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Experimental investigation of turbulent
counter-rotating Taylor–Couette flows
for radius ratio η = 0.1
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Turbulent Taylor–Couette flow between two concentric independently rotating cylinders
with a radius ratio of η = 0.1 is studied experimentally. While the scope is to study
the counter-rotating cases between both cylinders, the radial and azimuthal velocity
components are recorded at different horizontal planes with high-speed particle image
velocimetry. The parametric study considered a set of different shear Reynolds numbers
in the range of 20 000 ≤ Res ≤ 1.31 × 105, with different rotation ratios of −0.06 ≤ μ ≤
+0.008. The observed flow fields had a clear dependence on the rotation ratio, where
flow patterns evolved with a more pronounced axial dependence. The angular momentum
transport is computed as a result of the recorded flow fields and given by a quasi-Nusselt
number. The dependence of the Nusselt number on the different rotation ratios shows a
maximum for the low counter-rotating case and μmax is found between −0.011 < μmax <

−0.0077. The Nusselt number decreases for stronger counter-rotation until a minimum is
reached, where it tends to increase again for higher counter-rotation rates. The space–time
behaviour of the turbulent flow showed the existence of patterns propagating from the
inner region towards the outer region for all studied counter-rotating cases. In addition,
patterns have been found that tend to propagate from the outer region towards the inner
region with a novel character at high counter-rotation cases. These patterns enhance the
angular momentum transport where a second maximum in the transport mechanism has to
be expected.
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1. Introduction

For more than a century, the flow in the gap between two independently rotating coaxial
cylinders has been studied. The so-called Taylor–Couette (TC) flow is used as one of the
paradigmatic systems of the physics of fluids. Its simple and mathematically well-defined
geometry, natural periodicity and confinement of fluid volume lead to excellent conditions
for experimental and numerical studies. Various concepts and topics in fluid mechanics
have been studied by this system. The huge variety of flow states in this system provides
the possibility to study the flow in its different phases (laminar and turbulent) and the
transition between these two phases (Taylor 1923; Chandrasekhar 1961; Dong & Zheng
2011; VanGils et al. 2012). The different hydrodynamic instabilities that occur in the flow
lead to the appearance of different patterns (Andereck, Liu & Swinney 1986; Razzak,
Khoo & Lua 2019; Merbold et al. 2023). The most famous example of the pattern
formations in the flow is the centrifugally driven Taylor vortices (TV), which arise in
both laminar and turbulent flows (Taylor 1923; Froitzheim et al. 2019a; Huisman et al.
2014; Grossmann, Lohse & Sun 2016). The changing of the driving parameters leads to a
series of flow transitions, these flow transitions can be classified into different flows, like
circular Couette flow, Taylor vortex flow, periodic non-axisymmetric flow, wavy vortex
flow, modulated wavy vortex flow and many others; see Taylor (1923), Synge (1938), Coles
(1965) and Lim, Chew & Xiao (1998).

The flow in the gap is mainly controlled by the rotation rate and the geometrical
parameters. The main geometrical parameter of the system varies depending on the
dimensions of both cylinders, and it is defined by the radius ratio η = r1/r2, the gap
width d = r2 − r1 and the aspect ratio Γ = L/d, with r1 the inner cylinder radius, r2
outer cylinder radius and L the apparatus length. The flow states in this system are mainly
determined by the dimensionless Reynolds numbers Re1 = r1ω1d/ν and Re2 = r2ω2d/ν

of the inner and outer cylinders, respectively, with ν being the kinematic viscosity of the
fluid. In this study, in order to measure the shear between the cylinders, the shear Reynolds
number introduced by Dubrulle et al. (2005) is used,

Res = 2
1 + η

|ηRe2 − Re1| = 2r1r2d
(r1 + r2)ν

|ω2 − ω1|. (1.1)

After defining the main flow parameters Re1 and Re2, the flow inside the gap takes its
shape. The global system response can be quantified by the angular momentum transport
Jw (Eckardt, Grossmann & Lohse 2007),

Jω = r3
(

〈urω〉A(r),t − ν
∂

∂r
〈ω〉A(r),t

)
. (1.2)

The brackets 〈 〉A(r),t denote an average over a cylindrical surface and time t, ur and ω

denote the radial and angular velocities, respectively. The angular momentum transport
is normalized by its corresponding laminar value Jω

lam = 2νr2
1r2

2(ω1 − ω2)/(r2
2 − r2

1) to
define the Nusselt number Nuω = Jω/Jω

lam, which is in analogy to the Nusselt number in
the Reyleigh–Benard (RB) convection (Grossmann & Lohse 2000; Busse 2012), the flow
in a fluid container heated from below and cooled from above, which quantifies the heat
flux.

Out of the different geometries used to study the TC flow till now, most of them are
focused on the so-called ‘narrow gaps’ where η > 0.7, and relatively fewer studies are
published on geometries with η < 0.7, which we name the ‘wide gaps’ flow. The radius
ratio η is directly related to the curvature effect, which also plays a very important role
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Very wide gap turbulent counter-rotating Taylor–Couette flow

in TC flow. The curvature number Rc = d/
√

r1r2, introduced by Dubrulle et al. (2005),
measures the influence of curvature in terms of the geometrical mean of both cylinder’s
radii and the gap width d. Considering the curvature is important as it affects strongly the
geometry and influences the flow field. One of the examples that can explain the effect of
the curvature is the Görtler instability. This instability can disturb the viscous boundary
layers of flows over concave surfaces by streamwise-oriented counter-rotating vortices
named Görtler vortices, leading the flow through a transition to turbulence (Görtler 1954;
Saric 1994). As η approaches 1, the curvature effect vanishes and Rc becomes zero, where
in this situation the TC flow becomes a rotating plane couette (RPC) flow (Brauckmann,
Salewski & Eckhardt 2016). They also showed, for η < 0.9, that the asymmetry inside the
gap increases and shows the difference between the inner gap region and the outer region,
and the curvature effect becomes more important. This asymmetry inside the gap increases
as η decreases.

The angular momentum transport has already studied for narrow gaps (Wendt 1933;
Lathrop, Fineberg & Swinney 1992; Lewis & Swinney 1999; Ravelet, Delfos &
Westerweel 2010; Paoletti & Lathrop 2011; VanGils et al. 2012; Brauckmann & Eckhardt
2013; Huisman et al. 2014; Ostilla-Monico et al. 2014; Nordsiek et al. 2015; Grossmann
et al. 2016; Froitzheim et al. 2019a), as well as wide gaps (Wendt 1933; Merbold,
Brauckmann & Egbers 2013; Dong 2016; Froitzheim, Merbold & Egbers 2017; Froitzheim
et al. 2019b). The angular momentum transport can either be measured by measuring the
torque induced in the inner cylinder directly (Merbold et al. 2013; Froitzheim et al. 2019b)
or by measuring the velocity field inside the gap and computing the angular momentum
transport using (1.2). Froitzheim et al. (2017) showed that PIV can sufficiently resolve Jω in
comparison to a direct torque measurement. A relation between the driving parameter Res

and the Nusselt number is assumed using a power law ansatz Nuω ∼ Reα−1
s . The effective

scaling of the momentum transport is then used in most of the studies to distinguish
between the two different flow regimes in TC flow, the ultimate and the classical regime.
The ultimate flow regime is, in analogy to RB convection, the flow with turbulent bulk and
turbulent boundary layers (Busse 2012; Huisman et al. 2012), while the classical regime
is the flow with turbulent bulk and laminar boundary layers. The exponent α changes with
Res, and this change is linked to the shear inside the boundary layer according to (1.2)
(Eckardt et al. 2007).

Another phenomenon related to the angular momentum transport is observed in
the experiments of the same Res with varying rotation ratios μ, finding a maximum
of angular momentum transport at a specific rotation ratio. For η = 0.716, Huisman
et al. (2014) measured a maximum at μmax = −0.36, while for η = 0.724, Paoletti
& Lathrop (2011) measured μmax = −0.33. For a wider gap η = 0.5, Merbold et al.
(2013) shows that the maximum occurs at μmax = −0.2 ± 0.02 using direct torque
measurements. Froitzheim et al. (2019b) finally measured for η = 0.357 a maximum
at μmax = −0.123 ± 0.03. Ostilla-Monico et al. (2014) further confirmed the values of
μmax numerically by finding μmax = −0.22 for η = 0.5, μmax = −0.33 for η = 0.716
and μmax = −0.123 ± 0.03 for η = 0.357. They also showed that this maximum is
connected to the formation of the turbulent TV, which enhance the angular momentum
transport.

Different attempts were made to derive a prediction for the position of μmax.
A prediction was made by Brauckmann & Eckhardt (2013), where they linked the location
of the torque maximum to the onset of intermittency in the gap, and they came back with
the prediction written as μp(η) = −η2([(a(η)2 − 2a(η) + 1)η + a(η)2 − 1]/[(2a(η) −
1)η + 1]), where a(η) is a factor that computes the extension of the TV beyond the
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theoretical neutral line. The prediction yields μp(η = 0.375) = −0.1159, μp(η = 0.5) =
−0.191 and μp(η = 0.71) = −0.344 with very good agreement with the aforementioned
findings. For the geometry studied here with η = 0.1, this predicts a torque maximum at
μp(η = 0.1) = −0.0097.

After the different flow regimes in counter-rotating TC flow in a very wide gap (η = 0.1)
were studied in Merbold et al. (2023), the scope of the present work is to study the
turbulent statistics, Nuω, contributions to Nuω, and flow temporal behaviour. In this
paper the physical behaviour of the fluid is studied in geometry, which has rarely been
investigated up to today. Especially here, the circumferential length of the inner cylinder
is smaller than the gap width, which is the case for η < 0.14. Thus, the curvature effect
becomes large, but the influence of the rotating inner cylinder decreases on the other side.
Thus, the behaviour of the flow in this gap is expected to be different from the other TC
geometries with η > 0.14 (Eckardt et al. 2007). As the kinematics of the system differ
a lot between co- and counter-rotating cylinders, the scope of this paper is limited to
counter-rotation, while the flow behaviour of a co-rotating flow has not been discussed,
although some data has been presented shortly as a comparison. These flow states will be
the scope of another study.

2. Experimental set-up

The top view TC Cottbus (TvTC) facility is used in the current study. Using this TC
apparatus, the gap width is changeable by changing the inner cylinder (van der Veen et al.
2016; Froitzheim et al. 2017; Merbold et al. 2023). In the current study the inner and outer
cylinder radii used are R1 = 7 mm and R2 = 70 ± 0.2 mm, respectively, leading to a radius
ratio of η = 0.1 and a gap width of d = R2 − R1 = 63 ± 0.2 mm. The height of both
cylinders is L = 700 mm, leading to an aspect ratio of Γ = L/d = 11.11. Each cylinder
is connected to a direct current motor via a gear transmission belt, so both cylinders can
rotate independently.

In a previous investigation using the same facility studying TC flow with different
geometries η = 0.357 (Froitzheim et al. 2019b), the angular momentum transport was
calculated by measuring the torque induced on the inner cylinder with the use of a torque
sensor installed in the driving shaft. Unfortunately, the torque acting on the thin inner
cylinder in this investigation is below the threshold for accurate measurement using this
procedure (< 2 × 10−5 Nm). A second shaft-to-shaft torque sensor with higher sensitivity
(Lorenz DR-3000) was used but did not give reliable results. Thus, the actual torque inside
the η = 0.1 system is not able to be determined by the direct method, as done in the prior
investigations.

The flow in the gap between both cylinders is restricted by two end plates fixed to the
outer cylinders. Both the outer cylinder and the top end plate are made of acrylic glass,
enabling optical access to the flow in the gap. Figure 1 shows the PIV set-up used in
this study. A Phantom VEO 640 l (2560 × 1600 pixels) high-speed camera is mounted at
the top of the apparatus, and an LDY.300PIV laser (λ = 532 nm, P0 = 15 mJ) is placed
beside the apparatus, the laser output is transported using a guiding arm, which generates a
horizontal laser sheet through the gap as shown in the figure 1. The laser sheet’s position is
adjustable, allowing us to measure the flow velocities at different heights. This PIV set-up
allows for measuring the radial (ur) and azimuthal (uφ) velocity components in the gap
at different heights. Distilled water (ν(20 ◦C) = 10−6 m2 s−1) is used as a working fluid.
The fluid is seeded with silver-coated hollow glass spheres as tracer particles, with a mean
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Figure 1. (a) Schematic of the TC apparatus with the PIV set-up, and the horizontal cross-section of the
set-up with the horizontal laser sheet. (b) Mean velocity field in the azimuthal-radial plane at mid-height for
μ = −0.007 and Res = 6.1 × 104 obtained using PIV. Every fourth vector in each row and column is plotted
in this representation to improve readability.

diameter of 10 μm, with Stokes number

St =
(

ρp

ρ
− 1

) d2
pus

18νd
, (2.1)

assuming a max speed of 2 m s−1, St = 1.7 × 10−4, so St � 1. Furthermore, and
considering the flow to be turbulent, the turbulent length scale ηk = (ν3/ε)1/4 is calculated
for Res = 1.3 × 105, where according to Eckardt et al. (2007)

ε = 2Jω�ω

(r2
2 − r1

1)
. (2.2)

As an assumption for the minimum length scale, a high turbulent angular momentum
transport of Jω = 100Jlam is estimated, with Jω

lam = 2νr2
1r2

2(ω1 − ω2)/(r2
2 − r2

1). Hence,
ηk = 6 × 10−5 m is larger than the particle’s mean diameter, confirming that they follow
the flow precisely in all measured cases in this study.

We are aware of the weakness of two-dimensional (2-D) measurements in a
three-dimensional (3-D) flow. But a full 3-D measurement would first reduce the spatial
resolution significantly (Tokgöz et al. 2012), and add uncertainties from camera angle
views. In addition, it will add calibration issues while capturing the flow through the
cylindrical outer cylinder. For all the previously stated reasons, we choose to scan
the volume in the third dimension to understand the axial dependence of the flow by
measuring the flow in the horizontal φr plane at different heights. By changing the
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Figure 2. (a) The investigated parameter space in terms of Res and μ. (b) The time and radial averaged
profile of the azimuthal and radial velocities compared with the solid body velocity.

–40 –32 –24 –16 –8 0 8 16 24 32 40

�z (mm) 40 28 16 0 −16 −28 −40
Scale factor (m px−1) ×10−5 7.139 7.316 7.505 7.750 7.993 8.177 8.378

Table 1. Scale factor at different heights. The colour map depicts the colours used to represent data at
different heights. This representation is used in all sections of the current study.

altitude of the horizontal laser sheet, the flow in the gap at different heights is measured.
The measurements are done for heights between 40 mm above and 40 mm below the
mid-height for Res = 6.1 × 104, 1.31 × 105 and between 40 mm above and 90 mm below
for Res = 20 000. Figure 2(a) shows the parameters investigated in the current study. For
the higher shear Reynolds number, the flow is measured at 21 different heights, with a
distance of �z = 4 mm between each height. While for lower Res, the measurements are
done for 27 heights with �z = 5 mm resulting in a longer range in z. Enlarging �z is
supported by previous flow visualizations, where the axial dependence is observed to be
less. The camera is mounted at a fixed height, so by adjusting the height of the laser sheet,
the camera lens needs to be refocused to capture the flow at the desired height. Refocusing
the camera lens at each height leads to different spatial resolutions for the different heights,
as shown in table 1.

For Res = 20 000, the measurements are done for 7 s with 200 frames per second, which
comes out with 1400 PIV images at each height. For the higher Res, the measurement time
is increased to 10 s to better capture the temporal behaviour of the flow, using the same
frame rate, which comes out with 2000 PIV images for each height. The single frame mode
is used, as the time between every two consecutive images is �t = 0.005 s, which suits
the displacement for the velocities of the experiment. Furthermore, the Kolmogorov micro
time scale τK = (ν/ε)1/2 for the maximum investigated turbulent case Res = 1.3 × 105,
and by assuming a maximum Jω = 25Jlam (cf. figure 8), computes to τK = 0.00733.
As τK > �t, it is ensured that the measured data are time resolved. The PIV images
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are post-processed using LaVision Davis software. The velocities are calculated using
an adaptive PIV algorithm, with the final interrogation area (IA) being 24 × 24 pixels
with 50 % overlap. The velocity data are transformed using MATLAB 2019b to a polar
coordinate velocity (uφ, ur) and interpolated onto a polar grid of concentric cylinders of
fixed radii r. After this interpolation, the data matrices at each instantaneous time are
reorganized in such a way that all the data belonging to the same radial position are
presented in one column, and for the different radial positions, the data has been presented
in the same azimuthal domain.

The circumference of the inner cylinder is 10 times smaller than the outer cylinder. Thus,
the spatial number of azimuthal samples in the radial position close to the inner cylinder
is 10 times less than that for the radial position close to the outer cylinder. This can be a
source of uncertainty for any statistical analysis, but the number of temporal samples (2000
images or 1400 images) for each measurement set can compensate for this uncertainty.
Another source of uncertainty might be the calibration error. For the calibration, the same
procedure used in Froitzheim et al. (2017) is used in the current study. For further details
about the calibration procedure, the reader is referred to Hamede, Merbold & Egbers
(2023).

To verify our measurement accuracy, a measurement set is performed using solid body
rotation with ω1 = ω2 = 33.5 rpm over the 21 different heights. Figure 2(b) compares the
temporally, azimuthally and axially averaged azimuthal and radial velocity profiles of the
solid body to the theoretically predicted velocity profiles. The comparison between the
measured azimuthal velocity profile and the solid body velocity profile shows a very good
agreement, with a maximum error of 1 % in the inner region of the gap and 0.3 % in the
outer region. Although in the solid body rotation the radial velocity vanishes, the results of
our measurement show a very low value with a maximum of −0.5 mm s−1 that represents
0.4 % of the mean azimuthal velocity, which is considered low. So, in conclusion, the
measured velocities in this case and our entire set of velocity measurements used in this
study can be considered to have high accuracy.

During the measurements, the fluid temperature rises up to 2 K, as every measurement
set of 21 or 27 heights takes between 1.5 and 2 h to be performed. During the
measurements, the inner cylinder is rotating at high speed, which heats up the bearings
and causes an increase in the fluid temperature. In order to solve this problem, the fluid
temperature inside the gap is continuously measured using a temperature sensor, and
for every rise in temperature, the velocity of the rotating cylinders is adjusted so that
the dimensionless parameters (Res, μ) are guaranteed to be constant for every single
measurement set.

3. Flow field features

3.1. Dependence of the flow structures on the rotation ratio
Different flow parameters control the flow inside the TC apparatus; one of these main
parameters is the rotation ratio μ = ω2/ω1. Concerning the rotation ratio, the flow can
be distinguished into three regimes: pure inner cylinder rotation (μ = 0), counter-rotation
(μ < 0) and co-rotation (μ > 0). Figure 3 shows the contour plots and velocity profiles
for the azimuthally and temporally averaged normalized radial ũr = ur/us and azimuthal
ũφ = (uφ − uφ,2)/us velocities, with

us = 2
1 + η

|ηuφ,2 − uφ,1|, uφ,2 = ω2r2, uφ,1 = ω1r1 (3.1)

964 A36-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.392


M.H. Hamede, S. Merbold and C. Egbers

–0.05

0.2

0

–0.2
0 0.5 1.0

0.05 μ = +0.0085 μ = –0.007 μ = –0.04

0

–0.05

4

2

0 0.5 1.0

0 0.5 1.0

0.05 μ = +0.0085 μ = –0.007 μ = –0.04

0

–0.05

4

2

0 0.5 1.0

0 0.5 1.0

0.05

0

–0.05

4

2

0 0.5 1.0

0 0.5 1.0

0.05

0

H
/L

–0.05

0.2

0

–0.2

0.05

0

–0.05

0.2

0

–0.2

0.05

0

–0.15 –0.10
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r̃ r̃ r̃ r̃ r̃ r̃
Figure 3. Contour plots and velocity profiles showing the dependence of the normalized temporally and
azimuthally, (a) radial velocity ũr, (b) azimuthal velocity ũφ components. Profiles are plotted for 21 different
heights for Res = 6.1 × 104 and the rotation ratios μ = +0.0085, −0.007, −0.04. Colours represent positions
according to table 1.

for a shear Reynolds number Res = 6.1 × 104 and rotation ratios μ = +0.0085, −0.007,
−0.04, for 21 different heights, 10 heights above the apparatus mid-height and 10 below.

The radial coordinate used in the different figures is the dimensionless gap position
r̃ = (r − r1)/(r2 − r1), so for (r = r1), r̃ = 0 and, for (r = r2), r̃ = 1. For μ = +0.0085,
where the outer cylinder co-rotates with the inner cylinder, the normalized time and
azimuthally averaged radial velocity are mostly zero along all heights throughout the
gap, with only a very weak outflow near the inner cylinder. On the other hand, the
azimuthal velocity component changes noticeably with the radial position, where the
velocity profile of the 21 height collapses into one line. Going to the second flow regime,
the counter-rotating regime, and starting with the low counter-rotation μ = −0.007, a
significant difference compared with the previous case is observed, where the radial
velocity shows a clear variation along the different heights, and inflow and outflow regions
exist. These inflow and outflow regions can be a fingerprint of a rotating pattern in the
gap, like those observed by Froitzheim et al. (2017), but in the present case these regions
are axially short measured in the radial dimension. The axial wavelength of classical
and turbulent TV is usually in the order of L ≈ 2d (i.e. for η = 0.5 in Froitzheim et al.
2017), while here we observe an axial wavelength of L ≈ 0.43d. Thus, the observed flow
structures are strongly elliptical, and in contrast to classical vortical patterns, they are
better described as interlaced fingers of inflow and outflow. In these inflow and outflow
regions, the angular momentum is transported strongly across the gap, as shown in § 4.1.
For μ = −0.007, the azimuthal velocity is nearly independent of the height, and like
the previous case, the velocity profiles of the 21 height collapse into one line. However,
the profiles show a small decrease near the inner cylinder and depict a flat profile with
the smallest gradient in the bulk and near the outer cylinder. By increasing further the
counter-rotation rate, the angular momentum induced by the outer cylinder stabilizes the
flow near the outer cylinder (see figure 3, μ = −0.04). Near the outer cylinder ũr is mostly
zero, while close to the inner cylinder it shows the same behaviour as in the μ = −0.007
case. In other words, the axial dependence of the profiles here is restricted to the inner part
of the gap, where the magnitude of the radial velocity does not decrease compared with
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Very wide gap turbulent counter-rotating Taylor–Couette flow

the μ = −0.007 case. These results show a difference between the very wide gap TC flow
studied here and the geometries studied previously, where Froitzheim et al. (2017) found,
for η = 0.5, that the magnitude of the radial velocity component decreases significantly
when the axial variation of the flow is limited near the inner cylinder. In contrast to the
radial velocity, the azimuthal velocity shows a weak axial dependency in the bulk, but it
varies near the inner and outer boundaries along the heights. The different flow regimes
observed in the currently studied TC geometry are presented and discussed in detail in
Merbold et al. (2023).

3.2. Averaged velocity profiles
Given the general overview of the dependence of the flow organization on the rotation rates
in the previous section, and to better understand the influence of the rotation ratio μ and the
shear Reynolds number (Res) on the flow, the temporal and spatial averaged (t, φ, z) radial
profiles of the normalized angular velocity ω̃ = (ω − ω2)/(ω1 − ω2) with ω = uφ/r,
and the normalized angular momentum L̃ = (L − L2)/(L1 − L2) with L = r2ω = uφr are
analysed, where the angular velocity ω is the transported quantity in TC flow (see Eckardt
et al. 2007).

As the scope of our study is to understand the behaviour of the bulk, all profiles are
studied for the radial positions in the range of 0.1 < r̃ < 0.9. The thin boundary layers at
the cylinder walls are not well resolved while measuring the flow in the entire gap. The
thickness of the boundary layers and the boundaries of the bulk are difficult to define. In
particular for very wide gap geometries, a big difference between the thickness of the inner
boundary layer (λi) and the outer boundary layer (λo) is expected, as estimated by Eckardt
et al. (2007), where they derived λi/λo ≈ η3 and, for η = 0.1, it computes to 10−3. Also,
the different measurements in this study are done for high shear Reynolds numbers, which
reduces the size of the boundary layers additionally. For η = 0.5, Froitzheim et al. (2017)
assumed that the effect of boundary layers is negligible in the radial positions between
0.1 ≤ r̃ ≤ 0.9 and, therefore, assumed this range to be fully dominated by the bulk flow.
For the wider gap, even thinner boundary layers are expected, so it can be assumed that
both the inner and outer boundary layers are not represented in the limits of 0.1 ≤ r̃ ≤ 0.9.

Analysing the dependency of ω(r) profiles on the driving parameters Res and μ is useful
to understand how transport takes place in the flow. The profiles can be compared with the
laminar circular Couette solution of the Navier–Stokes equation (for η = 0.1), which is
given by

ωlam(r) = A + B
r2 , Llam(r) = Ar2 + B, (3.2a,b)

A = −ω1
η2 − μ

1 − η2 , B = ω1r2
1

1 − μ

1 − η2 . (3.3a,b)

The laminar profile is normalized like the measured profiles, so it becomes independent
of the cylinder speeds: thus,

ω̃lam(r) = 1
1 − η2

((r1

r

)2 − η2
)

, (3.4)

L̃lam(r) = 1
1 − η2

(
1 −

(
r
r2

)2
)

. (3.5)

Finally, the influence of the rotation rate on the averaged flow properties is depicted in
figure 4. The temporal, azimuthal and axial averaged angular velocity profiles are given
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Figure 4. Radial Profiles of spatially and temporally averaged (t, φ, z) normalized angular velocity ω̃ (a) and
normalized angular momentum L̃ (b) for Res = 6.1 × 104 and different rotation ratios μ. The dashed line in
(a,b) denotes the corresponding laminar profile (cf. (3.4), (3.5)). (c) Magnification for ω̃ profiles, and the radial
gradient of ω̃(r̃), for μ = −0.007, −0.015, −0.025.

in figure 4(a) for Res = 6.1 × 104 and for the rotation ratio −0.06 ≤ μ ≤ +0.008, where
the laminar profile is also plotted for comparison. The profile related to the co-rotating
regime approximately follows the laminar profile quite well, but the profiles deviate from
the laminar profile for pure inner rotation and counter-rotation. The profiles tend to become
flatter in the bulk flow until the gradient is lowest around −0.015 ≤ μ ≤ −0.007. For
higher counter-rotation, the profiles are shifted to higher ω̃ near the inner boundaries.

Figure 4(b) shows the corresponding profiles of the normalized angular momentum (L̃)
for the same driving parameters. In the presentation of L̃ one has to consider that (L1 − L2)
differs a lot with μ, especially close to the Rayleigh stable area, where it tends to be zero,
resulting in L̃ being large. The behaviour of the angular momentum across the gap for
the co-rotation case shows a unique behaviour compared with the other studied cases,
where 〈L̃〉t,φ,z has a positive slope varying through r̃. For weak counter-rotating cases, the
profiles are flat in the bulk with different values, but as the counter-rotation increases, the
flat radial profiles of 〈L̃〉t,φ,z exhibit a strong negative slope starting from a specific radial
position, and the position of this inflection point moves toward the inner part of the gap
as the counter-rotation increases. The position of this inflection point can be related to the
position of the neutral line, which will be discussed in detail in § 3.3.

Figure 5 shows the radial profile of the fluctuation intensity, measured by the root mean
square (r.m.s.), of the radial velocity multiplied by 2πr and the angular momentum (L)
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Figure 5. Radial profiles of spatially and temporally averaged (t, φ, z) root mean square (r.m.s.) of (a) the
radial velocity fluctuation multiplied by 2πr, and (b) angular momentum fluctuation, for different rotation
ratios and Res = 6.1 × 104. The crosses indicate the radial position of the neutral surface presented in figure 7.
The legends used in this figure are the same as in figure 4.

r.m.s. for different rotation ratios. The r.m.s. is calculated for the value U = u − 〈u〉t.
According to the incompressibility condition, a radial inflow or outflow decreases in
magnitude with the circumference. We compensate for this for better readability of the
graph by multiplying Ur

rms by 2πr. Thus, in the case of a radially confined inflow and
outflow region, where the mass flux in the radial direction is constant (like a large-scale
circulation or time-dependent oscillations), the profile experiences a flat behaviour and
2πrUr

rms quantifies the strength of the radial fluctuations. Figure 5(a) shows these radial
profiles of Ur

rms by 2πr for different rotation ratios. For μ = +0.007, 0 and −0.007, the
profile is almost flat in the bulk, whereas μ = 0 and −0.007 experience higher values
across the gap. For the stronger counter-rotating cases, the profiles show a different
behaviour, where the fluctuation profile experiences two different plateaus and a transition
region in between. Inside the bulk flow close to the inner cylinder, the strength of the radial
fluctuations quantified by 2πrUr

rms is observed to be less compared with the strength of
the radial fluctuations of the flow close to the outer cylinder. The radial position where the
behaviour changes from the inner region to the transient region coincides approximately
with the neutral surface, as determined in figure 7 (the radial position where the azimuthal
velocity vanishes). The same can be said about the angular momentum fluctuation (Lrms)
shown in figure 5(b), where the profiles for μ = +0.007, 0 and −0.007 are mostly flat in
the bulk, while for higher counter-rotation ratios, they are flat until they reach the radial
position of the neutral velocity (no mean angular momentum). Furthermore, in the outer
part of the gap the angular momentum fluctuation increases toward a strong maximum. At
the cylinder walls, the fluctuation has to be zero due to the no-slip boundary condition.

To focus more on the counter-rotating regimes with low rotation ratio, where the angular
momentum transport is expected to increase and achieve a maximum, and which will be
proven and discussed in detail in § 4.1, figure 4(c) shows the radial profile of 〈ω̃〉t,φ,z and
∂r̃ω̃(r̃) for μ = −0.007, −0.015 and −0.025 to have a close look at the angular velocity
gradient. All three cases show the lowest gradient in the centre of the bulk compared with
the other cases, but for the μ = −0.025 case, a more negative slope is observed compared
with both μ = −0.007 and μ = −0.015 cases, also, μ = −0.007 has a clear increase in
gradient in the inner region. Inspecting the radial profile of the radial gradient of ω̃(r̃)
one can clearly observe this low gradient in the bulk, where at 0.6 ≤ r̃ ≤ 0.8 the value of
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Figure 6. (a) Normalized radial gradient of angular velocity profiles as a function of μ, (b) normalized radial
gradient of angular momentum profiles as a function of μ. Blue and orange triangles represent the results of
Res = 20 000 and Res = 6.1 × 104 for different rotation ratios, respectively.

∂r̃ω̃(r̃) for μ = −0.007 and μ = −0.015 is mostly zero, which means that at these radial
positions 〈ω̃〉t,φ,z is constant.

To further quantify the smallest gradient of the 〈ω̃〉t,φ,z in the bulk, the gradient
is calculated along 0.1 < r̃ < 0.9. The gradient is directly evaluated from the velocity
profiles. The normalized radial gradient of angular velocity shown in figure 6(a) is negative
for all rotation ratios and for both Res. Both curves in the figure show the smallest value of
gradient for −0.02 ≤ μ ≤ −0.007, and the increase in gradient magnitude depends on the
Res. Figure 6(b) shows the radial gradient of the 〈L̃〉t,φ,z in the bulk, where also the 〈L̃〉t,φ,z
exhibits the smallest radial gradient for low counter-rotating cases. The two curves shown
in both figures are related to two different experiments with different shear Reynolds
numbers; however, both curves show the same behaviour but with slightly different values.
Thus, it is shown that the gradient values are more dependent on the rotation ratio than on
the shear Reynolds number.

3.3. Neutral surface
The neutral surface is defined as the radial location in the gap where the azimuthal velocity
component uφ vanishes. The velocity profile and particularly the azimuthal velocity (uφ)
profile give access to finding the radial position of the neutral surface by detecting the
position where the mean azimuthal velocity changes its direction (sign).

The neutral surface exists just for counter-rotating cases, and it coincides with the outer
cylinder for pure inner cylinder rotation, while for the co-rotating cases, the neutral surface
is not defined as both cylinders are rotating in the same direction. This surface indicates the
division between the stable and unstable regions and implies a detachment of the unstable
flow for any μ < 0. In the stable region any perturbation to the azimuthal flow decay
is directly damped by the mean azimuthal flow, where the radial position of the neutral
surface (rn) is defined according to Chandrasekhar (1961) as

rn,inv(μ) = r1

√
1 − μ

η2 − μ
. (3.6)

But experiments and viscous calculations show that large-scale circulation (LSC)
patterns can extend beyond this neutral surface when counter-rotation sets in. Esser &
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Figure 7. (a) Normalized neutral surface r̃n as a function of the rotation ratio μ for Res = 20 000 (black),
Res = 6.1 × 104 (red) and Res = 1.31 × 105 (yellow). (b) The radial position of the neutral surface at different
heights for Res = 6.1 × 104 and μ = −0.007, −0.025, −0.06.

Grossmann (1996) deduced from their stability calculation a prediction for the vortex
extension called rn,EG, and that flow structures emerge in the neutral surface by a factor of
a(η),

rn,EG(μ) = r1 + a(η)(rn,inv − r1); a(η) = (1 − η)

⎡⎣√ (1 + η)3

2(1 + 3η)
− η

⎤⎦−1

. (3.7a,b)

Due to the extension of the secondary flow to the outer cylinder wall, intermittency
evolves, causing radial inhomogeneity inside the gap. The onset of the intermittency was
used by Brauckmann & Eckhardt (2013) to predict the parameter of the torque maximum
and was experimentally validated by Merbold et al. (2013) and Froitzheim et al. (2017)
for η = 0.5, and Froitzheim et al. (2019b) for η = 0.357. Figure 7(a) shows the position
of the normalized neutral line for the three different shear Reynolds numbers, and for
the different rotation ratios studied in the current study. The curves are depicted together
with the two predictions introduced above. For the three curves shown in figure 7, it is
clear that the neutral line does not exist for all experiments with (0 ≤ μ) as mentioned
above. The detachment of the neutral line from the outer cylinder started for the low
counter-rotation cases. The position of the detachment point for the different Res did not
converge with either of the two predictions, and this can be explained by the patterns,
which do not fill the entire gap as they do in the observations by Froitzheim et al. (2017),
Ostilla-Monico et al. (2014), Huisman et al. (2014). These results differ in the flow in the
very wide gap (η = 0.1) in contrast to TC flow in narrower geometries. As an example,
Froitzheim et al. (2017) and Brauckmann & Eckhardt (2013) showed that the detachment
of the neutral line from the outer wall was well predicted by the prediction of Esser &
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Grossmann (1996) for η = 0.5 and η = 0.71, respectively. It is clear in the very wide gap
geometry studied here that the detachment of the neutral line starts once the outer cylinder
is set in counter-rotation. The outer cylinder radius is 10 times larger than the inner one
in the TC geometry used in the current study; this can explain the ability of the outer
cylinder rotation to stabilize the unstable fluid next to it once it is set to rotation, although
at very low rates, as shown in 7(a) for μ = −0.0077. For higher counter-rotating cases,
the observed neutral position coincides with the prediction of the inviscid fluids.

Figure 7(b) shows how the position of the neutral surface depends on the height. Here
the deviation of the neutral position with height is observed, which is caused by the
difference in the secondary flow (ur, uz where only ur is measured) between the different
heights. Figure 3 shows the alternating strong inflow and outflow for the measured heights.
Also from figure 7(b) it can be observed that the r̃n profile has a certain kind of periodicity
over the different heights for the presented rotation ratios. The variation of r̃n along the
different heights is the highest for μ = −0.025. The low value of the variation of r̃n for
μ = −0.007 can be returned to the fact that the neutral line is just beginning to detach,
where in some heights it is shown that the position of the neutral line is still attached
to the outer cylinder. For μ = −0.06, small axial variation is also observed due to the
stabilization effect of the rotation of the outer cylinder, so the unstable region is confined
near the inner cylinder.

4. Angular momentum transport

4.1. The Nusselt number
Beforehand, the flow field dependence on the different parameters, like the shear
Reynolds number Res and the rotation ratio μ, is shown. In this section the angular
momentum current Jω is analysed in terms of the Nusselt number. The angular momentum
transport is the conserved transport quantity in TC flow, and is defined according to the
Eckhardt–Grossmann–Lohse (EGL) theory (Eckardt et al. 2007) by Jω presented in (1.2).
At the cylinder walls, 〈urω〉A(r),t vanishes, and Jω results from the friction exhibited to
the walls and can be directly measured by the torque acting on the cylinders. In previous
studies on various radius ratios, this has been determined by measuring the torque at the
cylinders, while in this study the torque is too small for an accurate measurement system.
In this study, Jω is calculated using the velocity field measured by PIV. The measure of
the angular momentum transport is then defined by the quasi-Nusselt number,

Nuω = Jω

Jω
lam

, (4.1)

where Jω
lam = 2νr2

1r2
2(ω1 − ω2)/(r2

2 − r2
1) results from the laminar Couette solution (3.4).

According to the theory derived by EGL the transverse current of azimuthal motion Jω

is constant over all radii. Figure 8(a) shows the measured Nusselt number radial profiles
Nuω(r̃) for different rotation rates and Res = 1.31 × 105 normalized by its radial average.
It can be observed that the radial profiles in the radial range r̃ ∈ [0.2, 0.7] scatter around
1, in the limits between [0.85, 1.15], which is considered to be in good agreement with
the definition of the independence of the angular momentum flux on the radial position.
Although the profiles are not exactly flat, it should be taken into consideration that these
results are calculated from PIV measurements, where spatial resolution limitations always
exist. It remains part of the uncertainty when studying the angular transport in this study
that not all small scales are resolved. Another uncertainty is the instantaneous LSC,
which is not covered by the current measurements and may also influence the results.
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Figure 8. (a) The quotient of the Nusselt number radial profiles over its average in the radial range for different
rotation rates μ, at a fixed shear Reynolds number ReS = 1.31 × 105. (b) The variation of the radial averaged
Nusselt number NuTotal

ω as a function of μ for different shear Reynolds numbers.

However, an axial domain up to 2d is covered by our measurements, and figure 3 shows
the existence of an LSC of size ≈0.43d, which indicates that the axial dependence of the
flow is mostly covered by our measurements, and it can be concluded that the influence
of not covering the instantaneous LSC is small. To further improve the certainty of
LSC, a 3-D measurement would be a solution. But besides the difficulty of collecting
the necessary equipment for such measurement methods (several high-speed and highly
resolved cameras and optical equipment plus a new high-power light source), the 3-D
measurements reduce the resolution of small-scale fluctuations significantly and, as a
result, reduce spatial resolution drastically (Tokgöz et al. 2012). On the other hand, if a
method is used to resolve small scales by the use of magnification, the LSC will not be
covered. Taking all these factors into consideration and having a measurement method
that covers the largest possible variety of flow scales, the angular momentum transport in
this study is measured using a method already validated by Froitzheim et al. (2017) using
the same TC facility but with a different radius ratio η = 0.5, where it shows very high
accuracy. The Nuω is calculated at all gap radial positions, although the angular momentum
transport can be calculated by measuring the azimuthal and radial velocities at a singular
point, as done by Ji et al. (2006) and Burin, Schartman & Ji (2010) when studying the
wide gap TC geometry η = 0.35, using the 2-D laser Doppler velocimetry method. But
in order to enhance the certainty through statistics, the transport was calculated at the
different gap radial positions and averaged across the bulk area. As close to the cylinder
walls, the boundary layer will increase small-scale fluctuations induced in the shear, which
are not resolved by the used method. Thus, an averaging interval of Nuω in the radial range
r̃ ∈ [0.2, 0.7] is used to ensure higher accuracy.

The dependence of the Nusselt number Nuω on both the rotation ratio and the
shear Reynolds number is studied in figure 8(b), where the variation of the radial
averaged Nusselt number is plotted for three different Res values (Res = 20 000, 6.1 × 104

and 1.31 × 105) with respect to different rotation rates in the counter-rotating regime.
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The uncertainty bars in the figure show the maximum and minimum values of Nuω in the
radial domain 0.2 < r̃ < 0.7, where Nuω(r̃) is radially averaged. Using the measured Nuω

a separation is defined, so the counter-rotating rates with −0.012 ≤ μ ≤ 0 are named low
counter-rotating regimes, −0.025 ≤ μ ≤ −0.015 are named moderate counter-rotating
regimes and, for μ ≤ −0.04, high counter-rotating regimes. However, when the low
counter-rotating cases in the current study are compared with other studies with different
radius ratios, we are not comparing the exact values of μ between both studies but we are
comparing the different regimes according to the Nusselt behaviour.

From the presented Nuω in figure 8(b), first a common behaviour between the different
studied cases with different Res is observed, where it is obvious that Nuω achieves its
maximum value in the area of low counter-rotation. So for Res = 20 000, the rotation
ratio where the Nuω achieved its maximum value is determined at μmax = −0.011. While
for Res = 6.1 × 104 and ReS = 1.31 × 105, the maximum value of Nuω is determined at
μmax = −0.0075. In this study, as the PIV measurements are used to calculate the Nusselt
number, we are not able to calculate Nuω at a very large range of μ so we can determine
an exact value for μmax. As an example, for Res = 1.31 × 105, 6.1 × 104, the flow in the
low counter-rotating regime for rotation ratios μ = −0.0075, −0.015 is measured, where
it shows μmax = −0.0075. For Res = 20 000, and for the same regime, the rotation ratios
μ = −0.006, −0.011, −0.015 are measured, and it shows μmax = −0.011. So a general
conclusion can be drawn from the studied cases, that μmax is determined for rotation ratios
between −0.012 ≤ μmax ≤ −0.007.

From previous works like those done by Merbold et al. (2013) and Froitzheim et al.
(2017) and then by Froitzheim et al. (2019b), the maximum μmax was found to be
μmax = −0.2 ± 0.02 for η = 0.5 and μmax = −0.123 ± 0.03 for η = 0.357, respectively,
which showed that μmax is shifted toward less counter-rotating values for wider gaps. The
results of the current study support this idea too. Another observation is investigated here,
which agrees with the results for η = 0.5 and η = 0.357, that at μmax the normalized
radial gradient angular velocity profiles achieve minimum through the bulk, as shown in
figure 6(a), where it is clear for both curves related to Res = 20 000 and Res = 6.1 × 104

that the minimum gradient is in the area of −0.0077 ≤ μ ≤ −0.015, where μmax lies in
this domain. The results show a common behaviour with the previous studies done for
narrower gaps, where they showed that as the counter-rotation is increased beyond the
maximum μ < μmax, the value of the Nusselt number decreases. This is explained by
the fact that the rotation of the outer cylinder stabilizes the flow in the outer region, and
the enhanced LSC cannot fill the entire gap width, so the transport is suppressed. But in
huge contrast to the results achieved for η ≥ 0.357, in the current study we observe from
figure 8(b) that Nuω first decreases for μ < μmax, but then it achieves a minimum μmin,
and by increasing the counter-rotation further μ < μmin the Nuω tends to increase again.

The results show a dependence between the position of μmin and the shear Reynolds
number. As Res increases, the position of μmin shifts toward the low counter-rotating
regime. So for Res = 20 000, μmin = −0.04 is found, and for Res = 6.1 × 104, μmin =
−0.025, while for Res = 1.31 × 105, μmin can not be exactly determined. However, it
is clear that it exists for −0.025 < μ < −0.015. While μmax is independent of Res,
the minimum μmin shows a clear dependence on the shear Reynolds number. As a
conclusion, the angular momentum transport shows a maximum at low counter-rotating
regimes, and a second maximum is expected for higher counter-rotating regimes, as at
infinite counter-rotation one can assume a pure outer cylinder rotation with a low Nuω.
This behaviour is in contrast to what is reported for TC flows with η ≤ 0.9 where the
maximum of angular momentum transport is found at one defined rotation ratio, where it
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Very wide gap turbulent counter-rotating Taylor–Couette flow

is accompanied by the strengthening of the large-scale structures, which is also the case
here for the first maximum.

A similar double maxima behaviour of the angular momentum transport observed for
the currently studied TC geometry is observed on the extreme opposite side of the TC
geometry, the very narrow gaps (η > 0.91) (Brauckmann et al. 2016; Ezeta et al. 2020)
and the RPC flow (Salewski & Eckhardt 2015; Kawata & Alfredsson 2016), where for
such geometries, they reported the existence of two Nuω maxima at different rotation
rates. The first maximum, or what they called ‘the broad peak’, was accompanied by the
strengthening of the large-scale structures and a second maximum, ‘the narrow peak’,
which is a consequence of shear instabilities. The first maximum observed in all TC
geometries (0.1 ≤ η ≤ 0.98) and RPC flows can be attributed to the same reason, the
strengthening of the large-scale structures. But, concerning the second expected maximum
observed in the current study for η = 0.1 and the ‘narrow peak’, it is hard to assume that
both these peaks are a consequence of the same instability. In addition, Ezeta et al. (2020)
shows that as the driving of the system varies, the broad peak remains roughly at the same
rotation ratio, which is in agreement with what is observed in the current study for the first
Nuω maximum. Furthermore, they show that the narrow peak position is dependent on the
driving rate, which can also be the case for the second expected maximum in this study, as
it is observed here that μmin is Res dependent, which can lead the position of the second
maximum to be Res dependent too.

In order to further understand the behaviour of the Nusselt number with the different
parameters (ReS and μ), the flow velocity field is decomposed according to Brauckmann
& Eckhardt (2013),

u = 〈u〉t + u′ = ū + u′, (4.2)

where u′ denotes the turbulent fluctuations and ū is the temporal-averaged velocity. The
decomposition of the flow field shown in (4.2) is used in order to decompose the Nusselt
number into two values, one related to the mean large-scale contribution NuLSC

ω and the
second related to the turbulent contribution NuTurb

ω . So that the Nusselt number reads

Nuw = NuLSC
w + NuTurb

w , (4.3)

with

NuTurb
w = J−1

lam〈r3〈u′
rω

′〉A(r),t〉r, (4.4)

NuLSC
ω = J−1

lam〈r3(〈ūrω̄〉A(r),t − ν∂r〈ω̄〉A(r),t)〉r, (4.5)

where the mixed terms 〈ūrω
′〉A(r),t and 〈ω̄ru′

r〉A(r),t vanish (cf. Froitzheim et al. 2017). Also
the term ∂r〈ω′〉A(r),t vanishes as they are all linear in the deviation quantities (Brauckmann
& Eckhardt 2013).

In figure 9 the variation of both contributions of Nusselt number as a function of Res and
μ is studied. Figure 9(a) shows the radial averaged Nusselt number large-scale contribution
NuLSC

ω as a function of μ and Res. For Res = 20 000, 6.1 × 104 and 1.31 × 105, the NuLSC
ω

shows the highest value at μmax (which is in agreement with the previous investigation,
Froitzheim et al. 2017), where the large-scale circulation enhances the angular momentum
transport. Then NuLSC

ω decreases for stronger counter-rotation as the detachment of the
neutral line from the outer wall starts, so the circular patterns are more pushed toward the
inner region of the gap, which leads to a decrease in the Nusselt number. Figure 9(a) shows
that NuLSC

ω decreases for μ < μmax until it reaches a level where the contribution of NuLSC
ω

varies weakly with the rotation rate, and tends to be independent of the rotation rates.
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Figure 9. The Nusselt number Nuω is decomposed into its large-scale contribution (NuLSC
ω ) and turbulent

contribution (NuTurb
ω ). (a) Radial averaged Nusselt number large-scale contribution (NuLSC

ω ), (b) radial averaged
Nusselt number turbulent contribution (NuTurb

ω ) as a function of μ, for different shear Reynolds numbers.

Figure 7(a) shows how the position of the neutral line changes for higher counter-rotating
flows. These findings are in strong contrast to what was investigated for η = 0.5 and η =
0.357, where it was shown that NuLSC

ω decreases for higher counter-rotating cases.
It is important to also understand the contribution of turbulence to global transport,

quantified by the value NuTurb
ω . Figure 9(b) shows the radial averaged turbulent contribution

to the Nusselt number NuTurb
ω as a function of μ and Res. The NuTurb

ω shows a small
variation in the values along the different low counter-rotating cases for constant Res, but
a clear increase for the high counter-rotation case. As a comparison between figures 9(a)
and 9(b), for Res = 20 000, it is shown that the contribution of NuLSC

ω in the NuTotal
ω is

dominant in contrast to NuTurb
ω , while for Res = 6.1 × 104, the contributions are mostly

equal and, finally, for ReS = 1.31 × 105, the contribution of NuTurb
ω has increased much

more than that of NuLSC
ω . So it can be stated that as the shear Reynolds number increases,

the intensity of the turbulent contribution in the flow increases strongly, while the NuLSC
ω

is increasing only slightly with Res.

4.2. Spatial and temporal behaviour of the shear stress
Figures 10–12 show the space–time diagram of the shear stress component ωur multiplied
by r3 and divided by Jlam for different rotation ratios in the φ − t plane for Res =
6.1 × 104. For each rotation ratio, the space–time diagram is considered for the different
measured axial positions, but as they show mostly the same behaviour and for simplicity,
one axial height is selected for representation, where the selected height r3(urω) has
the highest intensity compared with other heights. Understanding the spatial–temporal
behaviour will also give us the opportunity to compare and reveal the influence of the
rotation ratio on the shear stress and angular momentum transport. The figures depict
the contour plot of the space–time diagram at five radial positions distributed along the
gap. The top subfigures belong to radial positions close to the inner cylinder, and the
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Figure 10. Contour plot showing the space–time diagram of r3(ωur)/Jlam in the azimuthal-time plane for
five different radial positions, at (a) �z = +12 mm, (b) �z = +4 mm from apparatus mid-height, for Res =
6.1 × 104 for the pure inner cylinder and low counter-rotating cases. The top figure is a radial position close
to the inner cylinder, and the bottom figure is close to the outer cylinder. Results are shown for (a) μ = 0 and
(b) μ = −0.0077.

bottom subfigures belong to radial positions close to the outer cylinder. It is noteworthy
that the range of φ is kept constant for this representation, which has a strongly increasing
circumferential length rφ as the radius increases.

Equation (1.2) can be separated into two terms: the first term represents the convective
term r3 < urω >A(r),t and the second represents the viscous term r3ν∂r〈ω〉A(r),t. In the
bulk flow where our analysis takes place, the convective term is the dominant term, as
the contribution of the viscous term does not exceed 5 % of the total Jω in the bulk. For
the stated reason, r3(urω) is chosen for the comparison between the different experiments
with different rotation ratios. Furthermore, r3(urω) is divided by Jlam so the values can
then be compared with the values in figure 8. The space–time evolution of r3(urω)/Jlam is
analysed in detail in figures 10–12 as it is the main contributor to the Nuω when averaged
over 〈〉A(r),t, which is represented by the depiction in the φ − t plane.

From the underlying data, the effort is to study the existence of travelling patterns
through the gap, and in the case of their existence, to see their intensity and the direction
of propagation. Inspecting the space–time behaviour leads to an understanding of how
turbulent structures behave throughout the gap and quantifies the transported angular
momentum. So for the shown figures, the red and blue spots are considered to be related
to a propagating pattern, which can be a LSC down to a small-scale turbulent pattern
that travels through the gap. Red patterns represent shear stresses that transport angular
momentum outwards (positive), while blue patterns transport momentum in the opposite
direction.
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Figure 11. Contour plot showing the space–time diagram of r3(ωur)/Jlam in the azimuthal-time plane for five
different radial positions, at (a) �z = 0 mm, (b) �z = +8 mm from apparatus mid-height, for Res = 6.1 × 104

for counter-rotating cases. The top figure is a radial position close to the inner cylinder, and the bottom figure
is close to the outer cylinder. Results are shown for (a) μ = −0.015 and (b) μ = −0.025.

2

–400 –200 0 200 400

φ

1

(a)

r̃ 
=

 0
.1

4

2

φ

1r̃ 
=

 0
.2

9

2

φ

1r̃ 
=

 0
.4

4

2

φ

1r̃ 
=

 0
.5

9

2

φ

1r̃ 
=

 0
.7

4

2 4 6 8
t (s)

2

–400 –200 0 200 400

1

(b)

2

1

2

1

2

1

2

1

2 4 6 8

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

t (s)

Figure 12. Contour plot showing the space–time diagram of r3(ωur)/Jlam in the azimuthal-time plane for
five different radial positions, at (a) �z = +4 mm, (b) �z = +4 mm from apparatus mid-height, for Res =
6.1 × 104 for high counter-rotating cases. The top figure is a radial position close to the inner cylinder, and the
bottom figure is close to the outer cylinder. Results are shown for (a) μ = −0.04 and (b) μ = −0.06.
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Starting with the pure inner cylinder rotating case, figure 10(a) shows the existence of
propagating patterns with a short time scale. The last is deduced from the thickness of the
red positive transporting patterns in the time axis, which is relatively small. The existence
of these patterns with short lifetimes can explain the moderate contribution of NuLSC

ω in
NuTotal

ω shown in figure 9(a). When the outer cylinder is set to rotate slightly in the opposite
direction of the inner cylinder rotation, different behaviour is observed. The positive spots,
which are related to the travelling patterns, appear in the flow, but with a longer lifetime
than the one we detected for μ = 0. Figure 10(b) shows the space–time diagram of r3(urω)

for μ = −0.0077, where the maximum Nusselt number is found (see § 4). The patterns
here can explain this maximum value of the Nusselt number. The existence of patterns with
high intensity and long lifetime enhance the transport procedure of angular momentum, so
that the NuLSC

ω contribution to NuTotal
ω is the maximum at this rotation ratio compared with

other rotation ratios. In contrast to μ = 0, here the huge and long-lasting positive patterns
increase the angular momentum transport, and fewer structures of negative transport can
be identified.

By increasing the rotation rate of the outer cylinder in the counter direction, the patterns
exist with a long lifetime, but in contrast to the μ = −0.0077 case, the intensity of
these patterns decreases. Figure 11(a,b), shows the space–time diagram of r3(urω) at
μ = −0.015 and μ = −0.025, respectively. Here it is observed how the intensity of
these patterns decreases from μ = −0.0077 to μ = −0.015 and then decrease more for
μ = −0.025, especially in the radius position near the outer region, which is explained by
the stabilizing effect of the outer cylinder rotation. The decrease of the pattern’s intensity
in these cases causes a decrease in the contribution of NuLSC

ω to NuTotal
ω , which leads to a

decrease in the total value of Nuω as shown in figure 8.
The dependence of the Nusselt number on the rotation ratio is studied in figures 8 and

9, where the results show an increase in the value of the Nusselt number for higher
counter-rotating cases. These results are not in agreement with those related to other
TC flows with different radius ratios, like η = 0.5 and η = 0.357. Another difference
between the currently studied geometry η = 0.1 and the previously studied geometry with
higher radius ratios is the contribution of the NuLSC

ω to NuTotal
ω , which did not vary with

high values between the different high counter-rotating cases, in contrast to what was
shown for η = 0.5 and η = 0.357 (Froitzheim et al. 2017, 2019b). The underlying flow
phenomena can be inspected in figure 12, where the space–time diagram of r3(urω)/Jlam
for μ = −0.04 and μ = −0.06 is presented. For the radial positions near the inner region,
a behaviour similar to μ = −0.015 and μ = −0.025 is observed, where the patterns
with long lifetimes exist but with lower intensity. But the main difference appears in
the radial positions near the outer cylinder, where small patterns with a short lifetime
but high intensity appear. The intensity of these patterns increases as they go for higher
counter-rotating cases. For μ = −0.04, shown in figure 12(a), the patterns show lower
intensity compared with the patterns shown in figure 12(b) for μ = −0.06. The existence
of these patterns in the outer regions of the gap can explain why the contribution of NuLSC

ω

did not decrease with increasing counter-rotation rate, while the intensity of the patterns
in the inner region decreased.

In order to study the direction of these propagating patterns, figure 13 shows the
space–time diagram of r3(ωur)/Jlam for the lowest and highest counter-rotating rates in
the r − t plane at a fixed azimuthal position. The figures are plotted for these two cases,
as it is clear from figures 10–12 that the patterns observed for μ = −0.007 appear for all
rotation ratios but with lower intensity, and the newly observed patterns in μ = −0.06
also appear in μ = −0.04 but with lower intensity. For μ = −0.007, it is clear from
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Figure 13. Contour plot showing the space–time diagram of r3(ωur)/Jlam in the radial-time plane at a fixed
azimuthal position φ = π/2 for Res = 6.1 × 104, for (a) μ = −0.007 and �z = +4 mm, and (b) μ = −0.06
and �z = +4 mm.
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Figure 14. Contour plot showing the space–time diagram of the radial velocity Ur in the azimuthal-time plane
for five different radial positions, at (a) �z = +4 mm, (b) �z = +4 mm from apparatus mid-height, for Res =
6.1 × 104 for (a) μ = −0.007 and (b) μ = −0.06. The colour map unit is m s−1.

figure 13(a) that the existing patterns, which are observed in the inner region for all
studied rotation rates, are propagating from the inner cylinder toward the outer cylinder.
While for μ = −0.06, figure 13(b) shows the existence of two sets of patterns, the first
set next to the inner cylinder but with low intensity that propagate radially outward, and
another set of patterns near the outer cylinder that propagate inward. In addition, figure 14
shows the space–time plots for the radial velocity (Ur) at different radial positions and at
a fixed height for both μ = −0.0077 and μ = −0.06. For μ = −0.077, the radial velocity
decreases in the direction toward the outer cylinder, or in other words, the propagating
speed of the patterns decreases as they approach the outer cylinder. The same is observed
for μ = −0.06, but here the radial velocity does not vanish in the stable regions near
the outer cylinder, although it exists with very low intensity, which means that the newly
observed patterns near the outer cylinder travel with lower speed inward in comparison to
the patterns propagating outward from the inner regions toward the central area.
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Figure 15. The spatial two-point auto-correlation coefficient of the azimuthal velocity fluctuation for
different rotation ratios at the same axial height shown in figures 10–12 for each, at (a) r̃ = 0.2 and
(b) r̃ = 0.8.

To further study the characteristics of the propagating patterns, especially those
observed near the cylinder walls, the spatial two-point auto-correlation coefficient of the
azimuthal velocity fluctuation in the azimuthal direction is calculated, where it is defined
according to (Dong 2016) as

Rφφ(r, z, �φ) =
〈u′

φ(r, φ, z, t)u′
φ(r, φ + �φ, z, t)〉t

〈u′2
φ (r, φ, z, t)〉t

, (4.6)

with �φ the azimuthal distance between every two correlated points. Figure 15 depicts the
results for two radial positions, one next to the inner wall and the second next to the outer
wall. For r̃ = 0.2, figure 15(a) shows that the auto-correlation function monotonically
decreases for all the counter-rotation cases shown in the figure. On the other hand, and
for the radial position r̃ = 0.8, figure 15(b) shows that the auto-correlation function for the
different μ achieves minimums at different φr/d values, which indicate the existence of
azimuthal structure at this radial position with different sizes depending on the rotation
ratio. For μ = −0.06, the minimum is observed for φr/d ≈ 1.25, which is interpreted as
the size of the newly observed patterns.

These small-scale turbulent structures are formed in the outer cylinder shear layer
and increase the transport in the outer part of the gap and so throughout the entire
gap. Obviously, from figure 9(a) the contribution of NuTurb

ω increases by increasing the
counter-rotation; this can explain why the value of the Nusselt number increases for high
counter-rotation. But as our measurements are limited to μ = −0.06, it is not possible
to know if this increase will continue for higher counter-rotating cases and where the
position of the second μmax will be in the high counter-rotating rates, as theoretically, for
very large μ, the flow should stabilize the fluid in the whole gap and the Nusselt number
has to decrease to a value near 1.

The first maximum of the Nusselt number that appears in the low counter-rotating
regimes is due to centrifugal instability, and this maximum is in agreement with the
predicted torque maximum of the enhanced LSC theory predicted by Brauckmann &
Eckhardt (2013). The appearance of the second maximum at high counter-rotations is
a new finding of this study, and the source of the high transport is connected to the
strong turbulent structures inside the outer cylinder shear layer. From the observations
of the flow structures, the existence of shear layer instability is assumed, which leads to
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Figure 16. Joint PDFs of radial velocity fluctuations u′
r and angular velocity fluctuations ω′ for radial positions

(top row) close to the inner cylinder (figures 10–12, first row), (second row) centre of the gap (figures 10–12,
third row) and (bottom row) close to the outer cylinder (figures 10–12, fifth row). Results are shown for the
rotation rates (a) μ = 0, (b) μ = −0.0077, (c) μ = −0.025 and (d) μ = −0.06, for a shear Reynolds number
of Res = 6.1 × 104.

increases in transport. Figure 8(b) shows that as Res increase, μmin approaches more to
μmax, in other words, as the shear of the system increases, the shear instability can start
earlier to contribute to the angular momentum transport for lower counter-rotating rates,
and after that, it is observed how the Nuω starts to increase again. The mechanism by
which these patterns are generated is still unclear to us. Tanaka, Kawata & Tsukahara
(2018) investigated the existence of modal structures near the outer cylinder for TC flow
with η = 0.2 where they mentioned that, because of the coherent structures on the inner
cylinder’s unstable side, the velocity disturbance could trigger Tollmien–Schlichting waves
at the stable outer cylinder, resulting in these modal structures. It is not clear if the newly
observed patterns from the current study are similar or not to these modal structures.
Because of this, a future study will concentrate on this aspect and investigate the reason
and behaviour of this shear layer instability in more detail at very strong counter-rotation.

For a better understanding of the patterns observed in the space–time plots, the quadrant
map of the fluctuating components of ur and ω is shown in figure 16. The quadrant analysis
is a turbulence data-processing technique, and it has been applied over time in various
experimental analyses, mainly in the investigation of turbulent shear flows (Wallace 2016;
Hasanuzzaman et al. 2020).

The fluctuations of two velocity components are scattered around their mean value and
distributed into four quadrants considering their signs. In the current study, the pair of
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(ω′, u′
r) is represented. The numbering of quadrants is done counterclockwise starting

with Q1 for both positive values of (ω′, u′
r), Q2 with ω′ < 0 and u′

r > 0, Q3 with ω′ < 0
and u′

r < 0, and Q4 with ω′ > 0 and u′
r < 0. In figure 16 the data are contoured in

terms of probability density, so the darkest zones in each plot correspond to the largest
concentrations of instantaneous fluctuations for that position.

Figure 16 shows the quadrant map of (ω′, u′
r) for different rotation rates at three different

radial positions distributed in the inner gap region, middle of the gap and outer region.
The velocities used for the current analysis belong to the same experiments used in
figures 10–12, with the same axial position and shear Reynolds number. In the inner
regions (the figures at the top), the concentration of the distribution of (ω′, u′

r) is mostly
in Q1 and Q3 for the different rotation rates, so they form an oval-like shape in the
diagonal direction, and they are the fingerprints of the patterns observed in the space–time
figures that travel outward. In the middle of the gap, the behaviour changes due to the
different rotation rates. For μ = 0 and μ = −0.0077, the main concentration is still in Q1
and Q3, but the difference compared with the inner regions is that the value of (ω′, u′

r)
decreases and the direction of the oval shape is observed to rotate towards the y axis.
These observations are still a figure print of the outward patterns, although with lower
intensities than those observed in the inner region, in agreement with what is observed
in the space–time plots. For μ = −0.025, two highly concentrated black dots appear in
the regions Q1 and Q2. The appearance of these two spots in these regions is a sign of
the existence of inward and outward patterns, although with very low intensities, as the
values of ω′ and u′

r are very low. This can explain why, at this counter-rotation rate, the
behaviour changes. This is seen at μ = −0.06, where the same behaviour is observed
but with higher values of ω′ and u′

r. In the outer regions (the figures in the bottom), for
μ = 0, the oval shape of the black spots in Q1 and Q3 still exists, however, with much
lower values of ω′ and u′

r. But for μ = −0.0077, the main concentration is also in Q1 and
Q3, while some black spots appears in Q2 and Q4, where these spots are in agreement
with the very light blue spots that appear in figure 10(b) at the same radial position,
which is a fingerprint of the existence of very weak patterns travelling inward. For higher
counter-rotations μ = −0.025 and μ = −0.06, the appearance of the black spots in Q2
and Q4 increases, which further explains the existence of the patterns that travel inward
and how the intensity of this pattern increases as the rotation rate of the outer cylinder in
the counter direction is increased. Another important observation from the figures related
to the outer region of the gap is that where it is seen for μ = 0 and μ = −0.0077, the
ω′ u′

r are more distributed along the y axis, which represents the radial velocity with low
angular momentum fluctuations. But, for μ = −0.025 and μ = −0.06, different behaviour
is observed, where the fluctuating velocities are more distributed along the x axis, which
represents the angular momentum fluctuations, with low radial velocity fluctuations. These
results can support the conclusion derived from the space–time plots, where it is concluded
that the shear layer instability has a high contribution to the angular momentum transport
in the high counter-rotating regimes.

5. Conclusion

In this paper the flow field for the very wide gap TC flow (η = 0.1) was investigated
for different shear Reynolds number values between 20 000 and 1.31 × 105, and different
rotation rates. The azimuthal and radial velocity components were measured at different
cylinder heights using high-speed PIV. The particle images were captured at 200 frames
per second, ensuring that the data was time resolved. This study gives the opportunity
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to understand the physics of the flow in a very wide gap TC geometry that has rarely
been studied before. The flow in this geometry shows some common behaviours compared
with the TC flows in different geometries with larger radius ratios and some different
behaviours.

The dependence of the flow field on the different rotation ratios was studied first, where
it was noted that the radial component is strongly height dependent, while the azimuthal
component is weakly dependent. Until today, it was not clear whether a LSC exists in the
wide gaps for η < 0.14 (Eckardt et al. 2007), as here the circumferential length of the
inner cylinder is smaller than the gap width, especially for high shear Reynolds numbers
and turbulent flow. In the current study the existence of the LSC for η = 0.1 was proven.
Although they are not represented as classical TV, their form is strongly elliptical with a
high axial wavenumber.

The radial velocity component formed different inflow and outflow regions through the
different heights, so they were described as interlaced fingers from inflow and outflow.
Also, by decreasing the μ for higher counter-rotating rates, it was observed that the radial
velocity component mostly vanishes near the outer cylinder but still exists with high
magnitudes in the inner region. The angular velocity and angular momentum profiles in
the bulk were investigated, finding the smallest radial gradient of angular velocity for low
counter-rotating rates of −0.007 < μ < −0.02, where μmax lies in this interval. These
findings are in good agreement with those of Ostilla-Monico et al. (2014) and Froitzheim
et al. (2019a). Other findings contradict these studies, as it was found in the current study
for the newly investigated geometry that the start of the neutral line detachment from the
outer cylinder wall did not coincide with μmax but the detachment started for the lowest
counter-rotating rate before reaching μmax. Also, both theoretical predictions of Esser &
Grossmann (1996) and Chandrasekhar (1961) were not able to predict the position of the
neutral surface, except for very strong counter-rotating rates, in which case our findings
agree with Chandrasekhar (1961) prediction. The earliest observed detachment of the
neutral line was explained by the high curvature of the system, which allows the outer
cylinder to stabilize the flow next to it at very low counter-rotating rates.

The angular momentum transport is quantified from the velocity fields, and the resulting
quasi-Nusselt number shows its highest values for the different studied shear Reynolds
numbers at the low counter-rotation regions, so μmax was found for −0.007 < μ <

−0.012. The value of Nuω decreases for higher counter-rotation and achieved μmin and
tends to increase again for decreasing μ, where it is expected to achieve a second
maximum. The value of the first μmax shows independence in the shear Reynolds number,
while the values of μmin were shifted toward high counter-rotation rates as the shear
Reynolds number decreased.

For further information and in order to understand the Nuω double maxima behaviour
with the advantage of a time-resolved measurement, the space–time behaviour of the
velocity field at different rotation rates was analysed. For all the counter-rotating cases
studied, patterns that travel radially outward through the gap were observed, and the
intensity and lifetime of these patterns show a clear dependence on the rotation ratio.
When compared with the other studied cases, these patterns appeared to have the highest
intensity and longest lifetime for μmax. Another set of patterns was found for the high
counter-rotating cases, but in contrast to the previously mentioned patterns, these patterns
just appear in the region next to the outer cylinder and propagate inward through the
gap. The existence of these inwardly propagating patterns at high counter-rotating rates
can explain the increase in angular momentum transport there, where we expect a
second maximum for higher counter-rotating rates. It was clear that the first maximum
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of Nuω is due to centrifugal instability, and this is explained by the patterns travelling
outwards through the gap. The increase of angular momentum transport for even higher
counter-rotations was counterintuitive, but from our observations of the flow structures,
especially the inward travelling patterns, the existence of a shear layer instability is
assumed, which causes the increase in the angular momentum transport.

In order to better understand the behaviour shown in the space–time figures, the
fluctuating components of u′

r and ω′ were analysed using the quadrant method, where they
showed a good agreement with the space–time plots. They show the existence of inward
patterns in the outer region of the gap for high counter-rotating ratios. A conclusion can be
derived here: that these patterns are a source of convective terms and, thus, are the reason
for the increase in Nusselt number. The figures show that the magnitude of the angular
velocity fluctuations increased in the regions near the outer cylinder for high-counter
rotating cases. This observation supports our assumption of the existence of a shear
layer instability responsible for the increase in angular momentum transport in the high
counter-rotating cases.

Only the counter-rotation was studied in this paper. The co-rotation, especially in the
centrifugal stable regime, will be the scope of another study as the flow drastically changes
and needs different aspects of analysis. Also, we look forward to further analysing our
time-resolved data using different methods like dynamic mode decomposition. Our results
raise different open questions that we wish to answer in the future, especially about the
behaviour of the boundary layers.
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