
6

Parton model to parton theory: simple model theories

Basic ideas on the space-time structure of deeply inelastic scattering (DIS), symbolized in
Figs. 2.2 and 2.5, led us to the parton model in Sec. 2.4. However, as we saw in Ch. 5,
the leading regions can be more general than those that give the parton model. Indeed, the
properties needed for the literal truth of the parton model are violated in any QFT that needs
renormalization or that is a gauge theory, or both, like QCD.

Even so, the ideas that led to the parton model (the distance scales, time dilation and
Lorentz contraction) are such basic properties that one should expect the parton model to
be some kind of approximation to real QCD.

Because of the complications inherent to a sound treatment in QCD, it is useful to build
up methodologies step by step. In this chapter, we treat situations where the parton model
is correct, which happens in suitable model field theories. For these we will construct a
strict field-theoretic implementation of the parton model.

One key result will be operator definitions of the parton distribution functions (parton
densities or pdfs). Another result will be light-front quantization, whereby a probability
interpretation of a pdf can be completely justified, in those model theories where the parton
model is exact.

6.1 Field theory formulation of parton model

DIS concerns electron scattering off a hadronic target, e + P → e +X, to lowest order
in electromagnetism, with kinematic variables and structure functions defined in Sec. 2.3.
Our aim is to understand the asymptotics when the momentum transfer Q is much larger
than a typical hadronic scale, with the Bjorken variable x held fixed, away from 0 and 1.

In the parton model (Sec. 2.4), the process is treated as being caused by a short-distance
scattering of an electron off a parton, i.e., a quasi-free constituent of the target, with the
electron-quark scattering taken to lowest order.

We implement the parton-model idea field-theoretically by an assertion that the dominant
contribution arises from cut graphs of the form of the “handbag diagram” of Fig. 6.1, with
the virtualities of the explicitly drawn quark lines being much less than Q2. The methods
of Ch. 5 tell us that this is equivalent to the statement that the only leading regions are those
also symbolized by Fig. 6.1, where now the lower subgraph consists of lines collinear to
the target, and the upper subgraph consists of lines collinear in another direction.

161

https://doi.org/10.1017/9781009401845.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.006
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Fig. 6.1. Parton model in field theory starts from “handbag graphs” of this form. The
assertion that the parton model is exactly valid is that all leading regions correspond to
reduced graphs of the handbag form with the two bubbles being collinear subgraphs.

From the power-counting results in Sec. 5.8 and especially Sec. 5.8.11, we find the
conditions that Fig. 6.1 gives all the leading regions: (a) there are no gauge fields, so
that no extra gluons connect the hard scattering and the collinear subgraphs, and (b) the
theory is super-renormalizable, so that higher-order terms in the hard scattering are power-
suppressed.

Evidently, these conditions do not hold in QCD. It is nevertheless useful to investigate
the consequences of assuming that Fig. 6.1 gives the whole leading-power behavior of the
structure functions.

Even with this restriction, the power-counting results show that leading regions include
those with non-trivial corrections on the struck quark line, i.e., that we should use Fig. 6.1
rather than Fig. 2.5(b), where we omitted the upper bubble. The final state for quark k′

must therefore be considered a jet of hadrons, in agreement with experiment. The quark k′

does not need to give a single particle in the final state; it can only be treated as a single
particle over distance scales of order 1/Q. Of course, if Fig. 6.1 were the whole story, then
we would have particles in the final state with fractional electric charge. But Fig. 6.1 is not
the whole story, because there are other leading regions in QCD.

6.1.1 Analysis of parton kinematics

We now analyze regions of the form of Fig. 6.1 on the hypothesis that they are the only
leading regions. Our aim is to make a formal derivation of the parton model, and to obtain
a definition of the parton densities.

It is convenient to use light-front coordinates (App. B) in the Breit frame, as described
in Sec. 2.4. (A finite boost will not greatly affect the derivation.) In the Breit frame, the
(space-like) photon has zero energy and its large 3-momentum is in the−z direction. Then,
as we saw in Sec. 2.4, the big light-front component of the target’s momentum P is the
plus component. We define the fractional plus momentum of the incoming quark to be ξ

relative to the target, and write

qμ =
(
−xP+,

Q2

2xP+
, 0T

)
, (6.1)

P μ =
(

P+,
M2

2P+
, 0T

)
, (6.2)

https://doi.org/10.1017/9781009401845.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.006
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kμ = (
ξP+, k−, kT

)
, (6.3)

k′μ = kμ + qμ =
(

(ξ − x)P+,
Q2

2xP+
+ k−, kT

)
, (6.4)

with xP+ = Q/
√

2 in the Breit frame. The collinear property of the momenta is that the only
large component of k is its plus component and the only large component of k′ is its minus
component. From the analysis in Secs. 5.7 and 5.8, we find that the leading contribution
is from where the transverse momentum kT is of order m, and the small components of
longitudinal momentum, k− and k′+, are of order m2/Q, where m characterizes the particle
masses of the theory. Thus ξ − x is of order xm2/Q2.

The contribution of Fig. 6.1 to Wμν is

Wμν =
∑

j

e2
j

4π

∫
d4k

(2π )4
Tr γ μ Uj (k + q) γ ν Lj (k, P ), (6.5)

where Uj (k′) and Lj (k, P ) are the upper and lower bubbles, which are color- and Dirac-
matrix-valued functions of their external momentum and quark flavor. The sum over j

is over quark flavors and antiflavors, with ej being the charge of the struck quark. The
trace is over color as well as Dirac indices, and the factor 1/(4π ) is from the definition
of Wμν .

For the leading power in m/Q, a suitable approximation is to neglect the small compo-
nents of momentum, k−, kT, and (ξ − x)P+, with respect to Q where possible. A convenient
way to do this is:

1. Apply a Lorentz transformation to U so that its quark k′ has zero transverse momentum,
and then neglect k− with respect to q−:

(
k+ + q+ − k2

T

2(q− + k−)
, q− + k−, 0T

)
�
(

k+ + q+ − k2
T

2q−
, q−, 0T

)
. (6.6)

The matrix for the Lorentz transformation approaches unity as kT/Q→ 0.
2. Change the integration variable for the plus component of momentum from k+ to

l+ = k+ + q+ − k2
T/2q−, so that k+ = −q+ + l+ + k2

T/2q−. In the region of interest
k+ � −q+ = xP+, up to a small fractional correction.

3. Therefore, in the lower part of the graph, L, we approximate k+ by the fixed value xP+.
For this we need to assume that L is a smooth function of k+/P+, which is normally
true in QCD, as evidenced by the smooth dependence of structure functions on x in
Fig. 2.6. When the smoothness assumption is false, we can instead apply the derivation
to a local average of the x dependence of a structure function, as a generalization of
Secs. 4.1.1 and 4.4.

4. Project out the leading part of the Dirac matrix trace.
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After the first three steps, we find

Wμν �
∑

j

e2
j

4π
Tr γ μ

[∫
dl+

2π
Uj (l+, q−, 0T)

]
γ ν

[∫
dk− d2kT

(2π )3
Lj

(
(xP+, k−, kT), P

)]
.

(6.7)

The leading-power approximation has short-circuited the integrations, so that the integra-
tions over k− and kT are restricted to L, and the l+ integration is restricted to U . So we have
two factors coupled by a trace in Dirac spinor space, and a trivial trace over color indices.

6.1.2 Projection of Dirac matrix structure

Projectors on matrix space

To project out the leading part of the Dirac trace, we apply (A.23) to write L in terms of
numerical basis matrices:

L = A+ γ5B + γμCμ + γμγ5D
μ + σμνE

μν, (6.8)

where we temporarily drop the flavor index j . Now L is highly boosted from the target rest
frame, and we know the transformation properties of the coefficients, which are a Lorentz
scalar A, pseudo-scalar B, vector C, etc. In the target rest frame, each of the coefficients
A, . . . , Eμν has a fixed order of magnitude. Boosting to the Breit frame increases plus
components and decreases minus components by a large factor. The large terms are C+,
D+ and E+i , which multiply γ− factors. Only these can give leading-power contributions
to (6.5). They may be obtained from L by, for example, C+ = 1

4 Tr γ+L. Note that the
antisymmetry of σμν removes the possibility of an otherwise dominant term with E++. A
similar decomposition applies to Uj , for which the coefficients of γ+ are biggest.

Projectors on spinor space

The above method works for the quantities L and U as a whole. We now show an alternative
method that works more locally in the Feynman graphs: to extract the large Q asymptote,
it applies projectors on the individual lines joining the electromagnetic vertices to L and
U . This method will show that the hard scattering is computed with Dirac wave functions
for on-shell massless quarks, exactly as in the parton model.

Now each of L and U is obtained by a large boost from a rest frame. Since Dirac
spinors are in the ( 1

2 , 0)⊕ (0, 1
2 ) representation of the Lorentz group, spinors in one two-

dimensional subspace increase like Q1/2, and those in the other subspace decrease like
Q−1/2. The first subspace is the part that gives the leading power as Q/m→∞. The same
subspace is also obtained by taking the zero mass limit, and is the space of Dirac wave
functions for the appropriate massless momentum, in the plus direction for L and the minus
direction for U .

To project the leading power in the Dirac trace, we therefore use a matrix that projects
onto the space of massless wave functions. Let us(p∞) be a Dirac wave function for a
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massless particle of momentum p∞ and spin label s. A covariantly defined projection onto
their space is

P(p∞)
def=

∑
s us(p∞)us(p∞)γ · n
u(p∞)γ · nu(p∞)

= /p∞γ · n
2p∞ · n . (6.9)

Here n is any vector such that p∞ · n �= 0.
How do we resolve the ambiguity from the choice of n? Notice first that P(p∞) is

invariant when n is simply scaled by a factor. We actually need a projection matrix for
each external line of the hard scattering. The primary constraint on the vector n in each
projector is that the projection matrix should not upset the power-counting. Thus if in the
center-of-mass frame the largest components of p and n are of order E and nmax, then
p∞ · n is at most approximately Enmax. Preserving the power-counting requires that p∞ · n
should not be a large factor smaller than Enmax. Since the largest component of a on-shell
momentum is the energy, it is easiest to satisfy the requirement by setting n to be the rest
vector of the center-of-mass.

In the case of DIS, we need two projectors, onto the wave functions for target and jet
sides in (6.7). We can choose the n vectors in the (0, z) plane, e.g., the rest vector of the
Breit frame. The results are then unique, and the two projectors are

PA
def= P(k+, 0, 0T) = γ−γ+

2
, PB

def= P(0, q−, 0T) = γ+γ−

2
. (6.10)

For projections onto the conjugate spinors u we use

P(p∞)
def= n · γ ∑s us(p∞)us(p∞)

u(p∞)n · γ u(p∞)
= n · γ /p∞

2n · p∞ = 1− P(p∞), (6.11)

so that

PA = PB, PB = PA. (6.12)

Using these in (6.7) to project the leading-power terms gives

Wμν �
∑

j

e2
j

4π
Tr γ μ

[∫
dl+

2π
PBUj (l+, q−, 0T)PA

]

× γ ν

[∫
dk− d2kT

(2π )3
PALj

(
(xP+, k−, kT), P

)
PB

]
. (6.13)

Notice that PALPB projects out exactly the terms in L involving C+, D+ and E+i .
Thus the projection-matrix technique reproduces the results of the first method in this
section.

6.1.3 Parton densities: unpolarized and polarized

We now show how to organize (6.13) into a form involving parton densities and what we
will call hard-scattering coefficients. The hard scattering corresponds, as we will see, to
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DIS on a free quark target, i.e., the process γ ∗ + q → q with the quarks on-shell and of
zero transverse momentum.

Definitions

First we define quantities fj , λj and bi
jT by1

fj (ξ )
prelim=

∫
dk− d2kT

(2π )4
Tr

γ+

2
Lj (k, P ), (6.14)

λjfj (ξ )
prelim=

∫
dk− d2kT

(2π )4
Tr

γ+

2
γ5Lj (k, P ), (6.15)

bi
Tj fj (ξ )

prelim=
∫

dk− d2kT

(2π )4
Tr

γ+

2
γ iγ5Lj (k, P ), (6.16)

with the traces being over both color and Dirac indices. We have a sum over quark colors,
and it is not useful to define separate quark densities for different colors. The variable ξ is
k+/P+, and is equal to x in the use of these definitions in the parton-model approximation
for Wμν . We keep the more general variable ξ to emphasize that it is not in the first instance
to be identified with the Bjorken x variable of DIS.

These definitions correspond to the leading terms C+, D+ and E+i in (6.8). But there
is a change in normalization that lets fj (ξ ) etc. have simple interpretations when we use
light-front quantization. We will find that fj (ξ ) is the number density in ξ of quarks of
flavor j . The terminology “parton density”, “parton distribution” or “parton distribution
function” (pdf) is therefore appropriate – all three names are in common use.

We will also find that λj is the longitudinal quark polarization and bjT is the transverse
quark polarization, both normalized to maximum values of unity. For a spin- 1

2 parton these
variables suffice to specify the most general spin state, pure or mixed; see Sec. 6.5. We will
also see that the quark polarizations are functions of ξ times the corresponding variables
specifying target polarization. We therefore define the polarized parton densities �fj (ξ )
and δTfj (ξ ) as the coefficients of proportionality:

λtarg�fj (ξ ) = λjfj (ξ ), (6.17)

bTtargδTfj (ξ ) = bTj fj (ξ ). (6.18)

An interpretation will be that �fj is the number density of parallel-helicity quarks minus
that of antiparallel-helicity quarks of flavor j in a target of maximal right-handed helicity,
i.e., it is the helicity asymmetry. Similarly, δTfj (ξ ) is an asymmetry in transverse spin.

Notation and terminology The transverse spin density is also called the transversity density
and the symbols δf , �Tf , hT, �1f and h1 are also used.

1 The notation
prelim= indicates that these definitions are preliminary. In full QCD, modified definitions will be necessary.

The definitions given here are exactly correct only when all of the leading regions in a theory are of the kind depicted
in Fig. 6.1.
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Parton-model factorization

We now write (6.13) in terms of quark densities and polarization:

Wμν �
∑

j

e2
j

4π
fj (x)

∫
dl+

k̂+
Tr
D

[
γ μ PBUj (l+, q−, 0T)PA γ ν

/̂k

2

(
1− γ5λj − γ5b

i
jTγ i

)]
.

(6.19)

Here k̂ is an approximate version of k,

k̂ = (xP+, 0, 0T), (6.20)

which is massless and of zero transverse momentum. In (6.19), we choose the trace with
U to be only over Dirac indices (subscript “D”); a color average is assumed, a triviality
since U is a unit matrix in color space. This formula is of the form of a parton density
times a structure tensor for DIS on a massless quark target of momentum k̂. It still has an
integral over the jet factor Uj , which we will convert to the Dirac matrix for a spin sum for
a final-state quark in Sec. 6.1.4.

6.1.4 Result for structure functions; including polarization

We now analyze the jet factor, obtained from the upper part Uj of the graphs. The result
will be a cancellation of all but the lowest-order graph, after which we will get exactly the
standard parton model result, complete with its generalization to polarized scattering.

To do this, we use an argument from our discussion of e+e− annihilation, around
Figs. 4.13 and 4.14, applied to the integral over l+ of

PBUj (l+, q−, 0T)PA = q−γ+Ũj (2l+q−), (6.21)

which is a cut 2-point function and therefore a discontinuity of an ordinary uncut propagator.
In this equation, we have noted that the projectors pick out the coefficient of γ+ in U , and
have observed that its coefficient is q− times a function Ũ of the virtuality of the quark.
Terms proportional to γ+γ5 or to γ+γ T are absent because of parity invariance and because
of rotational invariance of the integral over final states at zero transverse momentum.

Initially we have a contour integral in l+ around the cut of the propagator. We deform
the contour out into complex plane, to where the quark has virtuality 2l+q−, i.e., of order
Q2. Here we may correctly approximate all masses in the propagator by zero. Moreover,
as usual, the decrease of the projected U (or of the uncut projected propagator) at large l+

is the decrease of Ũ in (6.21) at large virtuality, which is governed by dimensional analysis
of Feynman-graph integrands.

For the moment, we are working under the hypothesis that the parton model is exact, in
which case our theory is super-renormalizable. Then all graphs for U beyond lowest order
decrease by a power faster than 1/l+, and thus they provide a contribution to the integral
suppressed by a power of Q. This leaves the lowest-order propagator, which decreases
only as 1/l+. Therefore, we replace U by the lowest-order cut massless propagator
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PBUPA = q−γ+ (2π )δ(2l+q−) to obtain∫
dl+

k̂+
Tr
D

[
γ μ PBUj (l+, q−)PA γ ν

/̂k

2

(
1− γ5λj − γ5s

i
jTγ i

)]

= 2π

Q2
Tr γ μ (/̂k + /q)γ ν

/̂k

2

(
1− γ5λj − γ5s

i
jTγ i

)
. (6.22)

Then the parton-model approximation to Wμν is

Wμν =
∑

j

e2
j fj (x)

[
1

2

(−gμν + qμqν/q2)+ (k̂μ − qμk̂ · q/q2)(k̂ν − qνk̂ · q/q2)

k̂ · q

+1

2
iεμναβ qαλj k̂β

k̂ · q

]
. (6.23)

To relate this to our original statement of the parton model, we first recognize the last
factor in (6.22) as the numerator factor for DIS on a free massless quark target, i.e., for the
process γ ∗ + qj (k̂)→ qj (k̂ + q). Next we observe that if we assign the incoming quark
a fractional momentum ξ , i.e., if we replace k̂ by (ξP+, 0, 0T), then the final-state cut
propagator gives a factor

2πδ
(
(k̂ + q)2

) = 2π

Q2
xδ(ξ − x). (6.24)

The first factor appears on the right of (6.22), and the delta function sets the parton
momentum fraction equal to x.

Comparison of (6.23) with the definitions of the structure functions in (2.20) gives the
parton-model results for all four structure functions:

F
QPM
2 =

∑
j

e2
j x fj (x), F

QPM
1 = 1

2

∑
j

e2
j fj (x), (6.25a)

g
QPM
1 = 1

2

∑
j

e2
j�fj (x), g

QPM
2 = 0. (6.25b)

The first two agree with the previous results, Bjorken scaling being a prediction. But now
we have a concrete derivation, which is susceptible to improvement. We also have a definite
definition of the parton densities, and an extension to polarized DIS.

6.1.5 Parton transverse momentum and virtuality

The quark lines entering and leaving the hard scattering have momenta that we approximated
as being of zero transverse momentum, massless and on-shell. However, it is important that
this is an approximation applied only in a certain part of the diagrams. The actual quarks
have non-zero transverse momentum, are off-shell, and have non-zero masses. Thus, in
the definition, (6.14) etc., of the parton densities, the parton transverse momentum and
virtuality are non-negligible and are actually integrated over. Failure to recognize this
important distinction can lead to all kinds of unphysical paradoxes.
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L R

L R

Fig. 6.2. Interference between left-handed and right-handed initial quark in DIS is prevented
by helicity conservation at the electromagnetic vertex.

6.1.6 Parton densities vs structure functions

The parton density for transverse spin drops out of the result for Wμν , so that the g2

structure function is zero in the parton-model approximation. This is associated with helicity
conservation at the electromagnetic vertex in massless electron-quark scattering, in (6.22).
To see this, observe that a transversely polarized state is a linear combination of states of
left-handed and right-handed helicity, with a relative phase dependent on the azimuthal
angle φ of the transverse spin vector around the direction of motion of the particle:

|φ〉 = 1√
2

(
eiφ/2 |L〉 + e−iφ/2 |R〉) . (6.26)

Getting a transverse-spin dependence of a cross section, i.e., a dependence on φ, requires
interference between amplitudes for a left-handed and a right-handed initial state that
produce some common final state. But helicity conservation at the electromagnetic coupling
of massless particle implies that the final-state quark has the same helicity as the initial
state, so that there is no interference (Fig. 6.2).

Because the unpolarized and the longitudinal-polarization quark densities have simple
relations to structure functions in the parton model, one often sees a confusion between the
concepts of parton density and structure function, with parton densities sometimes being
called structure functions. The error of confusing the concepts must be strongly avoided.
The structure functions are properties of cross sections, needing only elementary properties
of electroweak interactions for their definition. But parton densities are more abstract
theoretical constructs in QCD, with definite definitions; they are only related to experiment
because factorization theorems can be derived to relate structure functions and other cross
sections to parton densities in certain approximations. An excellent example of confusion
between parton distributions and structure functions is in Jaffe and Ji (1991), where even the
same notation is used for some structure functions and their corresponding parton densities.

The issue becomes particularly noticeable in the case of transverse polarization (Barone,
Drago, and Ratcliffe, 2002), since transverse spin dependence drops out of Wμν (at leading
power). While the formalism clearly allows for a possible transverse spin dependence, it
is the dynamics of a particular theory that determine whether or not there is a non-zero
transverse spin dependence for a particular reaction. A reaction other than fully inclusive
DIS is needed for a non-zero effect. This has been a topic of intense study in recent
years – see Secs. 13.16 and 14.5.4 for examples.

Confusion has arisen from incorrect results in the older literature which apparently
indicate that transverse-polarization effects are universally suppressed in hard collisions,
contrary to reality. One example is in Feynman (1972), where on p. 157 an incorrect
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derivation related a combination of the g1 and g2 structure functions to the transverse spin
densities. Another example is in Wandzura and Wilczek (1977), where we read (p. 196):

For a highly relativistic quark, the quark spin is, of course, nearly always parallel to its momen-
tum.

and (p. 197):

In the parton model combination g1(x)+ g2(x) is equal to the difference k+(x)− k−(x) of
distribution functions for a parton with momentum fraction x in the infinite momentum frame to
be spinning up (k+(x)) or down (k−(x)) in a nucleon spinning up (perpendicular to the infinite
momentum). Now, again, if the parton is moving rapidly we expect that with overwhelming
probability it is spinning along its direction of motion, and therefore

k+(x) ≈ k−(x) . . .

Their notation follows that of Feynman (1972), and k+(x)− k−(x) is to be identified with
δTf (x). The problem is that the large size of the longitudinal component of a boosted spin
vector is entirely misleading.

This can be seen in the formula (A.26) for the expression of a spin state in Dirac spinor
state. The spin vector appears in the combination /S/M , whose biggest component is of order
E/M for a particle of high energy. However the effect of the big component disappears,
because it is multiplied by /p +M .

This can be seen from the non-singular massless limit (A.27). Thus for our purposes, it
is generally preferable to use a helicity density matrix to parameterize the spin state of a
particle or a parton (Sec. 6.5). The helicity variable λ is invariant under boosts along the
direction of motion. It is true that DIS structure functions on a spin- 1

2 target are defined,
(2.20), in terms of the spin vector; but in a more general situation, the density matrix gives
a better route to correct power-counting.

6.2 When is the parton model valid?

The word “valid” in the title of this section means “correct to the leading power of Q”.

6.2.1 Properties needed to derive parton model

To understand the generalization of the parton model to QCD, it is useful to pinpoint the
assumptions used to derive the parton model. Then we can determine QFTs in which the
assumptions are derivable or easily repairable. The inter-related assumptions are as follows.

1. The dominant contributions have the structure of Fig. 6.1, i.e., the hard scattering occurs
off a single parton, with no final-state interactions between the outgoing parton and the
spectator part of the target.

Note that final-state collinear interactions of the struck quark are explicitly allowed
for, and they cancel, as we showed, so that the final-state quark can be treated as if it
were free.
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target

struck quark target remnant
t

z

Fig. 6.3. The Libby-Sterman analysis associates these world lines of massless particles in
the Breit frame with the leading region that gives the parton model.

2. The hadronic amplitude L falls off sufficiently rapidly at large kT that the integrals
defining the parton densities are convergent.

3. The corrections to U at large virtuality of k′ fall more rapidly than the free-field term.
Thus when we integrate over the virtuality of k′, as in Sec. 6.1.4, all but the free-field
term drop out. This leaves us with an effectively free final-state quark: we can replace
Fig. 6.1 by Fig. 2.5(b).

4. The parton density is smooth and slowly varying on a scale of x.

6.2.2 When are they true?

In Secs. 5.8 and 5.9, we found rules that determine all the regions that contribute at the
leading power of Q. If all the leading regions are those represented in Fig. 6.1, then we need
a super-renormalizable model theory without gauge fields. The lack of gauge fields removes
the possibility of a soft subgraph, and of extra gluons connecting the collinear subgraphs
to the hard subgraph. Super-renormalizability implies that higher-order corrections to the
hard scattering are power-suppressed.

In such a theory (e.g., Yukawa theory in three space-time dimensions) it is also true that
the decrease of L at large kT and of U at large virtuality is sufficient to give convergence
of the integrals on the right of (6.13). To see this, we observe that if the integrals did not
converge, there would be an unsuppressed contribution from large values of the integration
momenta. Then there would be extra leading regions beyond those of Fig. 6.1.

Related to the Libby-Sterman analysis is that the trajectories of the target and its con-
stituents, including the struck quark and the target remnant, are in the vicinity of the
light-like world line from bottom left to top right in Fig. 6.3. At the origin, the virtual
photon injects negative momentum to make the struck quark go to the left. Near its world
line are the collinear interactions that convert the outgoing quark into a jet.

6.2.3 Smoothness or otherwise of parton density

It was known, even in the earliest days, that to derive exactly the parton model from QFT
one needs a sufficiently fast decrease of U and L, and that this assumption is violated
in typical QFTs in a four-dimensional space-time. However, a less obvious assumption is
that the L factor and hence the parton densities are smooth functions of ξ , so that one
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P

q

Fig. 6.4. Notation for parton-model approximation to the graph in Fig. 6.1.

can replace k+ by xP+, given that |k+ − xP+| = O(xm2/Q2)� xP+. The necessary
quantitative property is that the x derivative of a parton density should obey∣∣∣∣x ∂f (x)

∂x

∣∣∣∣ � f (x). (6.27)

If this condition is badly violated, the relative errors in the parton-model approximation
are much bigger than m2/Q2. When we generalize the parton model to the standard
factorization theorems of QCD, the same smoothness property is needed.

From experimental measurements, the smoothness property in fact holds at moderate
and small x for the real strong interaction, and hence for QCD. This is seen from the plots of
the F2 structure function in Fig. 2.6, or from many successful fits of factorization formulae
to data that give measured values for parton densities.

However, the smoothness assumption is not universally true. In the first place, par-
ton densities decrease to zero at x = 1 roughly like a power: f ∼ (1− x)n, where the
exponent is around 3 to 6, depending on the flavor of parton. Then (6.27) is violated as
x → 1: ∣∣∣∣x∂(1− x)n∂x

(1− x)n

∣∣∣∣ = nx

1− x
∼ n

1− x
. (6.28)

In the second place, we can apply parton-model methods to other theories. For example
in electromagnetic interactions at high energies it can be useful to apply parton methods (and
the associated factorization theorems). In that case we need parton densities for electrons
and photons in on-shell electron and photon states. As is readily seen in model calculations,
these have delta-function terms at x = 1. This is the epitome of non-smoothness.

6.2.4 Notation for parton-model approximation

A diagrammatic notation for the approximations used in (6.19) is useful. For an unapprox-
imated graph, Fig. 6.1, we represent the approximation by Fig. 6.4. Crossing the quark
lines entering and leaving the hard scattering are thin bent lines (“hooks”) denoting where
approximations are applied. The approximations are as follows. On the hard-scattering
side, i.e., the concave sides of the hooks, the momenta k and k′ = k + q are replaced by
(k+, 0, 0T) and (0, k− + q−, 0T) respectively, and masses are set to zero (which for this
graph is a triviality). Momentum conservation then requires the approximated momenta to
equal (−q+, 0, 0T) and (0, q−, 0T). The approximation also includes the insertion of Dirac
projection matrices, PA or PB , as appropriate.
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These operations are all applied on the concave, hard-scattering sides of the hooks.
Further operations are applied outside the hard scattering, to change the momentum of the
quark in the target bubble from k+ to xP+ = −q+, and to change the momentum of the
final-state quark so that it has no transverse momentum.

One way of implementing the approximations on momenta is as a replacement of the
hard vertex and the associated momentum conservation delta function. Let us use TPM, L

and TPM, R to denote the application of the approximator on, respectively, the left-hand and
right-hand sides of the final-state cut. Because of the Dirac projection matrices, these have
slightly different formulae:

TPM, L γ νδ(4)(q + k − k′) = PAγ νPA δ(q+ + k+) δ(q− − k′−) δ(2)(k′T), (6.29a)

TPM, R γ μδ(4)(q + k − k′) = PBγ μPB δ(q+ + k+) δ(q− − k′−) δ(2)(k′T). (6.29b)

Thus we formulate the approximations locally at the places indicated by the hooks, rather
than as global operations on a complete Feynman graph.

6.2.5 Shift of final-state momentum

Our parton-model approximation employed a shift of the plus component of k and the minus
component of k′. This implies a shift of the momenta of both parts of the final state, i.e.,
the target remnant and the struck quark’s jet. The approximation is certainly valid under the
conditions we consider, i.e., in the parton-model kinematic region, when the parton density
is a smooth function of x, and for the fully inclusive structure function, i.e., integrated over
hadronic final states.

However, there are more general situations. For example, Monte-Carlo event generators
generate complete simulated events for processes like DIS. When they are based on the
usual partonic methods, the standard kinematic approximations result in events that violate
momentum conservation. Thus it is necessary to adjust (Bengtsson and Sjöstrand, 1988)
the parton kinematics so that generated events obey 4-momentum conservation.

In this and similar cases, if one wishes to obtain a more systematic treatment, there is a
conflict between the need to maintain exact kinematics and the kinematic approximations
used in standard factorization. This has been particularly emphasized by Watt, Martin, and
Ryskin (2003, 2004); Collins and Zu (2005); Collins and Jung (2005); Collins, Rogers,
and Staśto (2008). These authors show that more general methods are needed. One case,
to be treated in this book in Chs. 13 and 14, concerns cross sections sensitive to partonic
transverse momentum.

For our immediate purposes, of treating inclusive cross sections, the standard kinematic
approximations are appropriate. But it is important to be aware of the flexibility of adjusting
the approximations to the actual situations under discussion. Thus it is useful to make very
explicit the form of the approximations, with an aim of recognizing situations where changes
are needed. The form of the kinematic approximations is closely tied to the detailed structure
of the corresponding factorization theorem, and to the definitions of the parton densities
(or their generalizations used with different approximations).
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6.3 Parton densities as operator matrix elements

6.3.1 Unpolarized quark density

The parton density defined in (6.14) is an integral over the lower bubble in Fig. 6.4, together
with a trace with γ+/2:

fj/h(ξ )
prelim= Tr

γ+

2

∫
dk− d2kT

(2π )4
P

k

(6.30)

where h denotes the type of the target hadron, and k+ = ξP+. The diagram is a certain
amplitude times its conjugate, with the amplitude involving one off-shell quark, the target
state, and a final state. When the quark line on the left of the final-state cut is directed away
from the lower bubble, then its top end corresponds to annihilation of a quark by the field
ψj . It is left as an exercise (problem 6.2) to derive an explicit formula for the quark density
as a matrix element of a bilocal operator:

fj/h(ξ )
prelim=

∫
dw−

2π
e−iξP+w−

〈
P |ψj (0, w−, 0T)

γ+

2
ψj (0)|P

〉
c

. (6.31)

With standard conventions, it is the right-hand part of the matrix element, with the ψj field,
that corresponds to the part of the diagram to the left of the final-state cut, and the left-hand
part of the matrix element corresponds to the complex conjugated amplitude on the right
of the cut. Only the contribution with the quark fields connected to the target state |P 〉 are
to be included, and this is indicated by the subscript “c”.

The field ψj (0) represents the extraction of a quark by the hard scattering. Because we
integrate over all momentum in the minus and transverse directions, the antiquark field
in the complex conjugate amplitude has zero relative position in w+ and wT; note that
w+ is Fourier conjugate to the opposite light-front component k− in momentum space.
The average position of the quark and antiquark fields is irrelevant, since the definition is
actually applied to a momentum eigenstate, i.e., a target state uniformly spread out over all
space. The space-time locations of the fields are shown in Fig. 6.5.

We have again tagged the definitions as preliminary, in view of the adjustments that will
be needed in QCD.

The restriction to connected amplitudes can be implemented by subtracting disconnected
graphs, Fig. 6.6, i.e., as subtraction of the vacuum expectation value (VEV) of the operator.
This can be written as

〈P ′|ψj (y)γ+ψj (0)|P 〉
c

def= 〈P ′|ψj (y)γ+ψj (0)|P 〉 − 〈P ′|P 〉 〈0|ψj (y)γ+ψj (0)|0〉 .
(6.32)

An off-diagonal matrix is used here, since momentum eigenstates are non-normalizable.
After the subtraction, the diagonal matrix element can be taken: i.e., with P ′ = P . Without
this manoeuvre, we would subtract an unquantified infinity proportional to 〈P |P 〉.
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t
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P

k

Fig. 6.5. The space-time location of the fields
is along a light-like line. The shaded region
represents the approximate location of the tar-
get hadron in its rest frame.

Fig. 6.6. Disconnected graphs, of this
form, must be removed from the defini-
tion of the parton density when extended
to negative ξ .

6.3.2 Antiquark density

For the density of an antiquark, whose flavor we denote by j̄ , we have similarly

fj̄/h(ξ )
prelim=

∫
dw−

2π
e−iξP+w− Tr

γ+

2

〈
P
∣∣ψj (0, w−, 0T)ψj (0)

∣∣P 〉
c
, (6.33)

where the trace is over the Dirac and color indices of the fields. In the parton model, the
antiquark density appears in contributions to the structure function where the direction of
the quark line in Figs. 6.1 and 6.4 is reversed.

6.3.3 Lorentz-covariant definition

The definitions of parton densities are not Lorentz invariant, but they have Lorentz-covariant
expressions in terms of a single light-like vector nμ ∝ (0, 1, 0T) = δ

μ
−, so that ξ = k · n/P ·

n. Thus:

fj/h(ξ )
prelim=

∫
dλ

2π
e−iξn·Pλ

〈
P
∣∣∣ψj (λn)

n · γ
2

ψj (0)
∣∣∣P 〉

c
. (6.34)

Here the right-hand side is a scalar, so it is a function of Lorentz invariants only, i.e., of k · n
and P · n, with n2 fixed at zero. The formula is invariant under scaling of n by a positive
factor, so that only the combination k · n/P · n, i.e., ξ , is allowed. Hence, as a function
of ξ , the numerical values of the quark density are independent of n, provided only that
it is light-like and future-pointing. But for deriving factorization a suitable choice of n is
needed, which is determined by the directions of the external momenta p and q.

6.3.4 Relation to wave function?

A parton density can be thought of as some property of the target. But since it is an integral
along the light-like line in Fig. 6.5, there can be no simple relation to an ordinary wave
function as used in non-relativistic physics, which corresponds to properties of the target
at a fixed time in the target rest frame. The transformation to a light-like line involves the
interactions of the theory.
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We will need to use light-front quantization to interpret parton densities in terms of wave
functions (Secs. 6.6 and 6.7).

6.3.5 Support properties

The intermediate state in the parton density, between the two fields, has momentum P − k.
For it to be physical, it must have non-negative energy, so that P+ − k+ ≥ 0, i.e., ξ ≤ 1.
Thus the parton density is zero if ξ > 1.

In the parton-model factorization formula, (6.19) and Fig. 6.4, the final state in the upper
part of the graph has plus momentum ξP+ + q+ = (ξ − x)P+. This must be positive, in
order that the state have positive energy, so that ξ ≥ x > 0. This restriction applies quite
generally in standard factorization formulae for cross sections. Thus we will use parton
densities only in the range 0 < ξ ≤ 1.

However, the matrix element for the parton density is generally non-vanishing for
negative ξ . We will see later that we can relate fj/h(ξ ) for negative ξ to the antiquark
density with the opposite sign of ξ : fj/h(ξ ) = −fj̄/h(−ξ ). This will be critical to the
derivation of sum rules. But to make it work, it will be important that we have removed
disconnected graphs, Fig. 6.6, from the definition; the disconnected graphs are non-zero
for negative values of ξ .

6.3.6 Polarized quark densities

We defined polarized quark densities in (6.15) and (6.16). By the same methods as we used
for the unpolarized densities, these can be re-expressed as expectation values in a target
state of the operators ψ(z)γ+γ5ψ(0) and ψ(z)γ+γ i

⊥γ5ψ(0):

λtarg�fj (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)
γ+γ5

2
ψj (0)

∣∣∣∣P, S

〉
c

, (6.35)

bTtargδTfj (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)
γ+γ i

⊥γ5

2
ψj (0)

∣∣∣∣P, S

〉
c

. (6.36)

Here |P, S〉 denotes a state with normalized helicity λtarg and normalized transverse spin
bTtarg. These definitions presuppose proportionalities between quark and target spin vari-
ables, to be proved in Sec. 6.4. Then the quantities �fj (ξ ) and δTfj (ξ ) are independent of
target polarization, i.e., they are parton densities par excellence.

6.3.7 Polarized antiquark densities

Similarly, definitions of polarized antiquark densities are

λtarg�fj̄ (ξ ) = −
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)ψj (0)
γ+γ5

2

∣∣∣∣P, S

〉
c

, (6.37)

bTtargδTfj̄ (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)ψj (0)
γ+γ i

⊥γ5

2

∣∣∣∣P, S

〉
c

. (6.38)

https://doi.org/10.1017/9781009401845.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.006


6.4 Consequences of rotation and parity invariance 177

Note the extra minus sign in (6.37) compared with the other antiquark densities. For the
moment, we can regard this as purely a strange convention. Later we will see that the signs
are those needed to give a number-density interpretation.

6.4 Consequences of rotation and parity invariance: polarization dependence

In this section, we examine how parton densities depend on the polarization of the particles
and the quarks. This will introduce us to techniques for analyzing the consequences for
parton physics of symmetries of QCD, and will justify the definitions given in Secs. 6.3.6
and 6.3.7.

Mental health warning: There are no fixed conventions for the normalizations of many
of the objects discussed in this section. The objects concerned range from the definitions
even of basic mathematical quantities, like εκλμν , through the definitions of various kinds
of spin vector, to the definitions of structure functions and parton densities. Quantities of
the same name and symbol change their normalizations between different papers, even
by the same authors. If one needs to make numerical results, it is important to check all
conventions very carefully.

The conventions used in this book are defined in Apps. A.7 and A.10.

6.4.1 Polarization state

The target can be polarized, and in the most general case a spin density matrix is needed
to specify the polarization state. So the target state |P, S〉 has an extra argument specifying
the polarization. For the general case, this argument can be the density matrix, with respect
to some basis. But for massive spin- 1

2 hadron, like a proton, we can use the covariant spin
vector Sμ, as defined in App. A.7. Although our notation, as in (6.35) etc., is as if we are
working with pure states, there is actually an implicit trace with a helicity density matrix,
as defined in (A.8) and (A.13), to allow the target to be in a mixed state.

A helicity basis is rather natural when we work with high-energy particles or with a
massless limit. Helicity states are obtained in the theory of irreducible representations
of the Poincaré group for massless particles. Moreover, the chiral symmetry ubiquitous
in the massless limit of QCD perturbation theory effectively tells us to treat left-handed
and right-handed quarks as if they were separate particles. Even so, transversely polarized
quarks, i.e., states that are linear combinations of equal amounts of left- and right-handed
components, are allowed physically, and have interesting properties.

When we obtain the most general dependence on target spin, it is important that expec-
tation values as defined by (A.13) have a spin dependence that is linear in the spin vector
S, Equally, it is linear in the normalized helicity λ and normalized transverse spin bT, as
defined in App. A.7. Helicity and transverse spin are well behaved in the massless limit
unlike the covariant spin vector, and they apply also to the spin state of a quark parton.

The formula (A.12) for S in terms of bT and λ exhibits some oddities in the zero-mass
limit. In the rest frame of a massive spin- 1

2 particle, the spin vector has only a spatial
component, which unproblematically corresponds to standard usage in non-relativistic
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physics. Boosting along the z axis does not change the transverse component of S, but
increases its longitudinal components. In contrast, λ and bT are invariant under the boost
(except for the obvious change of sign when the direction of motion is reversed!).

But a massless particle has no rest frame. Instead one works either with the helicity den-
sity matrix or with its decomposition (A.9) in terms of (bT, λ). The spin vector is useful for
a proton but not for an on-shell massless quark such as we use in hard scattering. In contrast,
the density matrix and the Bloch vector formalisms work for both quarks and protons.

6.4.2 Rotations about z axis

The definition of what we called the unpolarized quark density fj (ξ ) makes no reference
to any azimuthal direction, in the (x, y) plane. Therefore we expect this parton density to
be independent of the direction of the transverse spin vector of the target. Since matrix
elements are linear in the target’s spin vector, this implies that there is no dependence even
on the size of the transverse spin vector.

To derive this and similar properties formally, we define an operator U (φ) on state space
that corresponds to a rotation by an angle φ around the z axis; its action on a helicity
eigenstate is

U (φ) |P, α〉 = e−iαφ |P, α〉 . (6.39)

Hence the matrix element of an operator between helicity eigenstates obeys

〈P, α′| op |P, α〉 = ei(α−α′)φ 〈P, α′| U (φ)† op U (φ) |P, α〉 . (6.40)

The combination U (φ)† op U (φ) is the rotated operator. Of the operators defining
the parton densities the following two are rotation invariant: ψ(0, w−, 0T)γ+ψ(0) and
ψ(0, w−, 0T)γ+γ5ψ(0). From (6.40) follows that their matrix elements are diagonal in
helicity eigenstates of the target.

For the case of a spin- 1
2 target, we can apply the rotation to the spin vector S of a general

spin state, (A.13), to get

〈P, rotated S| op |P, rotated S〉 = 〈P, S| rotated op |P, S〉 . (6.41)

6.4.3 Implications for unpolarized quark density

Spin- 1
2 target

We now show that the unpolarized quark density fj (ξ ) defined by (6.31) is independent of
the polarization state of a spin- 1

2 target.
We already proved that the matrix elements of the operator defining the unpolarized

parton density are diagonal in helicity. But the transverse part of the spin vector only results
in off-diagonal terms in the density matrix, so the unpolarized density is independent of
transverse spin.

Now a parity transformation reverses the helicity of a state, but also reverses the 3-
momentum. A rotation can then be applied to bring the momentum of the state back to its
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original value, and makes no change to the already reversed helicity. Thus we can apply
the same method as above, but with U (φ) replaced by a unitary operator UP that reverses
helicity while preserving P :

UP |P, j 〉 = |P,−j 〉 . (6.42)

Since the operator in (6.31) is invariant under UP , it follows that the unpolarized parton
density is the same in states of opposite helicity, in a parity-invariant theory.

For a spin- 1
2 target there are only two helicity states, so we now have shown that the

unpolarized parton density fj (ξ ) is independent of the polarization state.

Higher spin

When the target has spin higher than 1
2 , there is a wider range of possibilities. For exam-

ple, in a spin-1 target, there is one unpolarized quark density for targets of helicity ±1
and one for targets of helicity zero. There are corresponding generalizations for the
DIS structure functions. See problem 6.8 for an exercise to fill in the details, and see
Hoodbhoy, Jaffe, and Manohar (1989) for results on DIS, including several new structure
functions.

6.5 Polarization and polarized parton densities in spin- 1
2 target

To treat the polarized densities in a spin- 1
2 target, we use its helicity density matrix ραα′ (S)

from (A.9), now written as

ρ(S) = 1

2

(
I + λtargσz + bTtarg · σ

)
, (6.43)

where the label “targ” is used to distinguish the spin variables for the target from those for
the quark. Expectation values of operators are linear in λtarg and bTtarg.

The operator defining the polarized parton density �fj (ξ ) in (6.35) is invariant under
rotations around the z axis. Therefore its matrix elements are diagonal in helicity and hence
independent of transverse spin, just like the unpolarized density. But unlike that case, the
operator has the reversed sign under a parity transformation, as does normalized helicity
λtarg. So the analog of (6.41) used with the operator UP of (6.42) shows that the matrix
element of the operator is linear in λtarg, as asserted in the matrix element representation
(6.35). Thus all the dependence on target polarization is in the explicit factor of λtarg, so
that �fj (ξ ) is polarization independent.

Finally, the remaining parton density δTfj (ξ ) in (6.36) is obtained from the matrix

element of an operator ψj (0, w−, 0T) γ+γ i
⊥γ5

2 ψj (0) that transforms as a (two-dimensional
transverse) vector. Because of the γ5 factor, it actually transforms as a pseudo-vector, i.e.,
under a parity transformation it acquires a minus sign relative to the transformation of an
ordinary momentum. The transverse spin vector is also a pseudo-vector.

To get the correct rotation properties, the matrix element of the operator must be a
coefficient times the transverse spin vector, but possibly with the application of a rotation
of some angle around the z axis. This rotation, as a function of ξ , would be a property
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of the target; it would represent some analog of optical rotation phenomena in a chiral
medium. But let us apply a parity transformation followed by a 180◦ rotation about the x

axis (say). This preserves the momentum and the x component of spin of the target, but it
reverses the y component of spin. The same transformation applies to the operator. Thus a
spin in the x direction gives only a non-zero x component to the matrix element, and
similarly for the y component. Thus parity invariance requires there to be exactly no
rotation between the spin vector and the matrix elements. (Actually a 180◦ rotation is also
allowed, but for the two transverse directions in question, this is equivalent to a reversal of
sign, i.e., to an overall coefficient.) Thus all the dependence on target polarization is in the
explicit factor of bTtarg, so that δTfj (ξ ) is polarization independent.

6.6 Light-front quantization

A standard method of formulating quantum field theory uses the usual canonical quanti-
zation rules for a quantum theory: equal-time commutation (or anticommutation) relations
are obtained from the Lagrangian density, and then the Heisenberg equations of motion
determine the fields at all times from their values at one particular time. An alternative, first
proposed by Dirac (1949), is to use a light-like surface t + z = 0 as the initial surface on
which (anti)commutation relations are fixed. This is called light-front quantization, with
the terms “light-cone quantization” and “null-plane quantization” being synonyms.

Light-front quantization is useful for DIS and other processes where a target system
is probed along an almost light-like surface. Inspired by initial approaches using the so-
called “infinite momentum frame”, Bardakci and Halpern (1968) developed light-front
quantization in field theories. Then Kogut and Soper (1970) made a very clear fundamental
treatment. See Brodsky, Pauli, and Pinsky (1998) and Heinzl (2001) for reviews. See also
Heinzl and Werner (1994) for a careful treatment of the issue that in solving the equations
of motion, it is not sufficient to specify initial conditions on a light-like surface.

As we will now show, light-front quantization gives a direct probability interpretation
of parton densities and yields a convenient decomposition of hadronic states in terms of
partonic states. Further advantages are explained in the literature just quoted. In extending
the method to theories like QCD that are renormalizable or have gauge fields, there are a
number of complications that imply that light-front quantization must be used with care.
Nevertheless, it provides important insights.

6.6.1 Formulation

To understand the general principles of light-front quantization, we examine the simple
case of a Yukawa field theory with Lagrangian density

L= i

2
[ ψγ μ∂μψ−(∂μψ)γ μψ]−Mψψ + 1

2
(∂φ)2 − m2

2
φ2 − gψψφ − h

3!
φ3 − λ

4!
φ4.

(6.44)
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This theory is renormalizable at space-time dimension n = 4, and is super-renormalizable
when n < 4. We use the scalar rather than the pseudo-scalar coupling for the Yukawa
interaction, to avoid complications with γ5 in dimensional regularization.

We use light-front coordinates (x+, x−, xT) as defined in App. B. Then the equations of
motion are

0 = i /∂ψ −Mψ − gψφ, (6.45)

0 = 2∂+∂−φ −∇2
Tφ +m2φ + gψψ + h

2
φ2 + λ

3!
φ3. (6.46)

In light-front quantization we treat these equations as giving evolution in x+ from fields on
the initial surface x+ = 0.

Now the term with an x+ derivative of the Dirac field is iγ+∂+ψ , which only affects
two independent components of ψ . Therefore we project onto what are called “good” and
“bad” components of ψ by the matrices

PG = 1

2
γ−γ+, PB = 1

2
γ+γ−. (6.47)

These are exactly the same as we used in projecting out the leading power of Q in the
Dirac trace in the parton-model approximation to DIS, but now they appear with a more
fundamental significance. In view of the jargon of this part of the subject, I replaced the
subscript “A” by “G” for good: PG = PA. These matrices obey the usual properties of
projectors (PG + PB = 1, P2

G = PG, etc., and especially PBPG = PGPB = 0). Then we
define the good and bad parts of the fermion field by

ψG = PGψ, ψB = PBψ, (6.48)

so that ψG = ψPB .
The equation of motion for ψ then separates into two separate two-dimensional

pieces:

0 = 2i∂+ψG + γ−
(
iγ j∇j −M − gφ

)
ψB, (6.49a)

0 = 2i∂−ψB + γ+
(
iγ j∇j −M − gφ

)
ψG, (6.49b)

where the sums over j are over transverse components. The first equation gives the evolution
of ψG in x+, while we treat the second equation as a constraint: it fixes ψB at a given value
of x+ in terms of ψG, up to boundary conditions. So we treat ψG as the independent set of
components. The solution of the constraint equation is

ψB(x) = γ+
i

2∂−

(
iγ j∇j −M − gφ

)
ψG

= iγ+

4

∫ ∞
−∞

dy− sign(x− − y−)
(
iγ j∇j −M − gφ

)
ψG(x+, y−, xT)+ Cψ (x+, xT).

(6.50)
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There is a term Cψ independent of x− that is not determined by the equation of motion.
When a Fourier transform over x− and xT is made, to momentum variables k+ and kT,
the Cψ term is proportional to a delta function at k+ = 0. It is therefore characterized as
contributing to the zero mode only. A similar zero mode arises in using the equation of
motion (6.46) for the φ field to determine ∂φ/∂x+ in terms of the fields on a surface of
fixed x+.

The zero-mode issue is quite important to the vacuum structure, and it is not clear to
me that it has been properly treated in the literature. But much of what we do will not
need a professional treatment of the zero modes. The primary issue is that the equations of
motion alone are not sufficient to determine the evolution in x+. Extra boundary conditions
must be imposed. In contrast, for equal-time quantization, the Euler-Lagrange equations are
sufficient to determine the time derivatives of the fields in terms of the independent fields
and canonical momentum fields. A related complication concerns the 1/k+ singularity
in mode sums like (6.59). For treatments of these and related issues, see Nakanishi and
Yamawaki (1977), Yamawaki (1998), Heinzl (2003), Heinzl and Ilderton (2007, Sec. 4),
and Steinhardt (1980).

We now arrange to form the quantum mechanics of our system by using Hamilton
methods, but with evolution in the variable x+ instead of conventional time.2 For this we
need commutation relations on surfaces of constant x+, and a Hamilton to control the
evolution by the standard Heisenberg equation

i
∂A(x)

∂x+
= [A(x), P+], (6.51)

which applies to any field operator A(x). Now the Lagrangian is linear in derivatives with
respect to x+, so the standard elementary rules of quantization need generalization, for
which we use the simple formulation given by Faddeev and Jackiw (1988).

The appropriate Hamilton is just the Noether charge for translations in the x+ direction,
i.e., the appropriate component of momentum:

P+ =
∫

dx− d2xT

[
ψ
(−iγ−∂−γ − iγ j∇j +M + gφ

)
ψ

+ 1

2
(∇Tφ)2 + m2

2
φ2 + h

3!
φ3 + λ

4!
φ4

]
.

(6.52)

As with conventional equal-time quantization, for which the founding papers are Born
and Jordan (1925); Dirac (1926) and Born, Heisenberg, and Jordan (1926), the equal-x+

commutation/anticommutation are to be such that the equation of motion in the Heisenberg
form (6.51) and in the Euler-Lagrange form (6.46) and (6.49) are equivalent. Thus we
have

∂

∂x−
[
φ(x+, x−, xT), φ(x+, w−,wT)

] = −i

2
δ(x− − w−) δ(2)(xT − wT), (6.53)

[
ψG(x+, x−, xT), ψG(x+, w−,wT)

]
+ =

γ−

2
δ(x− − w−) δ(2)(xT − wT), (6.54)

2 For this reason, x+ and the evolution operator P+ are sometimes called “light-front time” and “light-front Hamiltonian”.
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with the other commutators involving φ, ψG and ψG being zero. The subscript+ in
[
ψ,ψ

]
+

etc. denotes the anticommutator appropriate for fermionic fields. Now the first of the above
equations is the derivative of the commutator of the scalar field. From it we obtain the
commutator of the field with itself:

[
φ(x+, x−, xT), φ(x+, w−,wT)

] = −i

4
sign(x− − w−) δ(2)(xT − wT), (6.55)

with the boundary condition for inverting ∂/∂x− being determined by the antisymmetry of
the commutator of two φ fields under exchange of the position arguments.

To verify the correctness of this setup, one applies the (anti)commutation relations (6.53)
and (6.54) to the the right-hand side of the Heisenberg equations of motion (6.51), for the
fields φ and ψG. In this calculation we do not need the (anti)commutators of φ and ψG with
ψB . For example, the term involving [φ(x), ψB(x+, y−, yT)] is∫

dy− d2 yT

[
φ(x), ψB (x+, y−, yT)

] δP+
δψB(x+, y−, yT)

, (6.56)

where δP+/δψB (y) denotes a functional derivative. This functional derivative is zero by
the constraint equation of motion. It follows from elementary algebra that the Heisenberg
equations are also valid for sums and products of fields. Unitary evolution implies that the
(anti)commutation relations are true at all x+ when they are true at x+ = 0.

Since ψB is determined from the other fields by the interaction-dependent (6.50), the
commutators and anticommutators of ψB are interaction dependent. Therefore, because
the right-hand side of (6.50) is non-linear in fields, the equal-x+ (anti)commutators of ψB

are field dependent. That is, they are not simply numerical-valued functions times the unit
operator. This is the primary reason for the jargon of calling ψB the bad components of
the fermion field. For example, in current algebra one deals with operators constructed
out of the elementary fields of a theory. Only for operators constructed solely out of good
components at a given value of x+ can one obtain their commutators directly from the
canonical (anti)commutators of the elementary fields, without investigating how to solve
the theory.

A similar issue arises with the quark densities. Because of the factor of γ+ in their
defining operators (see (6.31) etc.) only the good components are used:

ψ(0, w−, 0T)γ+ψ(0) = ψG(0, w−, 0T) γ+ ψG(0). (6.57)

In Sec. 6.7, we will show that this operator can be represented in terms of light-front
annihilation and creation operators for the quark, and this directly gives an interpretation
of the quark density as a number density, i.e., as a probability density. This interpretation
requires commutation relations for the annihilation and creation operators, which in turn
arise from the anticommutation relation (6.54).

It is possible to treat quark correlators constructed from bad components of fields.
But the resulting (anti)commutation relations for the Fourier-transformed quantities would
be interaction dependent, and hence would be not those of conventional creation and
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annihilation operators. Therefore we do not expect any simple interpretation as number
densities for parton-density-like quantities constructed using the bad components of the
fields.

6.6.2 Light-front annihilation and creation operators

We now obtain annihilation and creation operators in terms of light-front fields (Kogut and
Soper, 1970), and derive their commutators.

The annihilation and creation operators are defined by Fourier-transforming the scalar
field and the good components of the fermion field:

φ(x) =
∑

k

(
ak(x+)e−ik+x−+ikT·xT + ak(x+)†eik+x−−ikT·xT

)
, (6.58a)

ψG(x) =
∑
k,α

(
bk,α(x+)uk,αe−ik+x−+ikT·xT + dk,α(x+)†uk,−αeik+x−−ikT·xT

)
. (6.58b)

The sum over α is over the two possible values α = ± 1
2 for the “light-front helicity” for

the fermion, as defined below. The integral over momentum modes is denoted by
∑

k , and
is restricted to k+ > 0:

∑
k

. . .
def= 1

(2π )3

∫ ∞
0

dk+

2k+

∫
d2kT . . . (6.59)

This is just the normal Lorentz-invariant form for the integral over a single particle
momentum:

1

(2π )3

∫ ∞
0

dk+

2k+

∫
d2kT . . . = 1

(2π )3

∫
d4k δ(k2 −m2)θ (k0) . . . , (6.60)

but without the need to specify the value of the mass. This is an advantage since the
physical mass is an interaction-dependent quantity, not known before solving the theory,
and moreover the formula applies to quarks and other confined particles that do not have a
definite physical mass.

Although the integral is restricted to positive k+, Fourier modes with the opposite sign
of k+ are allowed for by using terms with a complex-conjugated exponential in (6.58).
The distinction between annihilation operators ak etc. and creation operators a

†
k etc. is

made by the sign of the exponential of x−. (This contrasts with the situation in the Fourier
decomposition of fields in equal-time quantization.)

The Dirac wave functions uk,α are defined to be wave functions for massless particles
with zero transverse momentum, which span the space of good components (because
γ−uk,α = 0). They are normalized to obey

uk,αγ+uk,α′ = 2k+δαα′ , (6.61)
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and hence ∑
α

uk,αuk,α = k+γ−. (6.62)

The label α corresponds to “light-front helicity” in the sense that

σxyuk,α = 2αuk,α, (6.63)

which is exactly normal helicity for particles of zero transverse momentum. (Note that
2α = ±1, that σxy = i

2 [γ x, γ y], and that the wave function for an antiquark of helicity α

is uk,−α , with argument −α.)
In (6.58), the x+ dependence is in the annihilation and creation operators, not in the

exponential factor, since the x+ dependence depends on solution of the interacting theory,
which is not a simple linear problem.

Unlike the case of the corresponding decomposition at equal time, the annihilation
and creation operators correspond to different Fourier components. Thus we obtain these
operators simply by inverting the Fourier transform:

ak(x+) = 2k+
∫

dx− d2xT eik+x−−ikT·xT φ(x), (6.64a)

bk,α(x+) =
∫

dx− d2xT eik+x−−ikT·xT uk,αγ+ψ(x), (6.64b)

dk,α(x+) =
∫

dx− d2xT eik+x−−ikT·xT ψ(x)γ+uk,−α. (6.64c)

Values of masses do not appear in these formulae, in contrast to the corresponding formulae

in equal-time quantization, which involve Ek =
√

k2 +m2. Which value of a mass to use
would be unobvious and ambiguous. The possibilities include: the physical mass, the bare
mass, and the MS renormalized mass, none of which are equal, with the relationships only
known after the theory is solved. But we are formulating the Fourier transform before
solving the theory.

From (6.64) follow the (anti)commutation relations appropriate for annihilation and
creation operators:[

ak, a
†
l

] = δkl,
[
bkα, b

†
lα′
]
+ =

[
dkα, d

†
lα′
]
+ = δklδαα′ , (6.65)

where δkl means (2π)32k+δ(k+ − l+)δ(2)(kT − lT). The other (anti)commutators are
zero.

6.7 Parton densities as number densities

From the operator definitions (6.31) etc., we now derive the interpretation of parton densities
as number densities, as found by Bouchiat, Fayet, and Meyer (1971) and by Soper (1977).
See problem 6.6 for corresponding results for the parton density for a scalar field.
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186 Parton model to parton theory

6.7.1 Statement of result

Our field-theoretic analysis of DIS structure functions led us to the formal definition of
a parton density by (6.31). But previously, in Sec. 2.4, we had introduced the concept of
a parton density rather intuitively as a number density. We now complete the picture by
showing that the abstract field-theoretic definition is exactly a number density, defined with
the aid of light-front annihilation and creation operators:

fj/h(ξ )
prelim= 1

2ξ (2π )3

∑
α

∫
d2kT

〈P, h|b†k,α,j bk,α,j |P, h〉
〈P, h|P, h〉 . (6.66)

Here we have inserted labels j and h for the quark and target type. The prefactor 1/[2ξ (2π )3]
is present merely to correspond to our chosen continuum normalization of b and b† oper-
ators: The (anti)commutation relations in (6.65) imply that the right-hand side of (6.66) is
exactly the number density in ξ of quarks of flavor j in hadron h; its unweighted integral
over ξ is a number of quarks.

In the previous section, we explained light-front quantization in the context of a simple
model, whereas in the present section our notation is intended to cover more general theories
with more than one flavor of quark. We use the terminology “hadron” for the target state,
as is appropriate in QCD. In a general field theory, the target state |P, h〉 can be any stable
single-particle state of definite momentum P , the label h serving to distinguish different
stable particles. Similarly the parton label j just refers to any particular field in the theory’s
Lagrangian.

We explicitly flag (6.66) as preliminary because of important modifications needed in
QCD. Even within a super-renormalizable non-gauge model QFT, where the unmodified
parton model is valid, there are two important complications:

• Momentum eigenstates have infinite normalization, so the quotient in (6.66) needs inter-
pretation, in terms of an expectation value in a wave packet state, in the limit of a state
of definite momentum – see below.

• Our original operator definition had a subtraction of the VEV of the operator, as indicated
by the subscript “c” in (6.31). This will not be relevant for the normal situation of
positive ξ .

The number density interpretation immediately suggests several sum rules that we
will derive. Simple generalizations of the derivation of (6.66) will give corresponding
interpretations for the polarized parton densities, and for the parton densities for antiquarks
and for scalar (spin-0) partons.

Finally, this result shows that a parton density is an integral of a number density over
parton transverse momentum. It is natural to define an unintegrated density, a density in ξ

and kT, by simply deleting the integral over kT. This we will do in Sec. 6.8. Unintegrated
densities are important to the treatment of reactions with sensitivity to partonic transverse
momentum – see Chs. 13 and 14. The original kind of parton density naturally gets
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called an “integrated parton density” whenever the distinction with unintegrated densities is
needed.

6.7.2 Wave-packet state

Now we return to the derivation of the number density formula (6.66). We first replace
the non-normalizable momentum eigenstate |P, h〉 by a wave-packet state |P, h; �〉 whose
central value of momentum is P and whose momentum-space width, �, we will eventually
take to zero. The state is a linear combination of momentum eigenstates:

|P, h; �〉 =
∑
P ′

∣∣P ′, h〉F (P ′; P,�), (6.67)

which we assume to be normalized:

〈P, h; �|P, h; �〉 =
∑
P ′
|F (P ′; P,�)|2 = 1. (6.68)

A suitable form for the wave function is a Gaussian in rapidity and transverse
momentum

F (P ′; P,�) = 4M1/2(2π )3/4

�3/2
exp

[
− (y ′ − y)2M2

�2
− P ′T

2

�2

]
, (6.69)

where M is the mass of the target, and we choose the central value P of momentum to have
zero transverse component, as usual. To give the wave function a trivial transformation
under boosts in the z direction, it is written as a function of rapidity y = 1

2 ln(P+/P−). The
exact form of the wave function will be irrelevant for our work; all that will matter is the
peak value and the width. The theorem to be proved is:

fj/h(ξ )
prelim= lim

�→0

∑
α

∫
d2kT

1

2ξ (2π )3
〈P, h; �|b†k,α,j bk,α,j |P, h; �〉 , (6.70)

with fj/h(ξ ) defined by (6.31).

6.7.3 Derivation

First we verify that the right-hand side is indeed correctly normalized for a number
density in ξ and kT. To do this, we integrate the operator b

†
k,α,j bk,α,j

/[2ξ (2π )3] with a

smooth function t(ξ, kT) and then check its commutation relation with the b
†
k,α,j . So we

define

Nt
def=
∫

dξ d2kT t(ξ, kT)
1

2ξ (2π )3
b
†
k,α,j bk,α,j . (6.71)
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Then

[Nt, b
†
k,α,j ] =

∫
dξ d2kT t(ξ, kT)

1

2ξ (2π )3
b
†
k,α,j δkl

= t(k+/P+, kT) b
†
k,α,j . (6.72)

One implication is that when we set the function t to be unity everywhere, the resulting
operator N1 counts the total number of partons of type j . To see this, we apply b

†
k,α,j to

an eigenstate of N1. The commutation relation (6.72) shows that the resulting state is an
eigenstate of N1, with an eigenvalue increased by unity.

For the main proof, we first use (6.64b) to express the right-hand side of (6.70) in terms
of field operators. Before the integral over quark transverse momentum this gives

∑
α

〈P,�|b†k,α,j bk,α,j |P,�〉
2ξ (2π )3

=
∑
P ′′,P ′

2k+

2ξ (2π )3
F (P ′′)∗ F (P ′)

∫
dw− dz− d2wT d2 zT

× e−ik+(w−−z−)+ikT·(wT−zT)
〈
P ′′ ψj (0, w−,wT) γ+ ψj (0, z−, zT) P ′

〉
=

∑
P ′′,P ′

P+

(2π )3
F (P ′′)∗ F (P ′)

∫
dw− dz− d2wT d2 zT

× e−ik+(w−−z−)+ikT·(wT−zT)+i(P ′′−P ′)·z 〈P ′′ ψj (w − z) γ+ ψj (0) P ′
〉

=
∑
P ′

P+

2P ′+(2π )3

∣∣F (P ′)
∣∣2 ∫ dw− d2wT

× e−ik+(w−−z−)+ikT·(wT−zT)
〈
P ′ ψj (w − z) γ+ ψj (0) P ′

〉
. (6.73)

In the first step, we used
∑

α γ+uk,αuk,αγ+ = 2k+γ+. In the third step we performed the
integrals over z− and zT with w − z held fixed; the resulting delta function between P ′ and
P ′′ removed the P ′′ integral except for a factor 1/(2P ′′+) implicit in

∑
P ′′ . In the above

manipulations observe the different kinds of momentum label for the target state. The fixed
central value is P and this is used to define ξ = k+/P+. The other variables P ′ and P ′′ are
dummy variables of integration.

Taking the limit that the wave function is very narrow gives

lim
�→0

∑
α

〈P,�|b†k,α,j bk,α,j
|P,�〉

2ξ (2π )3

=
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P |ψj (0, w−,wT)

γ+

2
ψj (0) |P

〉
, (6.74)
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whose right-hand side we will take as the definition, (6.79) below, of a quantity fj/h(ξ, kT)
that we call the unintegrated quark density, or the transverse-momentum-dependent (TMD)
quark density.

Integrating the TMD quark density over kT reproduces the definition (6.31) of the
integrated density. Thus we obtain both the desired theorem, (6.70), and the natural relation
that the integrated density is the integral over kT of the unintegrated density:

fj/h(ξ )
prelim=

∫
d2kT fj/h(ξ, kT). (6.75)

Our derivation does not result in the restriction to connected graphs that was implied by
the subscript c in (6.31). We will repair this omission when we discuss support properties
of parton densities in Sec. 6.9.3.

In view of the particularly significant complications that arise in QCD in the relation
between integrated and unintegrated parton densities, please note that assuming any typical
naive generalization of (6.75) to QCD will result in conceptually and phenomenologically
wrong results. The literature is rife with such results. See Ch. 13, where we will show how
the above derivations are to be generalized.

6.7.4 Interpretation of polarized parton densities

The above derivations can readily be generalized to the polarized quark and antiquark
densities. The results are as follows.

The quantity �fj/h is the helicity asymmetry of quarks of flavor j . That is, in a target
spin- 1

2 state of definite helicity,

�fj/h(x) = density of quark j of helicity parallel to target

− density of quark j of helicity antiparallel to target. (6.76)

This applies also to the antiquark helicity density defined by (6.37). The minus sign in
(6.37) compensates the reversed sign for the helicity dependence in the matrix elements of
γ+γ5:

uk,αγ+γ5uk,α′ = 4αk+δαα′ , vk,αγ+γ5vk,α′ = −4αk+δαα′ . (6.77)

For transverse-spin dependence, there is no such minus sign in the matrix elements of
γ+γ iγ5, and therefore no minus sign is needed in the transverse-spin asymmetry of the
antiquarks, (6.38). Again it can be checked that

δTfj/h(x) = density of quark j of spin parallel to target

− density of quark j of spin antiparallel to target, (6.78)

where the spin- 1
2 target is now chosen to be fully polarized transversely to its direction of

motion.

https://doi.org/10.1017/9781009401845.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.006


190 Parton model to parton theory

6.8 Unintegrated parton densities

Equations (6.74) and (6.75) show that it is natural to define an unintegrated quark density
by

fj/h(ξ, kT) =
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P

∣∣∣∣ψj (0, w−,wT)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

=
∫

dk−

(2π )4
Tr

γ+

2
P

k

(6.79)

to be interpreted as a TMD number density dN /(dξ d2kT). This has a Fourier transform on
the relative transverse position of the two fields as well as on w−, to give a two-argument
function of a longitudinal momentum fraction ξ and a quark transverse momentum kT.
The last line of this formula is an expression in terms of momentum-space matrix elements
from which Feynman rules immediately follow – see Sec. 6.10.

Particularly non-trivial modifications to (6.79) will be needed in QCD: Ch. 13. But in a
simple theory – which means a super-renormalizable non-gauge theory – the modifications
are absent. In this case it is trivial that an unintegrated density gives the integrated density
by an integral over all kT, as in (6.75).

There are natural generalizations for polarized densities and other kinds of parton. But
because of the presence of an extra vector in the problem, kT, the polarization dependence of
the unintegrated parton densities is more complicated and interesting than that of integrated
parton densities. No longer are the quark transverse and longitudinal polarizations simply
proportional to those of the target (in the spin- 1

2 case). See Secs. 13.16 and 14.5.4 for details.

6.9 Properties of parton densities

In this section we derive some basic properties of the pdfs. The proofs are non-perturbative,
and many of the results apply, with only small changes, to the correctly defined parton den-
sities of QCD. See Collins and Soper (1982b) and Jaffe (1983) for the original treatments.

6.9.1 Positivity

The number operator formulae (6.66) and (6.74) show that, up to normalization, the matrix
element in a parton number density is of the form

〈P |a†a|P 〉 = ∣∣ a|P 〉 ∣∣2, (6.80)

i.e., the square of the length of a state vector. So all parton densities are non-negative:

fj (ξ ), fj (ξ, kT) ≥ 0. (6.81)

Note that this particular result will not hold exactly in renormalizable theories, because of
the need for renormalization of the parton densities; see Sec. 8.3.
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6.9.2 Lorentz invariance/covariance

The definitions of the pdfs depend on a choice of a coordinate system, where the axes
are determined by the scattering process being treated. As we saw in (6.34), integrated
parton densities can be given explicitly Lorentz-covariant definitions, by use of an auxiliary
light-like vector n.

Unintegrated densities need a second vector for a covariant definition. For this, we let nB

be a future-pointing light-like vector with nB · n �= 0. Up to irrelevant factors, we interpret
n and nB as defining light-front coordinates: k+ = n · k and k− = nB · k. Thus n and nB

point in the minus and plus directions respectively. Then we define longitudinal momentum
fraction and covariant transverse momentum by

ξ = k · n
P · n, k

μ
T = kμ − n

μ
B

k · n
nB · n − nμ k · nB

nB · n, (6.82)

so that

k2
T = −k2 + 2k · nBk · n

nB · n . (6.83)

The unintegrated density (6.79) is

fj/h(ξ, kT) =
∫

d4w

(2π )3
δ(w · n)e−iw·k

〈
P

∣∣∣∣ψj (w)
γ · n

2
ψj (0)

∣∣∣∣P
〉

c

. (6.84)

This is invariant when k is shifted in the n direction: k �→ k + cn.
It is interesting that nB does not enter this definition, but only in the definition of the

variables in (6.82). This situation changes in a gauge theory, where, as we will see in Ch. 13,
the definition of unintegrated densities needs Wilson lines in the operators. (Wilson lines
are exponentials of integrals of the gauge field along particular lines.)

6.9.3 Support properties, negative ξ

Between the fields in the definition of a parton density, there is a sum over final states,
notated by the cut in (6.30). The states have momentum P − k, and physical eigenvalues of
the plus momentum are positive, so that P+ ≥ k+. Thus pdfs vanish for ξ > 1, no matter
whether they are integrated pdfs f (ξ ) or unintegrated pdfs f (ξ, kT).

This argument, by itself, provides no restriction for negative ξ . However, we can
(anti)commute the two fields in the definition of the pdfs. Since they are at light-like
or space-like separation, their (anti)commutator is just the unit operator times a coefficient
(localized at w− = wT = 0). Since we subtract the vacuum expectation value to get the
connected matrix element for the pdf, the unit operator from the (anti)commutator gives
no contribution. Thus we get a relation between the quark densities at negative x and the
antiquark densities at positive x.

The actual relation has an extra minus sign:

fj/h(ξ ) = −fj̄/h(−ξ ), fj/h(ξ, kT) = −fj̄/h(−ξ,−kT). (6.85)
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When the parton is a fermion (e.g., a normal quark), the minus sign arises because we
applied an anticommutator. When the parton corresponds to a scalar, the minus sign arises
from an explicit factor of ξ in the definition of the scalar-parton density; see problem 6.6.
As an example of a derivation, here is the one for the unintegrated densities of a charged
scalar parton:

fs(−ξ,−kT) = −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ†(0, w−,wT) φ(0) |P 〉c

= −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ(0) φ†(0, w−, 0T) |P 〉c

= −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ(0,−w−,−wT) φ†(0) |P 〉c

= −fs̄(ξ, kT). (6.86)

Since antiparton densities vanish for ξ > 1, it immediately follows that all parton densities
also vanish for ξ < −1.

When the scalar field is a hermitian scalar field, the relation is between the parton density
and itself, e.g.,

fφ/q(ξ ) = −fφ/q(−ξ ) when φ is hermitian. (6.87)

A further insight is from the derivation of the probability interpretation. Let us reverse the
order of the steps in (6.73), and apply them for negative ξ . Then in place of an annihilation
operator bk,α,j we get a creation operator d

†
−k,−α,j at the opposite momentum and helicity

and for the opposite quark. But we get the operators in the order d d†. To get them in
the standard order for a number operator, we must anticommute them, leaving the matrix
element of the operator for the number of antiquarks (apart from a sign). To this is added
the expectation value of the anticommutator, which is a c number, and therefore removed
by subtraction of the vacuum expectation value.

6.9.4 Time-ordered bilocal operators

The definitions given so far for the parton densities involved a fixed ordering of the operators.
In Feynman-graph calculations, there is a sum and integral over the final states between two
operators, as indicated by the vertical line in the cut-graph notation. Now ordinary Green
functions and Feynman-graph calculations involve a matrix element between an in-state
and an out-state. So with the final states made explicit, as in

fj/h(ξ, kT) =
∑
X

∫
dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

× 〈P ; in|ψj (0, w−,wT) |X; out〉 γ+

2
〈X; out|ψj (0) |P ; in〉c (6.88)
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for the TMD quark density, we see the density as an integral over amplitude times complex-
conjugated amplitude (on its left in the formula, on the right in a cut diagram).

However, the two fields may be (anti)commutated through each other without changing
the value of the parton density. Hence we can replace the fixed-order operator product by
a time-ordered product:

fj/h(ξ, kT) = −fj̄/h(−ξ,−kT)

=
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P

∣∣∣∣T ψj (0, w−,wT)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

=
∫

dk−

(2π )4
Tr

γ+

2 P

k
(6.89)

with similar formulae for the integrated densities and for unpolarized densities. Feynman-
graph calculations then involve uncut amplitudes, and use exactly the same Feynman graphs
for a quark density as for an antiquark density (except for the labeling of the momentum
direction). As we will see in explicit calculations, in Sec. 6.11, application of contour
integration to the k− integral gives relations between the two methods of calculation,
between the uncut and the cut Feynman graphs. In particular, when a particular graph gives
a zero contribution in the cut-graph method for a certain range of ξ , we will find that the
poles in k− in the uncut graph will either all be in the upper half plane or the lower half plane
of k−. Thus the uncut-graph method also gives zero, by use of contour integration for k−.

Normal Feynman-graph methods apply when the states 〈P | and |P 〉 in (6.89) are,
respectively, out- and in-states. But because stable single-particle states are the same for
both in- and out-states, this change makes no difference. But it could affect potential
generalizations to use hadronic resonances instead of stable single-particle states.

To show that the cut-graph and uncut-graph methods give the same result, we used the
fact that the (anti)commutators of the relevant fields are proportional to the unit operator.
This applies only to the good components of fields. In contrast, the bad components of the
fields have non-trivial (anti)commutators. Thus if we imagined generalizing the definitions
of parton densities to correlators of other components of quark fields, the equality between
definitions with fixed ordering and with time-ordering will no longer hold. Thus it is a good
idea to transform such definitions by use of the equations of motion to write them in terms
of the good components of fields.

One use of the definition using time-ordered operator products and uncut graphs is to
relate ordinary parton densities to limits of what are called generalized parton densities
(GPDs). GPDs are used to analyze the amplitudes for certain exclusive reactions; for a
review, see Diehl (2003). The definitions of GPDs generalize those of parton densities, by
having off-diagonal matrix elements but with the same operators. Since GPDs are applied
to amplitudes, the operators are naturally time-ordered:∫

dw−

2π
e−iξP+w−

〈
P ′
∣∣∣∣T ψj

(
0,

1

2
w−, 0T

)
γ+

2
ψj

(
0,−1

2
w−, 0T

) ∣∣∣∣P
〉

c

, (6.90)

where the position arguments of the fields are in the symmetric form used in Diehl (2003).
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6.9.5 Number sum rules

Suppose there is a conserved quark number, as is the case for each flavor (u, d, etc.) in
QCD. Then the total number of quarks minus the number of antiquarks of that flavor should
equal the value determined by the flavor content of the target state. In QCD we therefore
expect the following sum rules for a proton target:∫ 1

0
dξ

[
fu/p(ξ )− fū/p(ξ )

] = 2, (6.91a)

∫ 1

0
dξ

[
fd/p(ξ )− fd̄/p(ξ )

] = 1, (6.91b)

∫ 1

0
dξ

[
fj/p(ξ )− fj̄/p(ξ )

] = 0 (other flavors); (6.91c)

and of course a baryon number sum rule:

∑
j

∫ 1

0
dξ

[
fj/p(ξ )− fj̄/p(ξ )

] = 3. (6.91d)

Obvious changes apply for other target states (e.g., a neutron or a particular nucleus).
We now show how these rules (and similar ones in model QFTs) are derived when the
parton-model hypotheses are obeyed. The full proof in QCD will involve using the correct
definitions and treating renormalization effects, but the final answer is the same.

The basic observation is that when we integrate over all ξ in the definition of a pdf, we
get a delta function that sets w− = 0, and the operator becomes a component of the Noether
current for quark number. Then we use the fact that parton densities vanish for |ξ | > 1 and
the relation between parton and antiparton densities to get the sum rule∫ 1

0
dξ

[
fj (ξ )− fj̄ (ξ )

] = ∫ ∞
−∞

dξ

∫
dw−

2π
e−iξP+w−

〈
P

∣∣∣∣ψj (0, w−, 0T)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

= 1

2P+
〈P |ψj (0)γ+ψj (0)|P 〉

c
. (6.92)

We now have the expectation value of the plus component of the Noether current for the
number of quarks of flavor j . From standard properties of currents, this expectation value is
the charge of the state times a factor of twice the momentum of the state, which is canceled
in the last line. From this result all the above-listed sum rules follow. The subtraction of the
VEV implies that the number density is relative to the vacuum.

6.9.6 Momentum sum rule

A very similar argument gives the momentum sum rule:

∑
all j

∫ 1

0
dξ ξfj (ξ ) = 1. (6.93)
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Here we weight the number densities of partons by ξ , to give a density of fractional
momentum. So the sum rule says that the total fractional momentum carried by partons is
unity. Note that the sum is over all flavors of parton, including separate terms for antipartons
as well as partons. In our Yukawa model this means fermion, antifermion and scalar partons.

The proof is left as an exercise (problem 6.15). It simply involves converting the sum
and integral over parton densities to an expectation value of a certain component of the
energy-momentum tensor (relative to the vacuum).

6.9.7 Isospin and charge conjugation relations

Consider a theory with an SU(2) isospin symmetry and quarks, like QCD, where we have u

and d quarks, which form an isodoublet, and s and heavier quarks, which are all isosinglet.
In real QCD, isospin symmetry is slightly broken by the different masses of the u and

d quarks. By neglecting this breaking, we can obtain relations between parton densities in
different targets, which hold to the accuracy that isospin symmetry holds. Unlike the sum
rules, these relations are valid point-by-point in x.

We will illustrate this for the important cases of the proton and neutron and for the pions.
(Scattering experiments are done with all of these particles.) We will obtain a further set
of relations for pions using charge conjugation invariance. The general form of all of these
arguments is to insert a symmetry transformation operator U times its inverse next to the
target state in the definition of a parton density:

〈P, h|U †U A U†U |P, h〉 = 〈P, h′| A′ |P, h′〉 . (6.94)

Here h′ labels the state obtained by transforming the target, label h, by transformation U , A
is the operator whose matrix element is the parton density, and A′ denotes the transformed
operator.

Since only the transformation properties under simple symmetries are involved in our
derivation, the results apply equally to unintegrated parton densities, as well as the more
usual integrated parton densities. As explained in Sec. 6.9.8, the results apply equally to the
correct QCD definitions of parton densities, so they are presented in their QCD applications.

Proton and neutron

Physical targets are always eigenstates of Iz. So let us take U to be an operator that
exchanges the Iz = ± 1

2 elements of an isodoublet. We then get the following relations
between parton densities on a neutron and a proton:

fu/p(x) = fd/n(x), fd/p(x) = fu/n(x), (6.95a)

fū/p(x) = fd̄/n(x), fd̄/p(x) = fū/n(x), (6.95b)

fj/p(x) = fj/n(x), fj̄/p(x) = fj̄/n(x) (j is s, c, etc.). (6.95c)

In electromagnetic DIS, the structure functions are dominated by the density of the u quark,
since it has the larger charge. The above relations allow the use of scattering on a nuclear
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target to gain information on fu/n and hence on fd/p, the density of the lower-charge
quark.

Antiproton

One standard beam particle is the antiproton. Parton densities in the antiproton are related
to those in the proton by letting U be the charge conjugation operator. This gives fj̄/p̄(x) =
fj/p(x) for all species of parton. Particular cases are

fu/p(x) = fū/p̄(x), fd/p(x) = fd̄/p̄(x). (6.96)

These relations are very important for the phenomenology of data from the Tevatron, which
uses proton-antiproton collisions.

Gluon in proton, neutron and antiproton

Since the gluon is its own antiparticle as well as being isosinglet, the gluon density is the
same in all the targets we have mentioned:

fg/p(x) = fg/n(x) = fg/p̄(x). (6.97)

Proton target is default

The combination of all the above results means that we can express results for all kinds
of nucleon target in terms of parton densities in the proton. So for real QCD applications,
when we write a parton density without a hadron label, e.g., fu(x), it is to be understood
that a proton target is intended.

Densities of definite isospin

It is sometimes convenient to use combinations of parton densities that correspond to
isotriplet and isosinglet operators, e.g.,

fI=0(x) = fu(x)+ fd (x), (6.98)

fI=1(x) = fu(x)− fd (x), (6.99)

with a proton target understood.

Nuclear targets

Data on non-trivial larger nuclei are often analyzed in terms of parton densities in the
constituent proton and neutron; this needs a compensation for nuclear-physics effects in
nuclear binding. But it is also possible to treat parton densities on the nucleus as a whole.
It is often possible to treat nuclei as approximately or exactly isosinglet, notably for the
deuteron. In that case isospin relates u and d quark densities, e.g.,

fu/D(x) = fd/D(x), fū/D(x) = fd̄/D(x). (6.100)

(See Schienbein et al., 2009; Eskola, Paukkunen, and Salgado, 2009.)
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Pion

The three pions, π+, π−, and π0, are related by both isospin and charge conjugation. We
leave as an exercise to derive

fu/π+(x) = fd/π− (x) = fd̄/π+ (x) = fū/π− (x), (6.101a)

fd/π+ (x) = fu/π− (x) = fū/π+ (x) = fd̄/π− (x), (6.101b)

fg/π+ (x) = fg/π− (x), (6.101c)

fs/π+ (x) = fs/π− (x) = fs̄/π+ (x) = fs̄/π− (x). (6.101d)

It can be seen that there are very few independent densities, which considerably assists the
analysis of data with pion beams. The parton densities in the π0 are determined in terms of
the above:

fu/π0 (x) = fd/π0 (x) = fd̄/π0 (x) = fū/π0 (x) = 1

2

(
fu/π+ (x)+ fd/π+ (x)

)
, (6.102a)

fg/π0 (x) = fg/π+ (x), (6.102b)

fs/π0 (x) = fs̄/π0 (x) = fs/π+ (x). (6.102c)

These last relations are of relatively little use, since we do not normally deal with beams of
neutral pions.

6.9.8 Are the sum rules etc. valid in QCD?

The derivations just presented apply as they stand to a theory which is super-renormalizable
and contains only fields of spin zero and spin half. Evidently, QCD violates both prerequi-
sites, and later in the book we will make the necessary improvements. But here it is possible
to assess the difficulties and to state the extent to which the results presented continue to
apply in QCD.

Our specific model field theory was a very simple Yukawa theory with one field of each
type, but the principles immediately generalize when there are multiple fields. Thus we
were able to conceive of a theory with the same flavor symmetries as QCD, and to prove
certain sum rules.

Isospin relations preserved

In Sec. 6.9.7, we derived relations between parton densities for different flavors of parton
and hadron. The only properties that were used of the operators defining parton densities
were their transformations under charge conjugation and isospin. These properties are
entirely unaffected by the changes needed to accommodate renormalization and the use of
gauge fields. This will become fully evident when we construct the definitions of parton
densities in QCD.
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Renormalization

A renormalizable theory, as opposed to a super-renormalizable theory, is exemplified by the
Yukawa theory in four space-time dimensions, n = 4. All of the above derivations apply
when a UV cutoff is applied, for example dimensional regularization with n = 4− 2ε. The
fields in the derivations should be bare fields, i.e., the ones with canonical commutation
relations. The bare fields are those for which the coefficients of the first term in each line
for the right-hand side of (6.44) is exactly as given. We then remove the UV cutoff after
applying renormalization.

To implement renormalization, we first relabel all the fields and parameters in (6.44)
with a subscript 0, to denote bare quantities, e.g., g0. Then we write the bare fields as
renormalized fields times “wave-function-renormalization factors”, e.g., ψ0 = ψ

√
Z2 with

a conventional notation. Thus the Lagrangian density defining the theory becomes

L = iZ2

2

[
ψγ μ∂μψ − (∂μψ)γ μψ

]−M0Z2ψψ

+ Z3

2
(∂φ)2 − m2

0Z3

2
φ2 − g0Z2Z

1/2
3 ψψφ − h0Z

3/2
3

3!
φ3 − λ0Z

2
3

4!
φ4.

(6.103)

Finally we adjust the bare parameters, g0, Z2, etc., in an ε-dependent way to remove the
divergences. In perturbation theory, this is implemented by using renormalized couplings
and masses, gR , MR , etc., and using an expansion of the bare parameters in powers of the
renormalized coupling, with coefficients adjusted to cancel the divergences order-by-order.

It is Green functions of the renormalized fields ψ and φ that are finite rather than those
of the bare fields. So we should define the light-front annihilation and creation operators in
terms of the renormalized fields. Then the (anti)commutation relations of these operators
are changed by wave function renormalization, as in

[ak, a
†
l ] = δklZ

−1
3 , [bkα, b

†
lα′ ]+ = [dkα, d

†
lα′ ]+ = δklδαα′Z

−1
2 , (6.104)

since it is the bare fields that obey the canonical (anti)commutation relations. An RG analysis
can be used to investigate/compute the true value of the renormalization coefficients when
the UV cutoff is removed. Generally, the coefficients in (6.104) diverge to+∞ in this limit,
with the (rare) exceptions being if the anomalous dimension of a field vanishes strongly
enough at the UV fixed point of the theory. The Källen-Lehmann representation of the
propagator tells us that 0 ≤ Zi ≤ 1 when an on-shell renormalization prescription is used,
so we expect Z−1

i to go to infinity rather than zero in the UV limit.
As we will see later, there are further UV divergences in the integrated parton densities,

beyond those removed by wave-function renormalization. We will also see that renormal-
ized integrated parton densities can be defined by a further kind of renormalization, which
is completely analogous to what is done for local composite operators.

Since the finite operators no longer have the standard generalized-harmonic-oscillator
(anti)commutation relations, and since renormalization of the integrated parton densities is
needed, the strict probability interpretation of the parton densities is lost.
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Nevertheless, we will show in Sec. 8.6 that the UV divergences cancel in the sum rules,
which remain true in a renormalizable theory.

Gauge theories

We will examine the light-front quantization of gauge theories in Sec. 7.4.
Extending the definitions of parton densities to QCD will require significant modifica-

tions to the definitions. These involve insertion of what are called Wilson lines to make
them gauge invariant: Sec. 7.5. These will further complicate the probability interpretation
of parton densities and their renormalization. Nevertheless, the derivation of the sum rules
will still work.

6.9.9 Axial currents; Bjorken sum rule

We derived sum rules that related certain integrals over unpolarized parton densities to
expectation values of conserved vector currents. Axial currents are also of interest in QCD,
so we now discuss the associated sum rules. Even though our discussion of QCD is only
later in this book, we can explain the sum rules without this discussion. We simply assume
that the definitions given for parton densities can still be used, and then apply them in a
theory with the same flavor symmetries as QCD.

The use of axial currents is rather more tricky than vector currents. One reason is that
for the SU(2)⊗ SU(2) symmetry of QCD (broken in the Lagrangian only by light quark
masses) there is spontaneous symmetry breaking of the axial part of the symmetry. So the
expectation values of the axial currents and hence the right-hand sides of the equivalents of
(6.91) are determined by the dynamics of QCD, not by the charges of the target. Some of the
currents appear in the coupling of quarks to weak gauge bosons, and the matrix elements
can be measured, for example, in semi-leptonic decays of hadrons. A second complication
is that the isosinglet axial current has an anomaly and is not prone to easy measurement
or prediction. A third complication is that whereas there are conserved vector currents in
QCD for each of the heavy quarks, resulting in (6.91d), the conservation laws for the axial
currents for heavy quarks are badly broken by quark masses.

An elementary generalization of (6.92) leads to the following result for each quark
flavor:

∫ 1

0
dξ

[
�fj (ξ )+�fj̄ (ξ )

] = 1

2P+
〈P |ψj (0)γ+γ5ψj (0)|P 〉

c
. (6.105)

Note that the antiquark term now has a plus sign instead of the minus sign in the number
sum rules. In some sense the left-hand side measures the total contribution of quarks and
antiquarks of flavor j to the spin of the target. Unlike the case of the quark number currents,
the current does not correspond to a conserved charge. So there is no direct determination
of the right-hand side (although one can well imagine calculating it non-perturbatively by
lattice QCD methods).
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For the non-singlet combination, we get

∫ 1

0
dξ

[
�u(ξ )+�ū(ξ )−�d(ξ )−�d̄(ξ )

] = 1

2P+
〈P |ψ(0)γ+γ5τ3ψ(0)|P 〉c , (6.106)

where τ3 is a Pauli matrix acting on the doublet of fields for the u and d quarks. We used
the quark symbols to denote their parton densities. The current on the right-hand side is
one of the generators of the approximate chiral SU(2)⊗ SU(2) symmetry of QCD. It is
also related by an isospin transformation for the axial part of the current which couples the
W boson to u and d quarks. The matrix element can therefore be deduced from the rate
and angular distribution of neutron decay (to p + eν̄), presented as a value conventionally
denoted by GA/GV , whose measured value (Amsler et al., 2008) is 1.2695± 0.0029.

Roughly speaking, the sum rule can be probed in the difference between g1 structure
function on the proton and neutron, for which recent data and an analysis related to the
sum rule can be found in Airapetian et al. (2007). To indicate the idea, we observe that the
parton model approximation to g1 is

g1(x,Q) = 1

2

∑
q

e2
q[�q(x)+�q̄(x)]. (6.107)

Using the isospin relations between the polarized parton densities in the neutron and proton,
which are immediate generalizations of (6.95), and then using the sum rule (6.106) we
get ∫ 1

0
dx[gp

1 (x,Q)− gn
1 (x,Q)] = GA

6GV

� 0.21 (parton model). (6.108)

This is one of two results due to Bjorken that are both called Bjorken sum rules.

6.9.10 Moments

The derivation of (6.92) can be readily extended to general integer moments of parton
densities by inserting a factor of ξn−1 on the left-hand side and a suitable sign with the
antiquark density. The factor of ξn−1 gives n− 1 derivatives with respect to the position
w− and we obtain a matrix element of a local operator:

∫ 1

0
dξ ξn−1 [fj (ξ )+ (−1)nfj̄ (ξ )

] = in−1

2(P+)n
〈P |ψj (0)γ+(∂+)n−1ψj (0)|P 〉

c
. (6.109)

In the early days of the study of DIS, the operator product expansion was used to express
moments of the DIS in terms of perturbative coefficients times expectation values of local
operators, exactly like those on the right-hand side of the above equation; see Ch. 14 of
Collins (1984). (Of course, in QCD we need renormalized, gauge-invariant versions of the
operators.)

Equation (6.109) shows how these operators are related to parton densities. The expecta-
tion values of local operators are susceptible to calculation by Euclidean lattice Monte-Carlo
methods, unlike parton densities, whose operators are strictly Minkowski-space objects.
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Thus the equation also provides a way that lattice Monte-Carlo methods can be used to give
predictions for properties of parton densities.

6.10 Feynman rules for pdfs

In this section, I show how the definitions of parton densities are to be applied in Feynman-
graph calculations, by defining special rules for vertices corresponding to the operators in
the definitions of the parton densities. Motivated by applications in QCD, I use the word
“quark” to refer to the fermion field in our Yukawa model theory, and to its associated
particle.

In (6.30), we saw that a quark density can be expressed as an integral over a cut amplitude.
A convenient notation is to write

f (ξ ) =

k

P
=
∫

dk− d2−2ε kT

(2π )4−2ε

γ+

2

k

P

=
∫

d4−2εk

(2π )4−2ε

γ+

2
δ(k+ − ξP+)

k

P

(6.110)

which gives the Feynman rule for the operator vertices in an integrated unpolarized quark
density, in 4− 2ε space-time dimensions. The crosses in the first part indicate the operations
that are to be applied to the quark fields to obtain the actual pdf. They denote the integrals
over k− and kT and the trace with γ+/2. The plus component of the momentum at the
quark vertices is fixed to be ξP+. In view of the extensive use that is made of dimensional
regularization, the vertex is given for a general space-time dimension. Were there a color
degree of freedom, there would be an unweighted sum over the colors of the field. The
bubble indicates the basic matrix element of the quark fields in an on-shell target state of
momentum P .

Generalizations to the polarized parton densities are simply made by changing the factor
γ+/2 to the appropriate Dirac matrix in the definition of the parton density. Similarly,
the definitions for the antiquark densities are made simply by changing the direction of
the arrow on the quark line. These are all illustrated in Fig. 6.7. Note that the minus sign
in the definition of the helicity density of an antiquark requires a corresponding minus sign
in the Feynman rule for the antiquark helicity density.

Further generalizations to TMD densities, e.g., Fig. 6.8, are trivially obtained by deleting
the integral over transverse momentum. Generally the context will indicate whether we are
using integrated or unintegrated densities, so we make no distinction in the graphical
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Fig. 6.7. Gamma matrix factors for all the unpolarized and polarized quark and antiquark
densities. For the helicity densities, the target should be in a state of maximum right-handed
polarization. For the transversity densities, the target should be in a state of maximum
transverse spin, and the rules listed above will give the transversity densities times a unit
vector in the direction of the transverse spin of the target. Note the minus sign in the
definition of the helicity density of an antiquark. Note also that the quark momentum is
assumed to be in the direction of the arrow of the quark line. Thus the momentum for the
line at the antiquark density is written as −k.

k

(TMD)

=
dk−

(2 )4−2

+

2
. . .

Fig. 6.8. The rule for the vertex, as in (6.110), but for a TMD, or unintegrated, quark density.
Note that we have not made any notational distinction between the vertices for integrated
and unintegrated densities; generally the distinction can be determined from the context.

notation. The common feature of all the definitions is the unweighted integral over all k−,
so that the field operators in the parton density definition are at equal values of x+.

The change to the definition with time-ordered products can be made simply by deleting
the symbol for the final-state cut.

6.11 Calculational examples

In QCD, parton densities with hadronic targets are strictly non-perturbative objects. But
it is useful to examine low-order Feynman-graph calculations of parton densities with the
target being an elementary particle of a theory.

So in this section, I present some calculations in the model Yukawa theory used in
our treatment of light-front quantization. The calculations introduce the methods in their
simplest form, and they enable us to see basic principles without being confused by many
of the complications – one might almost say pathologies – that arise in QCD. Moreover,
such calculations can be used as self-consistent models for interesting effects in QCD –
e.g., Brodsky, Hwang, and Schmidt (2002); Collins (2002). In our model calculations, we

https://doi.org/10.1017/9781009401845.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.006


6.11 Calculational examples 203

k

P

Fig. 6.9. Lowest-order quark density in quark.

will be introduced to the UV divergences of parton densities in renormalizable theories.
Perturbative calculations of parton densities also appear as components of perturbative
calculations of hard-scattering coefficients.

In the calculations, the target state is a physical on-shell elementary-particle state cor-
responding to one of the basic field of the theory like the quark. Our calculations in the
Yukawa theory of (6.44) are of the density of a quark in a quark, fq/q(ξ ), and of a scalar in
a quark fφ/q(ξ ).

The concept of the “density of a quark in a quark” is confusing, initially: Why should
this not be a trivial delta function at ξ = 1? In fact, the word “quark” in that phrase has
two meanings. One is for the target state, which is an on-shell physical state. The second
meaning is for a state created by the corresponding light-front creation operator. Thus the
different instances of the word “quark”, as well as the two instances of the symbol “q”
in fq/q(ξ ), refer to different bases of theory’s state space. In an interacting QFT, on-shell
single-particle states, as used in scattering theory, are normally non-trivial combinations of
multiparticle states when expressed in the basis given by the creation operators.

6.11.1 Tree approximation

In an expansion in powers of the coupling(s) for fq/q(ξ ), the first term is of zeroth order
(Fig. 6.9). This is deceptively similar to the representation of just the vertices for the parton
density. It is intended to denote the combination of those vertices with the lowest-order
amplitude for the bubble in (6.110). The lowest-order bubble consists of (2π )4−2εδ(4−2ε)(k −
P ) for momentum conservation in a disconnected graph, and a factor of the on-shell wave
function for the target. We allow the most general polarization state for the target, which
can be specified by a spin vector S, as in (A.26). We therefore obtain

f
[0]
q/q(ξ ) =

∫
dk− d2−2ε kT

(2π )4−2ε
(2π )4−2εδ(4−2ε)(k − P ) Tr( /P +M)

1

2

(
1+ γ5

/S

M

)
γ+

2

= δ(ξ − 1). (6.111)

Here we use the superscript “[0]” to denote the lowest-order value with zero loops. This
calculation provides a basic verification of the normalization of our definition. Without
interactions the single on-shell quark is also a single particle in the light-front creation
operator basis, and it carries the whole momentum of the target, i.e., it has ξ = 1.

6.11.2 One-loop quark in quark

At one-loop order, there are two kinds of graph for fq/q (Fig. 6.10): (a) self-energy correc-
tions on the external line, and (b) a graph with a scalar particle emitted into the final state.
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h.c.+
k

P − k

(b)(a)

Fig. 6.10. One-loop graphs for density of quark in quark.

(We consider graph (b) a loop graph since there is a momentum integral through the vertex
for the parton density.)

Self-energy graph

The full effects of self-energy corrections for external on-shell lines are given by the LSZ
method. This tells us that for each external particle we need a factor of the square root
of the residue of the pole of the propagator. To calculate this, we start from the one-loop
self-energy of the quark:

g2

16π2
�[1] = ig2μ2ε

∫
d4−2εk

(2π )4−2ε

/P − /k +M

[(P − k)2 −M2 + i0](k2 −m2 + i0)
. (6.112)

The superscript “[1]” denotes the coefficient of the one-loop approximation. As usual,
the coupling is written as gμε , where g is dimensionless and μ is the unit of mass for
dimensional regularization.

Now the full quark propagator is i/(/p −M −�). So the one-loop contribution to the
residue is given by differentiating �[1] with respect to /p and by then setting p on-shell.
After performing the k integral by the Feynman parameter method, we find that to one-loop
order, the residue is

1+ g2

16π2
residue[1] = 1− g2

16π2
�(ε)

∫ 1

0
dx

[
4πμ2

m2x +M2(1− x)2

]ε

×
[
x + 2εM2x(1− x2)

m2x +M2(1− x)2

]
. (6.113)

We have a factor of the square root of the residue for both external quark lines, so that the
resulting one-loop contribution to the quark density is

g2

16π2
f

[1,V ]
q/q (ξ ) = δ(ξ − 1) × g2

16π2
residue[1]. (6.114)

The “V ” in the superscript denotes “virtual correction”. Equation (6.113) shows that this
contribution is negative. This reduces the size of the one-light-front-particle component in
the normalized target state, leaving room for a multiparton component.

Of course, when we go to four space-time dimensions, ε = 0, this term is UV divergent.
We will explain what happens for the parton density, when we discuss its renormalization.
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Real emission

The integral for the real-emission term (Fig. 6.10(b)) is readily written down from the
Feynman rules:

g2

16π2
f

[1,R]
q/q (ξ ) = g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(P − k)2 −m2

)
(k2 −M2)2

× θ (P+ − k+) Tr
γ+

2
(/k +M)( /P +M)

1

2

(
1+ γ5

/S

M

)
(/k +M). (6.115)

We set k+ = ξP+, and then use the delta function to perform the k− integral, whereby

−2P+k− = k2
T +m2 −M2(1− ξ )

1− ξ
. (6.116)

This gives

g2

16π2
f

[1,R]
q/q (ξ ) = g2(4πμ2)ε

16π2 �(1− ε)

∫ ∞
0

dk2
T(k2

T)−ε (1− ξ ) [k2
T + (1+ ξ )2M2]

[k2
T + ξm2 + (1− ξ )2M2]2

= g2�(ε)

16π2

[
4πμ2

ξm2 + (1− ξ )2M2

]ε [
1− ξ + εξ (1− ξ )(4M2 −m2)

ξm2 + (1− ξ )2M2

]
.

(6.117)

Here, we have used a standard result, (A.34), to perform the angular part of the transverse-
momentum integral. The restriction of the final-state momentum P − k to physical positive
energy implies that the above formula should have an implicit theta function that restricts
it to ξ ≤ 1. In addition, for negative ξ , as we will see, the calculation is not the complete
one; a correct calculation (Sec. 6.11.6) for ξ < 0 gives zero. Thus there should also be a
restriction to positive ξ . Then in the physical range, we have a non-singular function.

Notice that the denominator is identical to the one in the self-energy. This is related to a
cancellation needed to verify sum rules.

Naturally the real-emission contribution is positive, since parton densities are positive,
and for the situation that ξ is not equal to unity, our calculation gives the lowest-order
contribution.

When the theory is super-renormalizable, in less than four space-time dimensions, i.e.,
for ε > 0, the kT integral is convergent. But at the physical space-time dimension, with
ε = 0, there arises a logarithmic divergence at kT →∞. This in fact should be considered a
conventional UV divergence, since the virtual line k goes far off-shell, and masses become
negligible in the region that gives the divergence. We will discuss the UV divergences later
in Sec. 8.3.

6.11.3 One-loop scalar in quark

The remaining one-loop contribution to parton densities in an on-shell quark is the density
of the scalar. For this, we need the Feynman rule for the density of a scalar parton (Fig. 6.11).
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Fig. 6.11. Feynman rule for operator for the density of a scalar parton.

k

P − k

Fig. 6.12. Scalar density in quark.

It has a factor ξP+ in place of the γ+/2 for the quark density. The derivation is left as an
exercise (problem 6.6), and it results in the definition in (6.124) below.

Then we readily find the one-loop scalar density from Fig. 6.12:

g2

16π2
f

[1]
φ/q(ξ ) = g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(P − k)2 −M2

)
(k2 −m2)2

×ξP+ Tr( /P − /k +M)( /P +M)
1

2

(
1+ γ5/S/M

)
= g2(4πμ2)ε

16π2 �(1− ε)

∫ ∞
0

dk2
T(k2

T)−ε ξ [k2
T + (2− ξ )2M2]

[k2
T + (1− ξ )m2 + ξ 2M2]2

= g2�(ε)

16π2

[
4πμ2

(1− ξ )m2 + ξ 2M2

]ε [
ξ + εξ (1− ξ )(4M2 −m2)

(1− ξ )m2 + ξ 2M2

]
. (6.118)

Notice that the denominator is obtained from the denominator in the quark density by
changing ξ to 1− ξ , as is appropriate now that the scalar line has its plus component of
momentum equal to k+ instead of P+ − k+. Again, we have a positive contribution, with
a UV divergence when ε = 0.

The above calculation is valid when 0 < ξ < 1. As usual, the positive-energy condition
on P − k ensures that parton densities are zero if ξ > 1. For negative ξ , a more elaborate
argument, with extra graphs, is needed, and is given in Sec. 6.11.6.

6.11.4 Sum rules

We now check that the number and momentum sum rules are obeyed by our calculation.
Naturally the lowest-order term contributes unity to both the quark number and to the
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k

P − kP

k

Fig. 6.13. Real-emission contribution to one-loop quark density in quark when the definition
with time-ordered operators is used.

momentum sum rules. So to confirm the sum rules at order g2, we must show that the
one-loop contributions to each sum rule are zero.

For the number sum rule we have∫
dξ f

[1,V ]
q/q (ξ )+

∫
dξ f

[1,R]
q/q (ξ )

= residue[1] +
∫

dξ f
[1,R]
q/q (ξ )

= �(ε)
∫ 1

0
dx

[
4πμ2

m2x +M2(1− x)2

]ε[
1− 2x + εM2x(1− x)[2(1− x)M2 −m2]

m2x +M2(1− x)2

]
= 0. (6.119)

The zero in the last line can be easily calculated by using the fact that the integrand in
the previous line is proportional to the derivative with respect to x of x(1− x)[m2x +
M2(1− x)2]−ε .

The momentum sum rule is checked similarly.

6.11.5 Uncut graphs

We saw in Sec. 6.9.4 that because the fields in the definition of a parton density commute
or anticommute, except for an irrelevant “c-number” term, the operator product in the
definition of a parton density can be replaced by a time-ordered product, as in (6.89). So
we now examine how this alternative definition can be used and verify in an example that
it gives the same results as when the original definition is used.

When a time-ordered product is used the Feynman rules for parton densities are simply
given by deletion of the final-state cut in (6.110) and all its relatives. For the case of
the one-loop calculation of the density of a quark in a quark that we examined earlier,
this results in the replacement of Fig. 6.10(b) by Fig. 6.13. Applying the Feynman rules
gives

g2

16π2
f

[1,R]
q/q (ξ ) = ig2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

Tr γ+
2 (/k +M)( /P +M) 1

2

(
1+ γ5/S/M

)
(/k +M)(

k2 −M2 + i0
)2 [

(P − k)2 −m2 + i0
] .

(6.120)
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k
−

k P − k

k
−

k

P − k

k
−

k P − k

(a)  < 0 (b) 0 <  < 1 (c)  > 1

Fig. 6.14. Singularities in k− plane for (6.121).

P − k

k

P P P − k

k

P P

)b()a(

Fig. 6.15. Extra cuts of the one-loop graph for the quark density in a quark. These contribute
only for negative ξ , and then cancel the contribution of the standard term Fig. 6.10(b). To
avoid a division by zero in the uncut quark propagator, the matrix element is temporarily
made off-diagonal in the target momentum.

All the lines now have regular propagators. Notice the overall factor of i compared with
(6.115). In terms of light-front coordinates, the denominator factor is

1(
2ξP+k− − k2

T −M2 + i0
)2[

2(1− ξ )P+(P− − k−)− k2
T −m2 + i0

] . (6.121)

We now perform the integral over k− by the residue theorem. This works in almost exactly
the same way as in Sec. 5.4.2 for the collinear-to-A contribution to the Sudakov form factor.
As illustrated in Fig. 6.14, when ξ < 0 and when ξ > 1 all the poles are in either the upper
or lower half plane, so that we can deform the contour to infinity away from the poles and
get zero.

The only non-zero contribution is when 0 < ξ < 1. Closing on the single pole at
(P − k)2 = m2 sets this line on-shell, and exactly reproduces the previous result, (6.117).

6.11.6 Negative ξ

One additional feature of the calculation in the previous section is that a vanishing value
is obtained when ξ is negative. From the relation (6.85), this corresponds to a vanishing
density of antiquarks in the quark at this order of perturbation theory.

In contrast, in the formalism with fixed ordering for the operators. the cut graph
(Fig. 6.10(b)) gives a non-zero value. This appears paradoxical until we observe that
there are two further cuts of the same graph, as shown in Fig. 6.15, where the quark prop-
agator is cut, to give a final state consisting of the target and an antiquark of momentum
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−k. When ξ is positive, the cut lines in Fig. 6.15 do not obey the positive-energy condi-
tion for physical particles, and therefore these diagrams give zero. But for negative ξ the
positive-energy condition is satisfied, and we get a non-zero contribution from the extra
cuts.

A further problem now arises: when we set k2 = M2 in one quark propagator, the other
quark propagator is exactly at its pole and gives infinity. How is one to show in a principled
way that the infinities cancel between the two cut graphs in Fig. 6.15 and that the finite
part cancels against Fig. 6.10(b)? We could solve this by using a wave-packet state as
we did in finding the probability interpretation of parton densities. An alternative, which
we will use here, is to start with the matrix element defining the parton density being
off-diagonal in target momentum: 〈P | . . . |P 〉 �→ 〈P ′| . . . |P 〉. We only take the diagonal
limit P ′ → P after summing over cuts. The off-diagonal matrix element shifts one of the
quark propagators from momentum k to k + P ′ − P , thereby taking the uncut propagator
slightly away from its pole. As a function of k−, the pole and delta function structure for
the three cuts is of the form

δ(k− − A) (−ig)
−i

k− − B − i0
(−ig)

−i

k− − A′ − i0

+ i

k− − A+ i0
(ig) δ(k− − B) (−ig)

−i

k− − A′ − i0
(6.122)

+ i

k− − A+ i0
(ig)

i

k− − B + i0
(ig) δ(k− − A′),

up to a common overall factor. The quantities A, B and A′ are functions of masses, of ξ

and the difference between P ′ and P . The diagonal-matrix-element limit P ′ → P gives
A′ → A. Integrating over k− gives

g2 1

A− B

1

A− A′
+ g2 1

B − A

1

B − A′
+ g2 1

A′ − A

1

A′ − B
, (6.123)

which sums to zero, even before taking the limit A′ → A.
This calculation is a verification in an example of a general result that we proved using

operator (anti)commutation relations. The cancellation corresponds to the fact that in the
time-ordered-operator formalism, all the poles in the propagators are on one side of the real
axis, as in Fig. 6.14(a).

An interesting variant of this problem occurs when we try computing the density of a
scalar parton in the fermion target. Exactly the argument we have just given shows that the
graph in Fig. 6.12 has two extra cuts and that the sum vanishes for negative ξ . However, we
have also shown that, since the scalar particle is its own antiparticle, its density at negative
ξ is the negative of the density at positive ξ , (6.87), and therefore is non-zero.

To recover this result, we observe that there are other possible graphs, Fig. 6.16, in
which the vertices of the scalar line on the fermion line are reversed. For positive ξ , these
graphs are zero, and so do not affect the calculation we have already done. But when ξ is in
the range −1 < ξ < 0, similar arguments to those we gave earlier in this section show that
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k

P + k
P + k

k

)b()a(

k k

)d()c(

Fig. 6.16. Cut graphs at one-loop order when ξ < 0 for the density of scalar partons. Graph
(a) is in fact zero, because the coupling of the three on-shell particles violates 4-momentum
conservation. Graph (b) only contributes when ξ < −1, by the positive-energy condition
on the particles on the cut.

the sum of these extra graphs is non-zero, and in fact they result in (6.87). When ξ < −1 the
graphs sum to zero. Verification of these statements is left as an exercise.

Exercises

6.1 Find a/the kT-dependent Lorentz transformation that converts k to k′ in (6.6).

6.2 Derive (6.31) from (6.14).

6.3 Similarly derive (6.33).

6.4 (a) Derive the corresponding results for polarized antiquark densities. Pay careful
attention to signs.

(b) Fill in any other missing details in Sec. 6.5.

6.5 What would happen if the theory were parity violating?

6.6 (a) Using the methods of this chapter, derive the parton model when the quarks have
spin 0. Then derive a formula for the corresponding parton density:

fs(ξ ) = ξP+
∫ ∞
−∞

dw−

2π
e−iξP+w− 〈P |φ†(0, w−, 0T) φ(0) |P 〉c , (6.124)

including the, perhaps unexpected, factor ξP+. [Note: A scalar quark might
appear in a model field theory or an extension to QCD, notably a super-symmetric
extension.]

(b) Obtain the corresponding formulae for the unintegrated density.

6.7 Carefully derive the signs in the exponents in (6.26).
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6.8 Generalize whatever needs to be generalized in this chapter to deal with DIS on a
spin-1 target like the deuteron. [See Hoodbhoy, Jaffe, and Manohar (1989) for an
account of some of the theory, one of the features of which is a new structure function
b1. See Airapetian et al. (2005) for the first measurement of b1.]

6.9 Check the statement given in the text that, in light-front quantization in the theory
specified by (6.44), the standard field equations (6.45) and (6.46) do indeed follow
from the canonical (anti)commutation relations (6.53) and (6.54) and the Heisenberg
equations of motion (6.51).

6.10 Check that the other equations in the sections on light-front quantization and their
relations to parton densities are correctly derived, notably (6.65).

6.11 Verify the results (6.76) and (6.78) for the interpretation of the polarized parton
densities. Do this for both quarks and antiquarks. [Note: There are some subtleties in
discussing the spin states needed in the wave-packet derivation that may impinge on
this discussion. See Bakker, Leader, and Trueman (2004).]

6.12 Generalize the relation between quark for negative ξ and antiquark densities with
positive ξ to the polarized case.

6.13 Derive the relations (6.101) and (6.102) for parton densities in pions.

6.14 Extend these results to kaons.

6.15 Generalize the proof in Sec. 6.9.5 to derive the momentum sum rule (6.93). You
will need to convert the left-hand side of the sum rule to a matrix element of the
energy-momentum tensor.

6.16 At one-loop order verify the momentum sum rule (6.93) for a quark target in the
Yukawa model theory. The sum over j is over the fermion, the antifermion, and the
scalar.

6.17 Perform the one-loop calculation of the parton densities for a target that corresponds to
the scalar field in our Yukawa field theory. Again verify the momentum sum rule. (The
number sum rule is trivially satisfied, since, as you can verify, fq̄/φ(ξ ) = fq/φ(ξ ).)

6.18 Verify by explicit calculations the statements at the end of Sec. 6.11.6.

6.19 (**) (This problem is quite hard, probably very difficult, and might even deserve
three stars.) Suppose we take field theory to be defined by Feynman graphs for Green
functions. Derive equal-time and equal-x+ commutation relations. Thus Feynman
perturbation theory does in fact correctly solve the operator formulation of the theory,
despite any doubts one might have about the rigor of the derivation of perturbation
theory.

Note that there is quite a bit of literature on obtaining commutation relations
from time-ordered Green functions, but that most of this dates from the heyday of
current algebra and therefore pre-dates QCD. These techniques have not propagated to
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modern textbooks. I refer here to the Bjorken-Johnson-Low (BJL) method (Bjorken,
1966; Johnson and Low, 1966).

6.20 (***) What happens in the previous problem if you apply it in the presence of
renormalization and/or of gauge fields? [Note: Either or both of these conditions is
liable to need techniques from the later part of this book, but probably in their simpler
forms.]
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