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Abstract. We present evolutionary models for young low mass stars
(m :::; 1M0 ) based on recent improvement of the theory: equation of state,
atmosphere models, etc. We concentrate on early evolutionary phases
from the initial deuterium burning phase to the zero-age Main Sequence.
Evolutionary models for young brown dwarfs are also presented. We
discuss the uncertainties of the present models. We analyse the difficulties
arising when comparing models with observations for very young objects,
in particular concerning the problem of reddening.

1. Introduction

Within the past years, important efforts have been devoted to the observation
and the theory of very-low-mass stars (VLMS) and substellar objects (brown
dwarfs BD and giant planets GP). The main theoretical improvements involve
the description of the interior of these cool and dense objects (equation of state
for dense plasmas, screening factors, etc ...; see the review by Chabrier and
Baraffe 2000) and the model atmosphere (molecular opacity, formation of dust,
etc ... ; see the review by Allard et al. 1997). A major advance in the field is
the development of a new generation of consistent models based on the coupling
of interior and atmosphere models, providing direct comparison of evolution-
ary models with observations in colour-colour and colour-magnitude diagrams
(CMD). Several observational tests, mainly provided by relatively old objects
(age ~ 100 Myr), now assess the validity of this theory devoted to stellar and
substellar objects with masses x 1M0 . General agreement is found with (i) the
mass - radius relationship of observed eclipsing binaries, (ii) mass - magnitude
relationships in V J H K provided by binary systems, (iii) mass - spectral type
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relationships for M-dwarfs, (iv) colour - magnitude relationships for intermedi-
ate age open clusters (Pleiades, Hyades, etc ...), field disk M- and L-dwarfs, halo
stars, and globular cluster Main Sequences and (v) spectra of M-dwarfs. Details
and references for such confrontations of models with observations can be found
in Chabrier and Baraffe (2000). Although some discrepancies between models
and observations remain (see §2), uncertainties due to the input physics are now
significantly reduced.

Numerous surveys devoted to the search for substellar objects have been
conducted in young clusters with ages spanning from I"'..J 1-10 Myrs, providing
a wealth of data for pre-Main Sequence (PMS) objects. The reliability of the
present theory for VLMS and BD allows now a thorough analysis for such PMS
objects. Unlike older Main Sequence stars and BDs, comparison between ob-
servations and models for very young objects presents 3 major difficulties: (i)
extinction due to the surrounding dust modifies both the intrinsic magnitude
and the colours of the object, (ii) gravity affects both the spectrum and the evo-
lution, (iii) the evolution and spectrum of very young objects (t;5 1 Myrs) may
still be affected by the presence of an accretion disk or circumstellar material
remaining from the protostellar stage.

This paper is devoted to PMS models for VLMS and BDs and completes
the work of Baraffe et al. (1998, BCAH98) which was essentially devoted to
the comparison of models with observations of older objects (t;G 100 Myrs).
We discuss the remaining uncertainties of the models (§2) and "analyse their
confrontation with available observations (§3).

2. Pre-Main Sequence Models

2.1. Evolutionary Tracks

The present models are based on the input physics described in Baraffe et al.
(1998, and references therein). The robustness of these models is anchored in
two areas: the microphysics determining the equation of state (EOS) in the stel-
lar interior, and the outer boundary condition and synthetic spectra based on
non-grey atmosphere models (Hauschildt, Allard & Baron 1999). Figure 1 shows
evolutionary tracks from 0.02 M0 to 1 M0 . The stellar/substellar transition is
located at I"'..J 0.075 M0 , below which objects become partially degenerate and
never reach thermal equilibrium characterising the Main Sequence. Evolution-
ary models start at the beginning of the initial deuterium burning phase. The
deuterium burning minimum mass is 0.013 M0 (Saumon et al. 1996; Chabrier
& Baraffe 2000). The D burning phase lasts less than 1 Myr for m;G 0.2M0 ,

between 1 and 5 Myr for 0.05;5 m ;50.2M0 and almost 20 Myr for a 0.02 M0
brown dwarf. At such young ages, evolution is characterised by a rapid contrac-
tion of the object once central D is significantly depleted. Consequently, there
is a significant variation of the surface gravity from log 9 I"'..J 3 to I"'..J 4.5 from
1 Myr to 50 Myr, for the masses displayed in Fig. 1. Since the present atmo-
sphere models (Hauschildt et al. 1999) assume the plan parallel approximation,
we have checked its validity even for these low gravities. A comparison of these
models with atmosphere models including effects of spherical geometry shows
that the latter are important only for surface gravities log 9 ;5 2 (Hauschildt,
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Allard, Ferguson, et al. 1999). This is well below the range of gravities involved
in the evolution of the present objects.
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Figure 1. Evolutionary tracks in the Hertzsprung-Russell diagram
for masses from 1.2 M0 to 0.02 M0 (dashed lines) and ages spanning
from 1 Myr to the ZAMS (for stars). Several Isochrones for 1, 5, 10
and 50 Myr are indicated by solid lines from right to left. The location
of the ZAMS, for stars down to 0.075 M0 , is also indicated (left solid
line).

2.2. Improvement and Uncertainties

As already mentioned, one of the main improvement in the modeling of VLMS
and BDS is the use of outer boundary conditions based on realistic non-grey at-
mosphere models. As demonstrated by Chabrier & Baraffe (1997; and references
therein) the use of radiative T( r ) relationships and/or grey atmosphere models is
unvalid when molecules form near the photosphere, below Teff rv 4000K. Outer
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boundary conditions based on the latter approximations yield hotter models for
a given mass, as illustrated in Fig. 2a. Interestingly enough, masses up to 1 M0
are affected by the choice of the outer boundary condition, since at young ages
evolution proceeds at significantly lower Teff than on the MS for m > 0.5M0
(see Fig. 1). The use of an inappropriate outer boundary condition, such as the
Eddington approximation, yields an overestimation of Teff for a given m up to
300 K (see Fig. 2a).

Figure 2. (a) Effect of the outer boundary condition on evolutionary
tracks. (b) Effect of a variation of the mixing length lmix.

One of the main uncertainty for masses m ~ 0.7M0 is due to convec-
tion. These stars show relatively extended superadiabatic outer layers, which
are extremely sensitive to the treatment of convection. In the framework of the
mixing length formalism, this translates into a sensitivity to the mixing length
lmix ex: H», with H» the pressure scaleheight. Figure 2b illustrates the effect
of a variation of lmix on PMS tracks. For the present models, lmix = 1.9 Hp is
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the value required to fit the Sun at its present age. Recently, Ludwig, Freytag
& Steffen (1999) calibrated the mixing length parameter a == lmix/H» with 2D
hydrodynamical models performed in the parameter space 4300 K ::; Teff ::; 7100
K and gravities 2.54 ::; log 9 ::; 4.74. They found a moderate variation of the
mixing length parameter around typically 1.5. Fig. 2b shows that a variation
of a from 1 to 1.9 yields an increase of Teff up to 500K for the highest masses
during their PMS evolution. For masses m ~ 0.7M0 , the size of the superadi-
abatic layers reduces and the transition from the convective to the radiative
outer layers is characterised by an abrupt transition from a fully adiabatic to
a radiative structure. The sensitivity of the models to lmix is thus small, in
the framework of the mixing length formalism. To confirm this low sensitivity,
however, multi-dimensional simulations as done by Ludwig et al. (1999) must
clearly be extended below Teff ::; 4300 K.

Finally, although huge improvement was done in the field of molecular opac-
ities (see Allard et al. 1997), reducing considerably the uncertainties of non-grey
atmosphere models and synthetic spectra, some shortcomings still remain. As
mentioned in BCAH98, the present models still show a f'V 0.5 mag discrepancy
with observations in optical V R1 colour - magnitude diagrams. This problem
was partly identified as a shortcoming in the TiO line list, one of the main
absorber in the optical. A new TiO line list recently computed by Schwenke
(1998) improves indeed the situation (see Fig. 3a), although some discrepancies
with observations in (V - I) (see Fig. 3a) and (R - I) colours still remain (see
Chabrier et al. 2000). The effect of the new TiO line list is illustrated in Fig. 3a,
where disk field objects of Monet et al. (1992) and Dahn et al. (1995) are also
displayed. Although the new TiO line list reduces significantly the discrepancy
with observations (cf. Fig. 3a), the fit of the models to the data is not perfect
yet for objects fainter than Mv f'V 10. Moreover, as illustrated in Fig. 3b in
near-IR colours, the use of this new TiO line list affects the spectrum in the
near-IR, and worsens the excellent agreement with observational data from the
Pleiades in (I - K) - MI obtained previously with the BCAH98 models. An-
other uncertainty appears in the water molecular linelist. BCAH98 uses the list
of Miller et al. (1994) which is known to be incomplete for high energy transi-
tions. Although a more complete linelist was recently computed by Partridge
& Schwenke (1997), it still presents shortcomings and yields large discrepancies
with photometric observations in the near-IR above Teff ~ 2300K, as illustrated
in Fig. 3b (dash-dotted line).

Given the problems with the current linelists, improvement of the present
evolutionary models have to await the computation of more reliable H20 , and
to a lesser extend TiO, linelists. Although the different molecular linelists men-
tioned above affect significantly the spectra and colours, they hardly affect the
deeper atmospheric layers, and therefore the outer boundary condition to the
interior. Thus, their effect on evolutionary models in terms of Teff and L is
small. The use of the new TiO and/or water linelist does not affect evolutionary
models by more than 100 K in Teff and 10% in L at a given age. This Illustrates
the remaining (small) uncertainty of the models from the evolution viewpoint
due to molecular opacities. Below Teff ~ 2300K, grain formation starts to af-
fect both the spectrum and the evolution, and must be taken into account (cf.
Chabrier et al. 2000). This is out the scope of the present paper, which is based
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on dust-free models. Only substellar objects with m .::S 0.01M0 and older than
1 Myr are affected by dust formation.

Figure 3. (a) Effect of the TiO line list on models in a (V - 1) - Mv
diagram. The solid line corresponds to an isochrone of 1 Gyr based on
the present models (BCAH98). The dashed line correspond to models
computed with the new TiO line list, for the same age. Observations
(crosses) are disk field stars from Monet et al. (1992) and Dahn et al.
(1995). Masses (in M0 ) and Teff are indicated and correspond to the
open diamonds on the solid line. (b) Effect of TiO and H20 line lists
on models in a (1 - K) - MI diagram. The solid and dashed lines are
the same models as in (a) for an age of 120 Myr. The dash-dotted line
corresponds to models with new TiO and H20 linelists, for 120 Myr.
Observational data (full circles) belong to the Pleiades, corresponding
to an age of 120 Myr (Martin et al. 2000).

3. Comparison with Observations

The previous section describes uncertainties inherent to the input physics of
VLMS and BDs models. For PMS models specifically, another important source
of uncertainty comes from the choice of initial models. The present models are
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based on extremely simplified assumptions, starting shortly before the deuterium
burning phase in an initially fully convective configuration, and neglecting the
protostellar accretion phase. These assumptions are standard (see also Siess et
al. 2000). Some attempts exist to use more sophisticated initial conditions based
on protostar models (see Palla & Stahler 1999; and references therein). Given
however the complexity of star formation processes and protostellar collapse
calculations (see Masunaga, Miyama & Inutsuka 1998; Masunaga & Inutsuka
2000; and references therein; Wuchterl, this conference), many problems are to
date unsolved and the link between the dynamical phase of collapse and the
quasi-static phase of evolution is still very obscure.

Testing different initial conditions, we find out that after a few Myr they
become inconsequential and models converge toward the same track. However,
these tests are still based on relatively simple assumptions. The comparison of
PMS tracks with observations of very young objects can improve our under-
standing of the protostellar collapse phase and can tell us at which stage initial
conditions become important.

Because of the problem of large reddening in young clusters, direct compar-
ison of observations with models in colour - magnitude diagrams are extremely
uncertain. There are only a few exceptions, such as a Orionis which exhibits
low extinction. Recently, Bejar et al. (1999) and Zapatero et al. (1999) obtained
optical and near-IR photometry for low mass objects in this cluster. The data
are well reproduced by a 5 Myr isochrone based on the BCAH98 models in a
(I - J) - MI CMD (see Fig. 1 of Zapatero et al. 1999), down to 0.015 MG' Such
observations are extremely important, since they provide the best opportunity
to determine the Initial Mass Function (IMF) down to the substellar regime
(see Bejar et al. 2000). Indeed, for such young clusters, no significant dynamical
evolution is expected and their mass function should be close to the true IMF.

Young multiple systems provide also excellent tests for PMS models at
young ages, because of the expected coevality of their different components. In
addition, another strong constraint is supplied by the estimate of dynamical
masses based on the orbital motion of circumstellar/circumbinary disks (Simon,
Dutrey& Guilloteau 2000; Simon, this conference). One of the best example
is provided by the quadruple system GG TAU (White et al. 1999; White, this
conference), with components covering the whole mass-range of VLMS and BDs
from 1 MG to ~ 0.02 MG' Orbital velocity measurements of the circumbi-
nary disk surrounding the two most massive components imply a constraint
on their combined stellar mass (Dutrey, Guilloteau & Simon 1994; Guilloteau,
Dutrey & Simon 1999). This mass constraint and the hypothesis of coevality
provide a stringent test for PMS models. Models based on non-grey atmospheres
(BCAH98) are the only ones consistent with these observations (for details see
White et al. 1999; Luhman 1999).

Two major difficulties remain however when comparing the models with
such data: (i) the spectral type classification and (ii) its transformation to Teff

based on a Tefl' - scale. Young objects are expected to show spectral features
between that of giants and dwarfs, and a better representation of their spectral
properties may require a new classification more appropriate to these interme-
diate surface gravities. The transformation of the inferred spectral type to Teff

is even more difficult, because of the lack of reliable Teff - scales for such young
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T Tauri like objects. Significant efforts were devoted within the past years to
the elaboration of improved Teff - scales for M-dwarfs (Leggett et al. 1996) and
M-giants (Perrin et al. 1998; van Belle et al. 1999). However, work remains
to be done for T Tauri like objects. Recently, Luhman (1999) defined a Teff

- scale intermediate between giants and dwarfs and based on the isochrone of
the BCAH98 models which passes through the 4 components of GG Tau. In-
terestingly enough, applying this Teff - scale to young clusters such as IC348
(Luhman 1999) and star forming regions (Chamaeleon I, Comeron, Neuhauser
& Kaas 2000), the cluster members show a small scatter in age and no apparent
trend of a correlation between age and mass. As mentioned by Comeron et al.
(2000), this suggests an almost coeval population in Chamaeleon I which formed
within less than 1 Myr. Confirmation of this property in other young clusters is
urgently required to improve our understanding of the starformation timescale
in young stellar associations.

4. Conclusion

The good agreement of models based on improved physics with observations for
relatively old (t ~ 100 Myr) VLMS and BDs now yields good confidence in
the theory of these objects. Such evolutionary models can now be confronted to
the complex realm of very young objects, thus providing important/informations
on star formation processes and initial conditions for PMS models. Although
based on extremely simple initial conditions (no accretion phase, no account of
protostellar collapse phase and timescale), these models are the most consistent
with present observations of very young objects (estimate of dynamical masses,
tests of coevality in multiple systems, CMD, etc.). Such consistency must be
confirmed with more observational tests and the elaboration of a reliable Teff-

scale, in order to guide protostar collapse models, which at some age must
converge toward the PMS tracks.

Note: Tracks from 0.02 M0 to 1.2 M0 and t 2:: 1 Myr are available by
anonymous ftp:

ftp ftp.ens-Iyon.fr
username: anonymous
ftp > cd /pub/users/CRAL/ibaraffe
ftp > get README
ftp > get BCAH98_models.*
ftp > quit
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