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Abstract

The Palaeo-Mesozoic geodynamic evolution of the Tangjia–Sumdo accretionary complex belt,
which separates the North and South Lhasa Terrane, remains controversial. Moreover, the lack
of geological records restricts the understanding of the evolution of the Sumdo Palaeo-Tethys
Ocean from the middle Permian until the middle Triassic. Here we present zircon U–Pb geo-
chronology, whole-rock geochemistry and Sr–Nd–Hf isotopic compositions of the Yeqing gab-
bro. Zircon U–Pb geochronology yields ages from 254 ± 1 to 249 ± 1 Ma. In situ Hf isotopic
analyses yield ϵHf(t) values of−0.2 toþ6.3. These samples have high TiO2 (3.69 wt %) and P2O5

(0.78 wt %) contents, with typical patterns like ocean island basalt (OIB). Besides, they are clas-
sified as high-Nb basalts (HNBs) based on the high content of Nb (45.3–113.5 ppm). Whole-
rock Sr–Nd isotopic compositions are similar to OIB, with initial 87Sr/86Sr of 0.7047–0.7054,
143Nd/144Nd of 0.512526–0.512647 and ϵNd(t) of 0.3–2.7. These signatures suggest that the
Yeqing gabbro is mainly derived from low-degree melting of the garnet lherzolite mantle.
Based on field observations of HNBs intruding into the continental margin and their geochemi-
cal characteristics, we infer that the Yeqing gabbro was generated in a subduction environment.
Combined with the regional geology of the subduction environment and the evolution of oce-
anic islands in the Sumdo Palaeo-Tethys Ocean, we propose that the Yeqing gabbro may
represent a product of the asthenosphere upwelling through a slab window produced by sub-
duction of seismic ridge in the Sumdo Palaeo-Tethys Ocean, called plume – subduction-zone
interaction, during the late Permian to early Triassic.

1. Introduction

The Palaeo-Tethys Ocean was a large ancient ocean located between the supercontinents of
Gondwana and Laurasia (Şengor, 1987; Metcalfe, 2013). A series of banded terranes
(Qiangtang, Lhasa, Himalaya, Cimmerides, Sibumasu, etc.) derived from the north edge of
Gondwana drifted northward and were accreted into Laurasia along with the closure of the
Palaeo-Tethys Ocean (Yin & Harrison, 2000; Dilek & Furnes, 2011; Metcalfe, 2013), forming
a huge orogenic belt, known as the ‘Eastern Tethys System’, in the northern and southeast edge
of the Tibetan Plateau and the central orogenic belt between North China and the Yangtze (Xu
et al. 2015 and references therein). The Palaeo-Tethys Ocean in the Eastern Tethys System,
which probably opened in the Middle Cambrian and continued to grow throughout the
Palaeozoic and closed in the later Triassic, is mainly represented by the Jinshajiang and
Longmu Co – Shuanghu suture zone in the northern Tibetan Plateau, and the Changning–
Menglian and Ailaoshan suture zone of the Sanjiang Tethys realm in the eastern margin of
the Tibetan Plateau (Fig. 1a ; Yin & Harrison, 2000; Li et al. 2006, 2008; Zhai et al. 2010,
2013, 2016; Metcalfe, 2013; Fan et al. 2014, 2015, 2017; M Wang et al. 2014, 2019; Zhang
et al. 2017; Xie et al. 2017a, b).

The discovery of the late Palaeozoic Sumdo high/ultra-high-pressure (HP/UHP) metamor-
phic belt in Lhasa terrane reveals that there are records of an oceanic subduction zone, which
may represent the southernmost branch of the Palaeo-Tethys Ocean (Fig. 1a; Yang et al. 2006,
2009; Liu et al. 2009; Xu et al. 2015). The fact that Sumdo HP/UHPmetamorphic belt is located
between Indus – Yarlung Zangbo (Neo-Tethys Ocean) and Bangong Co – Nujiang (Meso-
Tethys Ocean) Suture Zone is incongruent with the common view that the Tethys Ocean
Suture Zone becomes gradually younger from north to south (Xu et al. 2015). In recent years,
further evidence for the evolution of the Sumdo Palaeo-Tethys Ocean (SPTO) has been estab-
lished in Sumdo and adjacent regions, with examples such as ophiolites (Fig. 1b; Chen et al.
2010; Duan et al. 2019; Wang et al. 2021), oceanic islands (Fig. 1b; B Wang et al. 2019;
Zhong et al. 2021; Duan et al. 2022), eclogite and blueschist (Fig. 1b ; Yang et al. 2006,
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2009; Liu et al. 2009), arc magmatism (Fig. 1b ; Geng et al. 2009;
Zhu et al. 2010; B Wang et al. 2020, 2022; C Wang, 2022) and
flysch-like sedimentary strata (Fig. 1b ; Xie et al. 2019, 2021).
Thus, this belt is also called the Tangjia–Sumdo accretionary com-
plex belt (TSACB) (Fig. 1a; B Wang et al. 2020, 2022; Xie et al.
2021). Previous research suggests that the SPTO may have opened
before the early Carboniferous and subducted initially before the
early Permian, then soon after the late Triassic at latest (Cheng
et al. 2015; Duan et al. 2019, 2022; B Wang et al. 2020, 2021,

2022; Liu et al. 2022). Based on the study of eclogite and arc
magma, we know that the SPTO subducted during the early–
middle Permian and middle–late Triassic periods (Cheng et al.
2012, 2015; Zhang et al. 2018a; B Wang et al. 2020, 2022; Song
et al. 2022; CWang et al. 2022). However, many aspects of the sub-
duction evolution of the SPTO remain unclear, especially during
the late Permian to early Triassic owing to gaps in the geological
record (Zhu et al. 2010; Cheng et al. 2012, 2015; Zhang et al. 2018b;
B Wang et al. 2020, 2022; Li et al. 2022; C Wang et al. 2022).

Fig. 1. (Colour online) (a) Tectonic framework of the Tibetan Plateau (modified after Li et al. 2006 and Zhu et al. 2010). (b) Geological sketch map of the Tanga–Sumdo area;
published age data are after Chen et al. (2009), Yang et al. (2009), Cheng et al. (2012, 2014), Weller et al. (2016), Cao et al. (2017), Duan et al. (2019, 2022), B Wang et al. (2019) and
Song et al. (2022).
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The Yeqing gabbro is discovered near the north edge of the
TSACB, whose zircon U–Pb ages vary from 254 ± 1 to 249 ± 1
Ma in this study, coincident with the active period of the SPTO.
Here, we present zircon U–Pb geochronology, whole-rock geo-
chemistry, as well as zircon Hf and whole-rock Sr–Nd isotopic
data, which are significant in resolving the diagenetic age and
petrogenesis of the Yeqing gabbro.We also discuss the tectonic set-
ting of the intrusion and draw implications regarding the subduc-
tion evolution of the SPTO during the late Permian to early
Triassic.

2. Geological background

The Tibetan Plateau is located in the eastern part of the Tethys tec-
tonic domain. The closure of the Tethys oceans created four major
suture zones associated with the Tibetan Plateau (Fig. 1a;Yin &
Harrison, 2000; Zhu et al. 2010; Torsvik & Cocks, 2013; Zhai
et al. 2016). These suture zones divide the Tibetan Plateau, from
north to south, into the Songpan–Ganzi, Northern Qiangtang,
Southern Qiangtang, Lhasa and Himalayan terranes (Li et al.
2006, 2008; Zhai et al. 2010, 2013; Fan et al. 2014, 2015, 2017;
M Wang et al. 2014, 2019; Xie et al. 2017a, b; Zhang et al. 2017;
Hu et al. 2018, 2019). The Lhasa terrane is further divided into
North and South Lhasa Terrane by the SPTO, marked by the
TSACB (Yang et al. 2009).

The TSACB, correlated spatially with the Luobadui–Milashan
Fault (Fig. 1a; Zhu et al. 2010), is dominated by scattered fragments
of the SPTO remnants (Fig. 1b). In the study area, the Nuoco
Formation, formed in a continental margin environment, mainly
consists of sandstone or metasedimentary rock on the north of the
TSACB (Zhu et al. 2013). The strata exposed in the TSACB is
mainly Sumdo Formation, which is a set of low-grade-metamor-
phosed terrigenous clastic sandstones and mudstones formed in
an initial fore-arc basin environment (Xie et al. 2019, 2021).
The Luobadui Formation exposes a little in the study area and is
mainly composed of limestone, terrigenous sediments and arc-type
volcanic rocks (Geng et al. 2009; Zhu et al. 2010; C Wang
et al. 2022).

The SPTO remnants are abundant in the Sumdo Formation as
slices, including Permian–Triassic eclogites (Li et al. 2009; Yang
et al. 2009; Zeng et al. 2009), late Carboniferous – middle
Triassic ophiolites (Chen et al. 2010; Duan et al. 2019; Wang
et al. 2021) and early Carboniferous – middle Permian oceanic
islands (B Wang et al. 2019; Zhong et al. 2021; Duan et al.
2022). Previous studies have suggested that there are at least two
types of eclogites, with ages of the metamorphic peak in the middle
Permian (274–261Ma) andmiddle–late Triassic (238–227Ma) (Li
et al. 2009; Yang et al. 2009; Zeng et al. 2009; Chen et al., 2010;
Cheng et al. 2012, 2015; Weller et al. 2016; Cao et al. 2017;
Zhang et al. 2018a, b). There is also plenty of Permian arc magma-
tism found in the south edge of the North Lhasa Terrane (Fig. 1a;
Geng et al. 2009; Zhu et al. 2010) and a part in the TSACB (Fig. 1b,
278–262 Ma; B Wang et al. 2020, 2022; Mai et al. 2021; Li et al.
2022; C Wang et al. 2022). In addition, the middle–late Triassic
(230–200 Ma) granite with typical arc magmatism characteristics
may be related to the northward subduction of the SPTO (Li et al.
2020; Song et al. 2022).

3. Field observations and petrology

The study area is located between Tangjia and Sumdo (Fig. 1b).
The Yeqing gabbro intrusions expose as near east–west-trending
dike in the Nuoco Formation (Fig. 1b). The larger intrusion is
c. 8 km long and 50 m thick, while the smaller intrusion is
c. 3 km long and 20 m thick. The host rocks of the Yeqing gabbro
contains quartzite and sandstone of the Nuoco Formation (Fig. 2a).
We can observe the obvious chilled margin between gabbro and
quartzite (Fig. 2b).

The gabbro samples are fine- to medium-grained and consist
mainly of pyroxene and plagioclase (Fig. 2b). Petrographic obser-
vations under the microscope reveal that the gabbro shows crystal-
line texture, consisting of dominant mineralogy of pyroxene
(35 %), plagioclase (60 %) and magnetite (<5 %), with slight meta-
morphism (Fig. 2c, d). Some pyroxene has been replaced by chlo-
rite or hornblende, and the plagioclase is weakly altered to sericite,

Fig. 2. (Colour online) Photographs of Yeqing
gabbro. (a) Macro outcrop photo of Yeqing gab-
bro intruding into Sumdo Formation. (b) Close-
up photo of the boundary between Yeqing gab-
bro and Sumdo Formation. (c, d) Micrograph of
Yeqing gabbro, Plagioclase is replaced by seri-
cite, and pyroxene is replaced by hornblende,
in part of our samples. Pl – plagioclase; Px –
pyroxene; hor – hornblende; Sre – sericite; Mag
– magnetite.
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which shows the sericite microcrystalline aggregates under a
microscope with orthogonal polarized light (Fig. 2d).

4. Analytical methods

4.a. Whole-rock geochemistry

Whole-rock geochemical analysis was performed at the experi-
mental centre of the Academy of Sciences, China University of
Geosciences, Beijing, China. Major-element analysis was per-
formed in the inductively coupled plasma – optical emission spec-
troscopy (ICP-OES) laboratory using an X-ray fluorescence
spectrometer. The precision is better than 1 % for all elements.
Trace-element analysis was performed using an Agilent 7500a
ICP –mass spectrometry (ICP-MS) instrument. During the analy-
sis, standard samples AGV-2, W2 and BHOV from the United
States Geological Survey and rock samples R-1 and R-3 from
the China Geological Testing Center were used tomonitor the ana-
lytical precision, which is better than 5 % for most elements.
Further details of the experimental method are presented by
Zhai et al. (2013).

4.b. Zircon U–Pb geochronology

Zircon grains were separated at the premises of the Yuheng
Mineral Technology Service, Langfang, China, by conventional
heavy liquid and magnetic techniques. Cathodoluminescence
(CL) images were taken at the Institute of Geology, Chinese
Academy of Geological Sciences, Beijing, China. U–Pb isotopic
and trace-element analyses of zircon were carried out by laser-abla-
tion – ICP-MS (LA-ICP-MS) at the Key Laboratory of Mineral
Resources Evaluation in Northeast Asia, Ministry of Natural
Resources, Jilin University, Changchun, China. The laser beam
spot diameter was 32 μm, and helium was used as the carrier
gas. Details of the procedure are reported by Liu et al. (2010).
Fractionation correction of isotopic ratios was performed using
zircon 91500 as the external standard. NIST SRM 610 was used
as the external standard for correction of elemental abundances,
and 29Si was used as the internal standard. Data were processed
using Glitter software (version 4.4; Griffin et al. 2008). Details of
specific experimental data reduction techniques are given by
Chang et al. (2006). The software package Isoplot 4.15 was used
to calculate weighted-mean U–Pb ages of the samples and to gen-
erate Concordia diagrams (Ludwig, 2003).

4.c. Zircon Hf isotopes

ZirconHf isotopic analyses were conducted at the facility of Beijing
Createch Testing Technology, Beijing, China. Hf isotopic analyses
were performed on the same spots or in the same age domains (as
identified by CL images) as used for U–Pb dating. An NWR-213
(nm) laser ablation microprobe coupled to a Neptune Plus multi-
collector (MC)-ICP-MS instrument was used for isotopic analysis.
The laser beam spot was 40 μm in diameter, with an energy density
of 10–11 J cm−2 and a frequency of 10 Hz. The ablatedmaterial was
carried to the mass spectrometer by high-purity helium gas. Zircon
GJ-1 was used as the reference standard during analyses, whose
weightedmean 176Hf/177Hf ratio (0.282000 ± 32; 2σ; n= 17) is sim-
ilar to the commonly accepted weighted mean 176Hf/177Hf ratio of
0.282013 ± 19 (2σ) reported for in situ analysis by Elhlou et al.
(2006). Technical procedures and instrument operational param-
eters are described by Hu et al. (2012). Data reduction methods
followed those presented by Bouvier et al. (2008).

4.d. Whole-rock Sr–Nd isotopic analysis

Whole-rock Sr–Nd isotopic analyses were carried out using a
Thermo Fisher Scientific Neptune Plus MC-ICP-MS instrument
at the facility of Beijing Createch Testing Technology. 87Sr/86Sr
ratios were corrected for instrumental mass fractionation using
an exponential fractionation law and assuming 88Sr/
86Sr= 8.375209. 143Nd/144Nd ratios were corrected for instrumen-
tal mass fractionation using an exponential fractionation law and
assuming 146Nd/144Nd= 0.7219. The Sr isotope international stan-
dard NBS 987 was repeatedly tested tomonitor accuracy, yielding a
mean 87Sr/86Sr value of 0.710248 ± 9 (2SD, n= 11). Stability assess-
ment for 143Nd/144Nd was conducted with the in-house standard
GSB-Nd, yielding a value of 0.512195 ± 6 (2SD, n= 12).
Detailed analytical procedures are given by Hu et al. (2018).

5. Results

5.a. U–Pb zircon geochronology

LA-ICP-MS zircon U–Pb data and zircon trace element of the
Yeqing gabbro are presented in Supplementary Tables S1 and
S2, respectively. Zircon grains separated from gabbro samples
(ST30, ST31, ST38 and ST39) are semi-transparent and columnar
to granular. The lengths of the zircon crystals are 100–250 μm,with
aspect ratios of 1:1–3:1. Some zircon grains exhibit oscillatory zon-
ing in CL imaging (Fig. 3). The range of Th and U contents is rel-
atively wide (Th = 36–1053 ppm, U= 37–450 ppm) and the Th/U
ratios are quite high (0.56–2.57), which is consistent with the mag-
matic origin (Hoskin & Schaltegger, 2003). Positive Ce and nega-
tive Eu anomalies are observed in chondrite-normalized rare earth
element (REE) patterns of zircon grains from these sam-
ples (Fig. 3).

U–Pb data from all four samples are concordant (Fig. 4). The
data yield weighted-mean ages of 249 ± 1 Ma for ST30 (n= 25,
MSWD= 0.34, 1σ), 251 ± 1 Ma for ST31 (n= 25, MSWD= 0.75,
1σ), 252 ± 1 Ma for ST39 (n= 28, MSWD= 0.51, 1σ) and
254 ± 1 Ma for ST38 (n= 23, MSWD= 0.92, 1σ).

5.b. Whole-rock geochemistry

Whole-rock major- and trace-element geochemical data are listed
in Supplementary Table S3. These samples contain variational con-
tent of SiO2 (41.91–50.12 wt %) and MgO (4.15–8.56 wt %). The
contents of Fe2O3

T (Fe2O3 total) and Al2O3 are relatively concen-
trated, with means of 13.34 wt % and 15.39 wt % respectively. In
particular, the contents of TiO2, P2O5 and (Na2OþK2O) are com-
paratively high, with means of 3.69 wt %, 0.78 wt % and 4.36 wt %
respectively. These samples plot mostly in the alkaline basalt field
in the SiO2 vs Nb/Y diagram (Fig. 5a).

The REE contents of these samples are relatively higher
(168.54–559.62 ppm) than mid-ocean ridge basalt (MORB)
(39.11 ppm; Sun & McDonough, 1989), with light REE
(LREE) enrichment (LaN/YbN = 11.51–27.10) in chondrite-nor-
malized REE patterns (Fig. 6a). Positive Nb and Ta anomalies
and negative Th, Zr and Hf anomalies are observed in primi-
tive-mantle-normalized trace-element spider diagrams, which
is similar to the typical OIB and the NEBs and HNBs from
Baja (California), Nicaragua, Renso and Duobuzha (Tibet),
and different from those from Tuotuohe and Gerze (Tibet)
(Fig. 6b, d). The higher Nb contents (45.3–113.5 ppm) of the
Yeqing gabbro are similar to those of Nb-enrichment basalts
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(NEBs; 20 > Nb > 5 ppm) and high-Nb basalts (HNBs;
Nb > 20 ppm) which are enriched in LILEs, LREEs and
HFSEs and have weakly negative or positive primitive-
mantle-normalized Nb and Ta anomalies (Castillo et al. 2007;

Hastie et al. 2011); these samples plot in the NEBs and HNBs
field in the Nb/La vs MgO plot (Fig. 5b). In addition, the
Yeqing gabbro shows characteristics of intraplate alkaline
basalts in the tectonic discrimination diagrams (Fig. 5c, d).

Fig. 3. (Colour online) Cathodoluminescence (CL) images and chondrite-normalized REE patterns diagramof representative zircon grains from Yeqing gabbro. The yellow circle is
the location of U–Pb isotope analysis, and the red is Lu–Hf isotope analysis. Values of chondrite are after Sun and McDonough (1989).

Fig. 4. (Colour online) U–Pb zircon Concordia
of representative zircon grains from Yeqing gab-
bro. MSWD =mean squared weighted deviation.
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5.c. Zircon Hf and whole-rock Sr–Nd isotopic analysis

Zircon Hf and whole-rock Sr–Nd isotope data are listed in
Supplementary Tables S4 and S5, respectively. The Hf isotope
analyses of the zircon grains from the gabbro samples show low
176Lu/177Hf ratios of 0.0003–0.0021 and 176Hf/177Hf ratios of
0.282608–0.282794. Calculated small negative or positive ϵHf(t)
values range from −0.2 to þ6.3. Initial Sr isotope ratios and
ϵNd(t) values were calculated using ages of c. 254 Ma and
c. 251 Ma reported in this study. These samples have a narrow
range of initial (87Sr/86Sr) ratios of 0.7047–0.7054, 87Sr/86Sr ratios
of 0.7047–0.7054 and 143Nd/144Nd ratios of 0.512526–0.512647.
Calculated small positive ϵNd(t) values range from 0.3 to 2.7.

6. Discussion

6.a. Petrogenesis

Low loss-on-ignition (LOI) values of 1.14–1.77 wt % and meta-
morphic minerals under the microscope indicate that the samples

have undergone low-level metamorphism or alteration. This proc-
ess may have modified the contents of mobile elements (e.g. Na, K,
Rb, Ba and Sr), whereas the REE and high-field-strength elements
(HFSE; e.g. Th, Zr, Hf, Nb, Ta, Ti and Y) should preserve primary
magma compositions (Barnes et al. 1985; Jochum et al. 1991). In
fact, most mobile elements and HFSE display good correlations
with MgO (Fig. 8, further below), indicating there is almost no sig-
nificant disturbance by metamorphism or alteration on most
elements.

The Yeqing gabbro exhibits clear positive Nb and Ta and neg-
ative Th, U, Zr and Hf anomalies, with significant differences com-
pared with continental crust (Rudnick & Gao, 2003; Niu, 2009).
The Th/Ta ratios of these samples are 0.1–1.29, similar to those
of volcanic rocks derived from a primitive mantle source (Th/
Ta= 2.3), and much lower than that of the upper crust (Th/
Ta> 10) (Thompson et al. 1984; Condie, 1993). The (Th/Ta)PM
(~0.24) and (La/Nb)PM (~0.85) ratios of these samples are both less
than 1, indicating that the crustal assimilation is negligible (Peng
et al. 1994). Furthermore, these samples plot in the oceanic basalts

Fig. 5. (Colour online) (a) SiO2 vs Nb/Y (Winchester & Floyd, 1977) plot. (b) Nb/La vs MgO (Kepezhinskas et al. 1996) plot. (c) Nb*2 vs Zr/4 vs Y figure (Meschede, 1986). Within-plate
alkali basalts – AI, AII within-plate tholeiites – AII, C; plume-type MORB- B; N-type MORB- D; volcanic arc basalts – C, D. (d) TiO2 vs MnO2*10 vs P2O5*10 figure (Mullen, 1983). MORB –
mid-ocean ridge basalt; IAT – island arc tholeiite; CAB – calc-alkaline basalt; OIT – ocean island tholeiite; OIA – ocean island alkaline. Data of the NEBs, HNBs from Baja, Nicaragua,
Renso, Dubuzha, Tuotuohe and Gerze are after Storey et al. (1989), Luhr et al. (1995), Benoit et al. (2002), Wang et al. (2007), Gazel et al. (2011), Li et al. (2016) and Hao et al. (2018).
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field without the trend of crustal assimilation in the (Th/Nb)PM vs
(La/Nb)PM diagram (Fig. 7).

The Mg# values (=100 × Mg2þ/(Mg2þ þ Fe2þ)) (43.8–61.1)
and the Cr (2.9–253.9 ppm) and Ni (2.2–81.9 ppm) contents of
the Yeqing gabbro are lower than those of primitive mantle
(Mg#= 68–76, Cr= 300–500 ppm, Ni= 300–400 ppm), indicating
that they may have undergone fractional crystallization of olivine,
pyroxene and chromite (Wilson, 1989; Jung & Masberg, 1998). In
the process of fractional crystallization, Ni preferentially integrates
into the olivine phase, and Cr preferentially integrates into the

pyroxene phase (Wilson, 1989; Rollinson, 1993). The strongly pos-
itive relationships between FeOT, Ni and MgO suggest that the
magma underwent obvious fractional crystallization of olivine
(Fig. 8a, h). In addition, the higher content and weak positive rela-
tionship withMgO of Cr element illustrate that there is a little or no
fractional crystallization of pyroxene (Fig. 8g). The negative rela-
tionships between Sr, Na2O, Al2O3 and MgO indicate that these
samples underwent almost no fractional crystallization of plagio-
clase (Fig. 8b, c, i; Fodor & Vetter, 1984; Baker et al. 1997), con-
sistent with the absence of Eu anomaly in the chondrite-
normalized REE patterns (Fig. 6a).

As presented above, the Yeqing gabbro is classified as HNBs
with clear LREE enrichment and high Nb content (45.3–
113.5 ppm). Two possible mantle sources have been generally pro-
posed to generate HNBs, namely (1) OIB-type mantle source with
mixing depleted normal-MORB (N-MORB) type components
(Reagan & Gill, 1989; Storey et al. 1989; Luhr et al. 1995;
Castillo et al. 2007; Castillo, 2008; Li et al. 2016) and (2) a mantle
wedge metasomatized by slab melt (Defant et al. 1992;
Kepezhinskas et al. 1996; Sajona et al. 1996; Wang et al. 2007;
Hastie et al. 2011; Xu et al. 2017; Hao et al. 2018). In REE patterns
and trace-element spider diagrams, the NEBs/HNBs derived from
OIB-type mantle source withmixing depleted N-MORB type com-
ponents show obvious LREE enrichment and positive Nb and Ta
anomalies reported in Baja (California), Nicaragua, Renso and
Duobuzha (Tibet), called a-type NEBs/HNBs in the following dis-
cussion (Fig. 6a, b). In contrast, the NEBs/HNBs derived from
mantle wedge with mixing slab melt show an almost flat curve
and negative Nb and Ta anomalies reported in Tuotuohe and
Gerze (Tibet), called b-type NEBs/HNBs (Fig. 6c, d).

Fig. 6. (Colour online) Chondrite-normalized REE patterns and primitive-mantle-normalized spider diagrams. Values of chondrite, primitive mantle, OIB and E-MORB are after
Sun and McDonough (1989).

Fig. 7. (Colour online) (La/Nb)PM vs (Th/Nb)PM plot (Neal et al. 2002). Middle crust and
lower crust data are after Rudnick and Gao (2003). The ‘most oceanic basalts’ data are
after Neal et al. (2002 and references therein).
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The HNBs that originated from a mantle wedge source meta-
somatized by slab melt still display some arc geochemical signa-
tures, such as negative Nb–Ta anomalies and enrichment of Th
(Fig. 6d; Kepezhinskas et al. 1996; Sajona et al. 1996; Wang et al.
2007; Hao et al. 2018). The Yeqing gabbro samples actually exhibit
clearly positive Nb–Ta anomalies and depletion of Th (Fig. 6b, d).
In the REE patterns and trace-element spider diagrams, the Yeqing

gabbro shows a large slope like the OIB and a-type NEBs/HNBs, as
distinct from the b-type NEBs/HNBs (Fig. 6b, d). In the Th/Yb vs
Nb/Yb program (Fig. 9a), the gabbro samples plot in the OIB array
like the a-type NEBs/HNBs, while the b-type NEBs/HNBs plot in
the OIB to enriched MORB (E-MORB) array with a tendency to
convert to continental arc, indicating that the magma of Yeqing
gabbro generated without any addition of subduction fluids and

Fig. 8 (Colour online) Harker variation diagrams for the Yeqing gabbro. The red arrows represent variation trend of part of major (wt %) and trace (ppm) elements towards the
increase of MgO (wt %).
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melts. In the TiO2/Yb vs Nb/Yb diagram (Fig. 9b), these samples
are plotted as OIBs (alkaline) like the a-type NEBs/HNBs, while the
b-type NEBs/HNBs show characteristics of shallow melting, indi-
cating that the Yeqing gabbro may be the product of deep melting
where garnet is stable. In addition, the Sr and Nd isotopic compo-
sitions of the Yeqing gabbro and Sumdo eclogite differ greatly
(Fig. 9d), while the metasomatism of the mantle wedge by slab-
derived melt would require the formation of Nb-rich magma with
Sr and Nd isotopic characteristics similar to oceanic slab (Castillo
et al. 2007). Above all, the Yeqing gabbro is notably distinct from
the NEBs and HNBs from mantle wedge metasomatized by slab
melt with negligible characteristics of arc, precluding the possibil-
ity of a mantle wedge source metasomatized by slab melt.

Compared to normal arc basalts, the higher TiO2 (2.38–5.37 wt
%), P2O5 (0.36–1.42 wt %), Nb (45.3–113.5 ppm) and Nb/Yb
(14.6–38.1) suggest a deep mantle origin for the Yeqing gabbro.
These samples exhibit LREE-enriched chondrite-normalized
REE patterns and high (La/Yb)PM (11.51–27.12) and (Ce/Yb)PM
(9.91–21.87) ratios, similar to those of basalts derived from garnet
lherzolite (Hart & Dunn, 1993; Hauri et al. 1994). These samples
also plot in the garnet lherzolite field with a low degree of partial

melting in the La/Sm vs Sm/Yb plot near the a-type NEBs/HNBs
and far from b-type NEBs/HNBs (Fig. 9c; Aldanmaz et al. 2000),
indicating that the magma may be derived from a garnet-stable
region (>85 km; Robinson & Wood, 1998) with lesser addition
of N-MORB components, where it is generally considered to gen-
erate OIB (Niu, 2009). However, according to mantle hetero-
geneity, the regional evolution and compotation of the study
area must be taken into account when considering a ‘true’ OIB
or the depleted and enriched mantle model (Hastie et al. 2011).
There are several pieces of evidence about oceanic islands of the
SPTO found in the TSACB, indicating that a plume had indeed
existed in the SPTO (B Wang et al. 2019; Zhong et al. 2021;
Duan et al. 2022). Consequently, there exists a true enriched
OIB mantle beneath the SPTO crust as the material source of
the Yeqing gabbro.

In addition, the Yeqing gabbro has elevated FeOT (11.54–
14.72 wt %) and TiO2 (2.38–5.37 wt %) like the Fe–Ti basalts
which are defined by >12 wt % FeOT and >2 wt % TiO2

(Sinton et al. 1983). Most of the Fe–Ti basalts show MORB affin-
ity, such as lower concentrations of MgO, CaO and Al2O3. rather
than N-MORB (Hollis et al. 2012). The gabbro in this study has a

Fig. 9 (Colour online) (a) Th/Yb vs Nb/Yb plot and (b) TiO2/Yb vs Nb/Yb plot (Pearce, 2014). (c) La/Sm vs Sm/Yb plot. Mantle array (heavy line) defined by depleted MORB mantle
(DMM; McKenzie & O’Nions, 1991) and primitive mantle (PM; Sun & McDonough, 1989); Melting curves for spinel lherzolite and garnet peridotite with both DMM and PM compo-
sitions are after Aldanmaz et al. (2000). Numbers along lines represent the degree of partial melting. (d) ϵNd(t) vs (87Sr/86Sr)i plot. Mantle arrays are after Zindler and Hart (1986).
Bulk Earth is after Depaolo (1988). OIB is after Wilson (1989). The date of Sumdo eclogite is from Li et al. (2009). Dates of Halberstadt, Gerze NEBs and HNBs are after Hastie et al.
(2011) and Hao et al. (2018).
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slightly lower MgO (average of 6.06 wt %) and CaO (average
of 10.89 wt %) than N-MORB (MgO with average of 7.60 wt
%; CaO with average of 11.48 wt %), which may be related to
the fractional crystallization of olivine and a little pyroxene.
The Al2O3 (average of 15.39 wt %) is slightly higher than
N-MORB (average of 14.85 wt %). Besides, the Yeqing gabbro
shows apparent LREE enrichment and HREE depletion in the
REE diagram, and large slope curve in the trace-element diagram,
in contrast to the Fe–Ti basalts with flat–modest slope curve
in the REE and trace-element diagrams (Sinton et al. 1983;
Hollis et al. 2012).

Relative to MORB, the zircon Hf isotopic composition of OIB
has a narrow range and a lower ϵHf(t) value, and the mantle typ-
ically has a positive ϵHf(t) value (Nowell et al. 1998; Dobosi et al.
2003; Wu et al. 2007). Zircon ϵHf(t) values of these samples are
−0.2–6.3 which is lower than those of HNBs from Duobuzha
and Rena Tso (2.44–11.64 and 1.9–7.6 respectively; Li et al.
2016) and similar to those of OIBs. The whole-rock Sr–Nd iso-
topic data of these samples exhibit slightly high (87Sr/86Sr)i
(0.70468–0.70542), low 143Nd/144Nd (0.51253–0.51265) and
low ϵNd(t) (0.3–2.7) relative to some other HNBs from mantle
wedge (87Sr/86Sr of 0.70341–0.70484; 143Nd/144Nd of 0.51292–
0.51307; ϵNd(t) of 2.57–6.80) (Wang et al. 2007; Hastie et al.
2011; Xu et al. 2017; Hao et al. 2018). As we can see, the
Yeqing gabbro has a more enriched Sr–Nd isotopic composition
than Sumdo eclogite and NEBs/HNBs from Halberstadt in the
ϵNd(t) vs (87Sr/86Sr)i plot (Fig. 9d). The Halberstadt NEBs and
HNBs exhibit relatively depleted features, which were generated
from the mantle wedge metasomatized by slab melt (Fig. 9d;
Hastie et al. 2011). An analogous Sr–Nd isotopic composition
could be found between Yeqing gabbro and Gerze HNBs,
which was produced by partial melting of an OIB-type source
component involving upwelling asthenosphere mantle
(Fig. 9d; Li et al. 2016). In conclusion, the geochemistry and iso-
topic signatures of the Yeqing gabbro samples can be interpreted
as the production of a low-degree partial melting of garnet
lherzolite mantle with the negligible contribution of subducted
oceanic crust.

6.b. Tectonic setting

HNBs are not intraplate lavas like OIB and other alkaline lavas
(Adam & Green, 2010); they are only found in subduction zone
environments (Defant et al. 1992), such as Zamboanga
Peninsula (Philippines; Sajona et al. 1996), Sulu (southern
Philippines; Castillo et al. 2007), Baja (California; Luhr et al.
1995; Aguillón-Robles et al. 2001; Castillo, 2008), Halberstadt
(Germany; Hastie et al. 2011), Kamchatka (Russia; Kepezhinskas
et al. 1996), Nicaragua (Gazel et al. 2011), Tuotuohe (Tibet;
Wang et al. 2007), Rena Tso (Tibet; Li et al. 2016), Duobuzha
(Tibet; Li et al. 2016; Xu et al. 2017) and Gerze (Tibet; Hao
et al. 2018). Actually, there are multiple hypotheses about the for-
mation of HNBs and NEBs, which are linked with some specific
subduction processes, like flat subduction, slab rollback, slab
break-off, ridge subduction or plume – subduction-zone interac-
tion (Thorkelson, 1996; Wang et al. 2007; Gazel et al. 2011;
Thorkelson et al. 2011; Li et al. 2016; Xu et al. 2017; Hao et al.
2018; Wu et al. 2018). In the case of the HNBs-type gabbro inves-
tigated in this study, the hypothesis of plume – subduction-zone
interaction is invoked to interpret its generation based on the fol-
lowing evidence.

(1) The Yeqing gabbro is a part of the arc-volcanism system of
the SPTO, which is supported by its spatial distribution and
intrusion time.

In fact, lots of HNBs and NEBs have been reported on the east
coast of the Central Pacific as abnormal arc magmatism within the
modern oceanic island arc system (Castillo, 2008; Hoernle et al.
2008; Gazel et al. 2011; Fletcher &Wyman, 2015). The subduction
polarity of the SPTO is from south to north (ZL Li et al. 2009; Yang
et al. 2009; Zhu et al. 2010; Mai et al. 2021; YM Li et al. 2022),
proved by the spatial distribution characteristics of the oceanic
crust (ophiolites, oceanic islands; Chen et al. 2010; Duan et al.
2019, 2022; B Wang et al. 2019, 2021; Zhong et al. 2021), trench
and initial fore-arc basin (Xie et al. 2019, 2021) and arc magmatism
(Geng et al. 2009; Zhu et al. 2010; GM Li et al. 2020; B Wang et al.
2020; 2022; Mai et al. 2021; N Li et al. 2022; Song et al. 2022;
C Wang et al. 2022) from south to north. The intrusion time of
the Yeqing gabbro is coincident with the period of the SPTO sub-
duction in the early–middle Permian and middle–late Triassic by
studying the eclogites (Li et al. 2009; Cheng et al. 2012, 2015; Zhang
et al. 2018a, b), which is also proved by the contemporaneous arc
magmatism mentioned above (Fig. 10).

(2) The flat subduction and slab rollback could scarcely happen
in the SPTO.

The young ocean slab with slighter density subducted with a low
angle like flat subduction in the early stage due to greater buoyancy,
while the density of the subduction slab increased after the subduc-
tion slab dehydrated and then slab rollback occurred (Klein &
Langmuir, 1987; Hawkins et al. 1990). However, the SPTO had
subducted to a deep mantle in the middle Permian (Li et al.
2009; Cheng et al. 2012, 2015; Zhang et al. 2018b), indicating that
slab rollback and flat subduction is unlikely to have taken place
during the late Permian to early Triassic. A magma belt parallel
to the subduction belt is commonly required to respond to the
asthenosphere upwelling after slab rollback, whereas no analogous
magma was discovered in the Sumdo area to constitute a magma
belt with the Yeqing gabbro.

(3) The slab break-off and ridge subduction are unlikely to lead
to formation of the Yeqing gabbro.

Slab break-off generally occurs c. 10 Ma after a continental col-
lision (Benoit et al. 2002; Wu et al. 2018). The closure of the SPTO
occurred later at least than the late Triassic, supported by the dis-
covery of middle Triassic ophiolite (232–231Ma; Duan et al. 2019)
in Sumdo and a late Triassic – early Jurassic medium-pressure
metamorphic belt (225–192 Ma; Dong et al. 2011, 2015; Lin et al.
2013; Zhang et al. 2014, 2018b) between the South and North
Lhasa terranes accompanied by the coeval magmatism with a geo-
chemical affinity to syn- or post-collisional plutons (227–180 Ma;
HF Zhang et al. 2007; Zhu et al. 2011; Li et al. 2012; C Zhang et al.
2018b). Thus, slab break-off did not occur in the SPTO. The Yeqing
gabbro is also unlikely to have formed in ridge subduction, which
requires a huge volume of magmatism response, such as A-type
granite, adakite, high-Mg andesite and high-temperature meta-
morphic rocks (Hole et al. 1991; McCrory et al. 2009; Xu et al.
2017), that is missing in the Sumdo area.

(4) The back-arc basin may not be a better position to form the
Yeqing gabbro.
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Geochemistry characteristics of the Yeqing gabbro show Fe–
Ti–P enrichment, and lack of arc- and contamination signature.
Fe–Ti-enriched basalts are confined to extensional settings with
upwelling of the asthenosphere and have been reported from
back-arc basins in the subduction belt (Hollis et al. 2012).
However, there have been no reports about the sedimentary rock
of a back-arc basin in the Sumdo area. On the other hand, the back-
arc basin basalts are characterized by mainly strong arc affinity in
the early stage, and clear MORB affinity in the late stage (Klein &
Langmuir, 1987; Hawkins et al. 1990). In fact, the arc magmatism
in the Sumdo area shows typical island-arc characteristics (Zhu
et al. 2010; B Wang et al. 2020, 2022; Mai et al. 2021; Li et al.
2022; C Wang et al. 2022), which also supports the absence of a
back-arc basin.

(5) The plume – subduction-zone interaction may be a better
model to explain the formation of Yeqing gabbro.

As discussed above, the Yeqing gabbro derived from a deep gar-
net lherzolite mantle with the negligible contribution of subducted
oceanic crust. The intrusion from deep garnet lherzolite mantle in
the subduction belt is usually related to asthenosphere upwelling in
an extension environment, which is caused by a slab window or
slab rollback. The slab rollback model has been excluded already.
Besides, the Yeqing gabbro samples plot in within-plate alkali
basalts and ocean island alkaline field like the a-type NEBs/
HNBs that are caused by ridge subduction or plume – subduc-
tion-zone interaction, different from the b-type NEBs/HNBs
caused by flat subduction or slab rollback (Fig. 5c, d). In the
P2O5 vs TiO2 and Nb/Yb vs Nb figure (Fig. 11a, b), most of these
samples plot in the slab window field. The slab window is common
in slab break-off or ridge subduction, which are not suitable for this
study. Moreover, the seismic ridge, a series of seamount island
chains formed by oceanic crust moving over fixed hotspot/mantle
plume, could bring about a slab window while subducting (Gazel

Fig. 10 (Colour online) Distribution diagram of ages related to the Sumdo Palaeo-Tethys Ocean (data are quoted from Geng et al. 2009; Yang et al. 2009; Zhu et al. 2009, 2010;
Cheng et al. 2012, 2014; Zhang et al. 2018; Duan et al. 2019, 2022; Xie et al. 2019, 2021; BWang et al. 2019, 2020, 2021, 2022; Li et al. 2020, 2022; Mai et al. 2021; Zhong et al. 2021; Song
et al. 2022; C Wang et al. 2022).

Fig. 11 (Colour online) (a) P2O5 vs TiO2 figure (Li et al. 2016). (b) Nb/Yb vs Nb figure (Li et al. 2016). Slab window basalts are from Li et al. (2016 and references therein).
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et al. 2011; Fletcher & Wyman, 2015). Actually, researchers have
reported multiple ocean islands formed from the latest early
Carboniferous to middle Permian (B Wang et al. 2019; Zhong
et al. 2021; Duan et al. 2022), implying the presence of seismic

ridge in the SPTO. At the same time, the hotspot/mantle plume
could provide a perfect mantle source for the Yeqing gabbro
and favourable conditions for the possibility of plume – subduc-
tion-zone interaction.

Fig. 12 (Colour online) Reconstructed palaeogeography and subduction model of the Sumdo Palaeo–Tethys Ocean during the middle Permian (a) and late Permian to early
Triassic (b) (modified after Torsvik & Cocks, 2013; Xie et al. 2021). (c) The schematic model of the geological processes of plume – subduction-zone interactions required to explain
the formation of Yeqing gabbro (modified after Gazel et al. 2011). GI, Greater India; S, Sibumasu; NL, North Lhasa; SL, South Lhasa; T, Tengchong.
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6.c. Geological significance for the subduction evolution of
the SPTO

According to the discussion of petrogenesis and tectonic setting
above, we propose that the hotspot/mantle plume began to inter-
act with the subduction zone in the SPTO after the middle
Permian, and the hotter plume material upwelled through a slab
window intruding into the continental edge during the late
Permian to early Triassic. Under this framework, the formation
of the Yeqing gabbro and subduction evolution of the SPTO can
be briefly described as follows combined with the regional
geology.

Research into ophiolites and oceanic islands has revealed that
the SPTO had already developed an initial ocean basin in the early
Carboniferous (Wang et al. 2021; Duan et al. 2022). The SPTO
began to subduct not later than the early Permian and subducted
to a greater depth beneath the north Lhasa terrane during the
middle Permian (Fig. 12a; Yang et al. 2006; Cheng et al. 2012;
Weller et al. 2016). Meanwhile, the middle Permian
Wenmulang and Ewulang ocean islands imply that the plume
under the ocean plate was still active during the middle Permian
(Fig. 12a; B Wang et al. 2019; Zhong et al. 2021). Until the late
Permian, the seismic ridge in the SPTO, a structurally weak posi-
tion of oceanic slab, subducted into the trench, and the slab was
torn in the frail place forming a slab window (Gazel et al. 2011)
(Fig. 12b, c). The detached slab was replaced by a hot and buoyant
asthenosphere mantle, which generated the Yeqing gabbro in this
study (Fig. 12b, c). This is the hypothesis put forward in this study
to explain the generation of the Yeqing gabbro. Nevertheless, it is
mainly based on petrological, geochronological and geochemical
observations. Further studies will be required to verify this
hypothesis.

Conclusions

(1) LA-ICP-MS U–Pb ages of zircon from Yeqing gabbro are
254–249 Ma, late Permian to early Triassic, which repre-
sents the magmatic crystallization age of the Yeqing gabbro.

(2) The Yeqing gabbro exhibits positive Nb–Ta anomalies, Fe–
Ti–P enrichment, lack of arc- and contamination signature,
similar to those of OIB and HNBs, indicating that the
Yeqing gabbro may be the product of a low degree of partial
melting of garnet lherzolite mantle generated from an exten-
sional environment in the subduction belt.

(3) Considering the regional geology of the SPTO, a slab win-
dow produced by the plume – subduction-zone interaction
is a better explanation for the formation of Yeqing gabbro,
proving the SPTO continued to subduct during late Permian
to early Triassic.

Supplementary material. To view supplementary material for this article,
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