic valuation of m, νp(m), has upper bound log m/log 2 and that
|An j+1 | < (1 + |ξ|)Bn j+1 for all sufficiently large j. By combining (2.4) and (2.5), we
arrive at

log Bn j+1 > Bc
n j+1

|An j |
c log 2
5e

> Bc
n j
,

because |An j |
c log 2/(5e) > 1 for all sufficiently large j (since |An j | tends to infinity as

j→∞). In conclusion, we have proved (2.1), as desired.
Let m be a positive integer. In order to prove that ξ is a Liouville number, it

suffices to prove the existence of a positive integer r such that Br+1 ≥ Bm
r (since

0 < |ξ − Ar/Br | < 1/(BrBr+1)). Suppose, towards a contradiction, that Br+1 < Bm
r for

all positive integers r. In particular, this holds for r ∈ {n j, . . . , n j+1 − 1}. Thus,

Bn j+1 < Bm
n j+1−1, Bn j+1−1 < Bm

n j+1−2, . . . , Bn j+1 < Bm
n j
.

By iterating these inequalities, we obtain Bn j+1 < Bmn j+1−n j

n j
. By taking the logarithm,

log Bn j+1 < mn j+1−n j log Bn j .

Now, we use (2.1) to arrive at Bc
n j
< mn j+1−n j log Bn j . After some manipulation,

log m >
c log Bn j − log log Bn j

n j+1 − n j
.

Since n j+1 − n j = o(log Bn j ), the right-hand side above tends to infinity as j→ ∞,
which contradicts the fact that m is fixed. In conclusion, we obtain a positive integer r
such that Br+1 ≥ Bm

r and, in particular, ξ is a Liouville number.
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