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The concept that a relationship exists between food, obesity and non-insulin-dependent 
diabetes (NIDDM) is not a new one, but one that has in recent years become more refined. 
The understanding that body mass reflects to some extent the amount of food eaten must 
have been present since earliest times. Although Hippocrates noted that ‘when more food 
than is proper is taken, it occasions disease’, the specific association between obesity and 
NIDDM (and other diseases) was made more recently. Indeed, it was the observations of 
Vague (1947) that clearly defined this relationship, and extended them to include the 
importance of body fat distribution. It is now apparent that in addition to the contribution of 
the energy content of food to overall energy balance, food content or type may directly 
impinge on development of obesity and NIDDM. The present review focuses on three 
molecules that appear to be central to the food-obesity-NIDDM relationship. These 
molecules, leptin, tumour necrosis factor (TNF)-a and peroxisome proliferator-activated 
receptor y (PPARy), have been recognized recently to have roles in regulation of body 
weight, food intake, energy balance and insulin sensitivity. As understanding of these and 
other molecules increases, new therapeutic strategies for treatment of obesity and NIDDM 
are becoming apparent. 

INTER-RELATIONSHIPS BETWEEN FOOD, OBESITY AND 
NON-INSULIN-DEPENDENT DIABETES 

Food 

The consumption of food in excess of requirements (i.e. positive energy balance) must lead 
to accumulation of stored energy. In mammals, this energy excess is largely in the form of 
fat, so if a situation of positive energy balance continues for long enough, obesity results. 
The situation is complicated slightly by differing thermogenic qualities of food type. 
Carbohydrate and protein are more thermogenic than fat, and thus, per unit energy 
consumed, dietary fat has a greater propensity to lead to obesity. 

Based on a large number of studies, it is likely that dietary components may directly 
influence insulin sensitivity and insulin output, and hence contribute to an hyperinsuli- 
naemic, insulin-resistant state independent of obesity. High concentrations of diet-derived 
triacylglycerols and free fatty acids (FFA) may contribute to the insulin-resistant state by 
promoting insulin secretion by pancreatic p-cells (Milburn et al. 1995), altering insulin 
binding to its receptor (Field et al. 1988), promoting hepatic glucose output (Rebrin et al. 
1995) and impairing insulin signalling (Boden & Chen, 1995; Gumbiner et al. 1996; 
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Ikemoto et al. 1996; Kim et al. 1996). Similarly, arachidonic and other fatty acid 
metabolites contribute to the regulation of expression of a number of key proteins involved 
in adipose tissue metabolism and insulin signalling. These proteins include GLUT 4 (Long 
& Pekala, 1996), lipid transport proteins (Ailhaud et al. 1994), PPARy (Vidal-Puig et al. 
1996), lipogenic proteins (Hillgartner et al. 1995) including lipoprotein lipase (EC 
3.1.1.34; Saxena et al. 1989), and the gene for leptin (Masuzaki et al. 1995). 

Obesity 

Obesity is a major risk factor for NIDDM, particularly if the excess adiposity is distributed 
in central (visceral) depots (Bjorntorp, 199 1). Furthermore, visceral obesity is associated 
with hypertriacylglycerolaemia, which may be in part due to reduced FFA utilization by 
muscle (Colberg et al. 1995). 

Fat mass may directly influence appetite and, hence, food intake. Adipose tissue 
secretes the peptide hormone leptin (Zhang et al. 1994), which in animal studies acts as 
a satiety factor mediating decreased food intake and increased energy expenditure (through 
an increase in BMR and in activity levels; Campfield et al. 1995; Halaas et al. 1995; 
Pelleymounter et al. 1995). Obese states are also associated with increased local and/or 
systemic concentrations of a number of hormones and cytokines known to influence 
insulin sensitivity. Principal among these are corticosteroids (shown in a number of 
epidemiological studies to be increased in obesity; Marin et al. 1992; Pasquali et al. 1993), 
androgens (shown to be elevated in obese females; Williams et al. 1993; Armellini et al. 
1994) and TNF-a (Hotamisligil et al. 1995; Kern et a1. 1995; Dandona et al. 1996). All 
three molecules directly induce insulin resistance via a number of mechanisms (Rizza et al. 
1982; Hauner et al. 1995; Bjomtorp, 1996; Hotamisligil et al. 1996; Moghetti et al. 1996) 
and provide molecular links between obesity and insulin-resistance states and NIDDM. 

In addition, the increased circulating concentrations of triacylglycerols and FFA 
commonly seen in obese individuals may contribute to insulin resistance and hyperinsuli- 
naemia as outlined previously. Again, elevation of these variables is characteristically 
associated with visceral obesity. Finally, it has recently become apparent that the ligand- 
dependent transcription factor PPARy has a central role in the development of adipose tissue 
(Tontonoz et al. 1994~). Ligands for PPARy promote adipogenesis in vitro (Kletzien et al. 
1992), but paradoxically, the same compounds increase insulin sensitivity in vivo (Berger et 
al. 1996). This suggests that similar molecules and signalling pathways may be involved in 
the regulation of fat mass and insulin action. 

Non-insulin-dependent diabetes mellitus 

This condition is characterized in its early stages by insulin resistance and hyperinsuli- 
naemia, and in later stages by (more severe) insulin resistance and insulinopaenia. It is 
commonly associated with obesity, hypertension and dyslipidaemia (syndrome X ;  Reaven, 
1995), and the ontogeny of the metabolic abnormalities, or their cause-effect relationships 
within the condition, remain ill-defined. There is clear genetic predisposition (presumed 
polygenic) as a background, but diet and other environmental factors are able to 
significantly, and to some extent reversibly, modify the disease process. This is amply 
demonstrated by the improvement in measures of insulin sensitivity seen with weight loss. 
Insulin resistance, without diabetic-range blood sugar levels, is a common disorder, with 
the major risk factor or setting for its occurrence being obesity. Finally, the 
hyperinsulinaemia seen in this spectrum of disorders may in itself contribute to obesity 
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via a number of mechanisms. Insulin is the classical anabolic hormone, its deficiency 
inducing weight loss, and its excess inducing weight gain (disproportionately in the 
visceral depots; Inadera et al. 1993). Insulin promotes pre-adipocyte differentiation in vitro 
(Dixon-Shanies et al. 1975), and may have effects on food intake and metabolic rate by 
regulation of leptin production by adipocytes (Cusin et al. 1995), and of neuropeptide Y (a 
neurotransmitter involved in appetite regulation) action in the hypothalamus (Sahu et al. 
1995). 

THREE CANDIDATE MOLECULES 

Leptin 

Leptin is a peptide hormone secreted by adipocytes. A number of leptin-receptor subtypes 
have been identified (Tartaglia et al. 1995), but the only form with putative signalling 
capability is predominantly expressed in specific hypothalamic regions involved in weight 
control (Considine et al. 1996a; Mercer et al. 1996). This supports the concept that leptin 
forms the afferent arm of a ‘feedback loop’ between adipose tissue and central areas 
involved with regulation of appetite, activity and metabolic rate (Campfield et al. 1995). 
More recent work has also demonstrated the importance of the leptin signal in regulation of 
a number of neuro-endocrine axes, including the hypothalamic-pituitary-adrenal and 
hypothalamic-pituitary-gonadal axis (Barash et al. 1996; Ahima et al. 1997). In 
evolutionary terms, the relative absence of leptin in states of underfeeding is likely to be 
as important as the elevated leptin seen in obesity (Ahima et al. 1996). In rodents, low 
leptin levels prevent ovulation (Chehab et al. 1997) and the onset of puberty appears to 
result from a transient increase in leptin levels (Cheung et al. 1997). This may relate to a 
critical fat mass or nutritional level being reached. Animal studies indicate that leptin is an 
important regulator of fat mass, as administration of the peptide induces weight loss in 
leptin-deficient as well as normal rodents (Campfield et al. 1995; Halaas et al. 1995; 
Pelleymounter et al. 1995; Chen et al. 1996; Muzzin et al. 1996). 

Circulating leptin levels are increased in obesity (Considine et al. 1996b), giving rise 
to the concept of ‘leptin resistance’. A co-existent relative secretory defect has not been 
excluded, and the issue is further complicated by the non-linear relationship between blood 
and cerebrospinal fluid (CSF) leptin concentrations as a function of weight. Thus, in obese 
individuals CSF leptin levels are relatively low in comparison with blood levels (Schwartz 
et al. 1996b). This suggests saturation (or regulation) of the system responsible for 
transport of leptin into CSF. Further evidence in support of this concept is the observation 
that diet-induced obese mice develop peripheral, but not central, resistance to leptin 
(Frederich et al. 1995; Van Heek et al. 1997). 

In states of low body fat such as anorexia nervosa, the low circulating levels of leptin 
support the concept that fat mass is reflected in leptin levels (Grinspoon et al. 1996). 
Animal studies signify the importance of low leptin as a signal to increase appetite, as the 
hyperphagia seen in oblob mice (which have an abnormal and bio-inactive form of the 
peptide) is reversed with leptin administration. Thus, leptin levels reflect fat mass, and 
directly influence appetite. To date, the influence of leptin, if any, on food preference has 
not been investigated. In addition to the effect of leptin on appetite, food intake and 
nutrition may in turn modulate leptin levels. Fasting reduces (Boden et al. 1996) and 
feeding increases (Saladin et al. 1995; Thompson, 1996) leptin levels, although the role of 
insulin in this regulation remains incompletely established (Saladin et al. 1995; Boden et 
al. 1996; Kolaczynski et al. 1996; Muscelli et al. 1996). 
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Leptin may also directly or indirectly influence insulin sensitivity and insulin secretion 
(Larsson et al. 1996). Insulin resistance is associated with increased leptin levels 
independent of body fat mass (Segal et al. 1996), and this may be due to the associated 
hyperinsulinaemia (Utrianen et al. 1996). Leptin receptors have been identified on 
pancreatic /3-cells raising the possibility that leptin may directly influence insulin secretion 
(Kieffer et al. 1996). Leptin treatment of obese and insulin-resistant animals results in 
improvement of both abnormalities (Muzzin et al. 1996; Schwartz et al. 1996a), but 
whether the improvement in insulin sensitivity is independent of, or secondary to, the 
reduced fat mass has not been determined. Finally, leptin may be a regulator of fat 
distribution. Subcutaneous adipocytes express more leptin mRNA than do omental 
adipocytes (Montague et al. 1997), and circulating leptin levels reflect subcutaneous, but 
not visceral, fat mass (Dua et al. 1996). Thus, visceral adiposity may increase with 
relatively little increase in leptin levels, allowing ‘unregulated’ visceral obesity to occur. 
This may predispose individuals to a pattern of fat distribution more likely to be associated 
with NIDDM. 

Turnour necrosis factor-a 

TNF-a is a cytokine first characterized by its ability to kill cells. Its actions include 
regulation of cell division, differentiation and apoptosis, modulation of gene expression 
and protein production, and involvement in the immune response (Fiers, 199 1). The effects 
of TNF are mediated by a large number of signalling pathways and signalling molecules, 
including prostaglandins. It is produced by a number of cell types including monocytes, 
macrophages and adipose cells. Production is increased by exposure to bacterial cell wall 
(lipopolysaccharide) and decreased by corticosteroids. 

Adipose tissue TNF production is increased in obesity. In obese individuals, compared 
with lean controls, adipose tissue TNF mRNA is increased 2.5-fold (Hotamisligil et al. 
1995; Kern et al. 1995), TNF protein is increased 2-fold (Hotamisligil et al. 1995) and 
circulating TNF levels are elevated up to 3.5-fold (Dandona et al. 1996). Furthermore, this 
overexpression is reversed with weight loss (Kern et al. 1995; Dandona et al. 1996). Thus, 
in obesity, adipose tissue-derived TNF may have endocrine, paracrine and autocrine 
effects. 

TNF has numerous actions on adipose tissue which suggest that the cytokine may act 
as an ‘adipostat’ and, hence, reduce the tendency toward further weight gain in settings of 
positive energy balance (Petruschke & Hauner, 1993; Kern et al. 1995). TNF induces 
adipose tissue leptin production and, hence, may reduce appetite and increase metabolic 
rate (Grunfeld et al. 1996). TNF directly induces insulin resistance via multiple 
mechanisms, including inhibition of insulin-receptor tyrosine kinase activity (Hotamisligil 
et al. 1996), down-regulation of insulin-responsive glucose transporter GLUT4 mRNA 
(Hauner et al. 1995) and, potentially, by down-regulating PPARy mRNA (Zhang et al. 
1996a see p, 893). TNF has effects which lead to reduced adipose cell volume by 
promoting lipolysis through effects on lipoprotein lipase and hormone-sensitive lipase (EC 
3.1.1.3) activity (Fried & Zechner, 1989; Green et al. 1994). Finally, TNF has effects 
which lead to reduced adipose cell number by reducing cell acquisition (by promotion of 
adipocyte de-differentiation and impairment of pre-adipocyte differentiation; Petruschke & 
Hauner, 1993) and by increasing cell loss (by induction of pre-adipocyte and adipocyte 
apoptosis; Prins et al. 1997). 

In addition to its action as a putative ‘adipostat’, TNF has been proposed to be a 
molecular link between obesity and NIDDM (Hotamisligil et al. 1993). Thus, as obesity 
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develops, adipose tissue TNF production increases with a net effect of inducing insulin 
resistance. This situation, whilst tending to reduce the rate of continued weight gain, has 
the deleterious effects of increasing circulating lipids, insulin and (potentially) glucose. 
Other mechanisms may be involved in the relationship between TNF and diabetes. First, 
TNF reduces insulin secretion (Chen & Wolf, 1996) and second, glucose promotes TNF 
production by monocytes (Morohoshi et al. 1996), and if adipose cell TNF production is 
similarly regulated, this could lead to elevated TNF levels in diabetes. These findings raise 
the possibility of intervention, and indeed, in animal studies, therapies aimed at reducing 
TNF levels have produced improvement in insulin sensitivity (Hotamisligil et al. 1993). In 
contrast, however, human trials of anti-TNF therapy (for diabetes) reported to date showed 
no improvement in insulin sensitivity despite apparently effective reduction in circulating 
TNF levels (Ofei et al. 1996; Scheen et al. 1996). 

PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR y 

PPARy is an ‘orphan’ nuclear receptor which acts as a ligand-dependent transcription 
factor (Issemann & Green, 1990). PPARy functions as an heterodimer with the retinoid X 
receptor (Kliewer et al. 1992), and is highly expressed in adipose tissue (Tontonoz et al. 
1994b). PPARy is expressed very early in the adipocyte differentiation process (Yeh & 
McKnight, 1995), and murine cell transfection studies suggest that expression induces 
determination of stem cells to the adi o enic lineage (Tontonoz et al. 1994b). Ligands 
identified to date include 15-deoxy-A , A -prostaglandin J2 (PGJ2; Forman et al. 1995; 
Kliewer et al. 1995), an arachidonic acid metabolite (which may be the endogenous 
ligand), and thiazolidinediones (Lehmann et al. 1995), a class of compounds active as 
insulin sensitizers, which are under trial for the treatment of NIDDM. 

PGJ2 and thiazolidinediones promote differentiation of murine pre-adipocytes and/or 
pre-adipocyte cell lines (Kletzien et al. 1992; Kliewer et al. 1995) and human pre- 
adipocyte differentiation in vitro (M. Adams, C. Montague, J. Prins, J. Holder, S. Smith, 
L. Sanders, C. Sewter, J. Digby, M. Lazar, V. Chatterjee and S. O’Rahilly, unpublished 
results). We have recently demonstrated that promotion of human pre-adipocyte 
differentiation by thiazolidinediones is depot-specific, with subcutaneous cells showing a 
dramatic response and omental cells being refractory. Studies have demonstrated that the 
relative potency of thiazolidinediones in promoting pre-adipocyte differentiation is similar 
to their potency in activation of PPARy receptor constructs and to their potency as insulin 
sensitizers (Berger et al. 1996). Thus, it appears that the molecular mechanisms of the 
actions of the compounds to promote adipogenesis and promote insulin sensitivity may be 
shared. The mechanism by which PPARy activation promotes glucose uptake has not been 
fully elucidated, but it appears that activation of both GLUT1 and GLUT4 (Ciaraldi et al. 
1995; Tafuri, 1996) is involved, and the effect is present in skeletal muscle as well as 
adipose tissue. In vivo studies indicate a profound effect of thiazolidinedione treatment on 
markers of insulin sensitivity (Young et al. 1995; Kumar et al. 1996; Wasada et al. 1996), 
with significant decreases in insulin, glucose and low-glycated haemoglobin levels, despite 
modest concomitant weight gain. This paradox has yet to be explained, but our 
demonstration of the depot specificity of the adipogenic effects of the drugs may indicate 
that any fat accumulation in response to treatment may occur in the subcutaneous depot, 
with little resultant impact on insulin resistance. 

PPARy activation may also influence obesity and NIDDM via other mechanisms. 
Activation of the receptor down-regulates leptin gene expression (Nolan et al. 1996; Zhang 
et al. 1996b), an effect that may be contributory to the weight gain seen with treatment. In 
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addition, thiazolidinediones antagonize many of the effects of TNF on adipose cells 
(Szalkowski et al. 1995), raising the possibility that part of their insulin-sensitizing effect 
may be via this mechanism. Finally, PPARy gene expression is regulated by nutrition, 
obesity and insulin (Vidal-Puig et al. 1996), further evidence for molecular links between 
food, obesity and NIDDM. 

CONCLUSIONS 

Whilst there is no doubt that food, obesity and NIDDM are strongly and intimately related, 
clear cause-effect links at the molecular level have only recently begun to be established. 
The present review has concentrated on thee molecules that are currently subject to 
considerable research effort, largely because of their role in this three-way relationship. 

As our understanding of the role of these and other molecules increases, it is hopeful 
that new strategies for treatment of obesity and NIDDM may evolve, strategies that may 
involve pharmacological and/or dietary manipulation. 

The author holds a Wellcome Trust International Research Fellowship. The assistance, 
input and support from my colleagues Carl Montague, Carola Niesler, Ciaran Sewter, 
Maria Adams, Kiish Chatterjee and, in particular, Steve O’Rahilly is acknowledged and 
greatly appreciated. 
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