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Abstract

Ferns (Polypodiophyta) are an abundant floral element of the tropics with high sensitivity to
environmental conditions and good indicators of overall biodiversity. Here, we set out to iden-
tify which geochemical factors determine fern diversity in a low-montane tropical rainforest in
Eastern Ecuador. We conducted a field survey of high-spatial resolution completing a compre-
hensive fern inventory across two elevational ranges, combined with biochemical characterisa-
tion of the underlying soils. While α-diversity was negatively correlated with cation exchange
capacity (CEC) and with elevation, β-diversity increased with elevation and with geographic
distance, as predicted. Our results confirm that ferns have a high sensitivity to both elevational
and environmental gradients, where the latter in this study was derived from enhanced
aluminium, iron and calcium contents in some of the studied soils. Further monitoring of fern
communities could therefore help to better understand and predict how environmental change
may impact biodiversity, with a particular focus on threats potentially arising from toxic
elements being released in tropical soils through modified soil CEC.

Introduction

Tropical rainforests host the most diverse plant communities on Earth and are of key impor-
tance in regulating the global carbon and water cycles (Hawkins et al. 2003, Richter et al. 2009).
Tropical soils are usually more weathered than soils in temperate regions and contain less
nutrients (Cardoso & Kuyper 2006, Jobbágy & Jackson 2001, Moreno-Jiménez et al. 2023,
Richter & Babbar 1991), which can have a positive effect of increasing biodiversity through niche
separation and species specialisation (Nadeau & Sullivan 2015, Richter et al. 2009). Biodiversity
levels can be further enhanced in mountainous areas with diverse topography and microcli-
mates, which are likely present in the study area in Eastern Ecuador (Graae et al. 2018,
Maclean et al. 2015). But the vital ecosystems of the tropics are increasingly destabilised by
human activity and global environmental change. While the impacts of deforestation and land
transformation towards agricultural production have an impact directly visible to the human
eye, nutrient deposition has amore subtle effect with yet unknown consequences for biodiversity
and ecosystem functioning (Cusack et al. 2016, Wang et al. 2018).

Nitrogen inputs to soils have significantly increased following industrialisation and agricul-
tural intensification, with the tropics being a hotspot of nitrogen pollution (Dentener et al. 2006,
Lee et al. 2019). It has been widely demonstrated that nitrogen deposition can cause soil acidi-
fication (Verma & Sagar 2020). Particularly in the mountainous soils of the tropics, increased
nitrogen inputs may cascade into enhanced availability of cations through ion exchanges at soil
mineral binding sites (Cusack et al. 2016). Many exchangeable cations such as iron (Fe2+) and
magnesium (Mg2+) are micronutrients critical for plant nutrition (Kramer & Chadwick 2016),
but some exchangeable cations like aluminium (Al3+) can be toxic in excess (Bojórquez-Quintal
et al. 2017). Increasing the availability of these elements can not only threaten biodiversity
through toxicity but also by enhancing competition in favour of fast colonisers and reduced
niche dimensionality (Harpole et al. 2016). In fact, it has been shown that nutrient-rich ecosys-
tems often benefit a lower number of species, that is particularly those species that are the most
competitive ones dominating access to light, space and nutrients (Aerts et al. 2003, Harpole et al.
2017, Li et al. 2017). Therefore, present and future nitrogen deposition in tropical rainforests
bears the risk of being detrimental to the high species richness and diversity ibidem and may
substantially affect the regulatory function of the tropics in maintaining Earths’ major biogeo-
chemical cycles (Artaxo et al. 2022).
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In this study, we address the relationship between soil nutrient
richness and plant biodiversity in a lowland tropical rain forest in
Eastern Ecuador on the outskirts of the Amazon rainforest. The
study area provides natural variation in soil nutrient richness
and a highly diverse flora. To elucidate which edaphic and topo-
graphic factors drive plant community composition, we limited
the effect of geographic distance and isothermal belts, which natu-
rally increase species turnover, by focussing the study on a spatially
restricted area of approximately 10.5 km2. We focussed our study
on Polypodiophyta, commonly known as “ferns”. They are abun-
dant floral elements under the canopy of forests and very wide-
spread in the tropics and beyond (Linares-Palomino et al. 2009).
While being an omnipresent and diverse taxonomic group, they
are still ascertainable in the field, making them ideal indicators
of overall biodiversity (Da Silva et al. 2018, Pouteau et al. 2016).
Yet, few studies provide insight into how this distinctive floral
element assembles along geochemical gradients. However, this
data will be crucial in the future not only to monitor the impact
of environmental change on biodiversity across space and time
but also to inform land management strategies and conservation
action. (Aldasoro et al. 2004, Bhattarai & Vetaas 2003, Kessler
2001, Kluge et al. 2006, Moulatlet et al. 2019, Tuomisto &
Poulsen 1996, Weigand et al. 2022).

In this study, we therefore asked to which extend elevation and
soil nutrient richness, defined as cation exchange capacity (CEC),
explain the present biodiversity. For this purpose, we tested three
specific hypotheses:

(H1). Because climatic extremes increase from the Amazon
lowlands to exposed ridges, we predict that fern diversity will
decrease with elevation.
(H2). As the relationship between soil nutrients and diversity is
unresolved, we predicted that diversity will be unaffected by soil
nutrient richness.
(H3). Because of distance decay, similarity will decrease with
increasing geographic distance between sampling sites.

Material and methods

Study area

The study area is located in Eastern Ecuador in a remote and undis-
turbed part of the Western Amazonian rainforest on the northern
extensions of the foothills of the Cordilliera de Cutucú and is
exposed to the East. The area is situated east of the national road
E45 between El Puyo and Macas, between the rivers Pastaza and
Macuma heading towards the township of Macuma (S02º06.664'
W077º44.334'). The land is part of the territory of the Shuar
community of Wisuí, who kindly granted us access. Throughout
the entire year, the region is influenced by the high-pressure area
over the central Amazon basin, with north-eastern trade winds
deflected westwards near the equator and partially following the
slopes of Andean topography (Bendix & Lauer 1992, Espinoza
Villar et al. 2009). In this study, we compare a low-elevational
range with six plots at 658–688m and amid-elevational range with
six plots at 948–1055 m above sea level. The Andean mountains
rise further to the West, yet the study area comprised several
mountain summits, including El Torre (1370 m) and Cerro
Copales (996.5 m). The mid-elevational plots in this study thus
share some geological features with higher elevational gradients
of other studies. However, all Wisuí plots are located below
1500 m elevation, so uplift winds are not always active and the
lowlands are governed by high solar radiation, which can amplify

temperature and humidity beneath the dense canopy of the forests.
The radiating solar energy also increases evaporation, which rises
to form clouds, which rain down again in the Amazon basin itself.
Hence, the area is located within a very humid region receiving
constant rain with at least 7 months of excessive rainfalls. The
two nearest weather stations report slightly different climate data,
with rainfall between 2500 and 4000 mm per year and moderate
temperatures around 20°C. These conditions remain relatively
stable during the year and provide plants with an almost
continuous vegetation period, a habitat very suitable for ferns.

Plot establishment and geographical parameters

On site in Wisuí, 12 plots of 20 m × 20 m each were established,
each covering an area of 400 m2 and numbered consecutively from
WIS1 to WIS12 (Figure 1). Half of the plots were located in the
lowlands at elevations between 658 and 688 m, while the other half
was established along the mountain ridges of the Cordillera de
Cutucú at elevations between 948 and 1055 m (Table 1). For each
location, we recorded GPS coordinates, elevation (m), canopy
height (m), inclination (°), exposition, total ground cover (%)
and canopy cover (%). The sampling locations spread across an
area of 3 km× 3.5 km (10.5 km2) with a geographical distance from
20 m to 3 km between them by air (Figure 1).

Inventory of fern communities

All fern species occurring within a plot were documented photo-
graphically, their life form was recorded (epiphytic, semi-
epiphytic, terrestrial), whether they were sterile or fertile, rhizomes
were characterised if present, and their abundance was recorded by
counting all individuals within each plot. All plant samples were
identified to species level and taxonomy was cross-checked at
the herbarium in Quito (QCA) and against Hassler et al. (2022).
When existing plant material was sufficient, reference collections
were made in quadruplicate. For this purpose, plant material was
pressed in newspaper, disinfected with alcohol and stored in dark
plastic bags. During the collection phase, plant material was regu-
larly exported to be temporally deposited at the Ministry of
Environment of the Province Morona-Santiago in Macas, and
finally dried at the Universidad Católica in Quito. The dried dupli-
cates were distributed to the herbaria of the Universidad Católica
in Quito, Ecuador (QCA, including all unique samples), the
Ministry of Environment of the Province Morona-Santiago in
Macas, Ecuador (Ministerio del Ambiente, MAC), the State
Museum of Natural History in Stuttgart, Germany (STU) and
one partial collection was deposited at the NEES Institute for
Biodiversity of Plants, University of Bonn, Germany (BONN).
Of each separate collection, a sample of leaf tissue was preserved
in silica gel for subsequent DNA extraction, sequencing and
barcoding.

Determination of diversity

The sampling unit in all analyses is entire plots (400 m2) and all
primary diversity measures refer to this spatial entity. In each plot,
we measured the number of different species (s), their abundance,
that is, how frequently they occur as determined by the number of
individuals of a species per plot and their relative abundance, that
is, the number of individuals of a species per plot (n) relative to the
total number of individuals within such plot (N). Subsequently, we
compare the species distributions amongst plots to unravel how
diversity relates to edaphic and elevational parameters.

2 J Michel et al.

https://doi.org/10.1017/S0266467423000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0266467423000081


First, we define “species richness” as the actual number of
different species present per plot (s). This is also known as
“α-diversity” (Whittaker 1972). To account for the fact that diver-
sity depends not only on the number of species observed as such
but also on how often these species occur in relation to the occur-
rence of the other species within the same plot, we calculated two
complementary indices to describe “species diversity” normalising
the number of species with the abundance of species.

We first calculated the Shannon index (H), which is an infor-
mation statistic index, which means it assumes all species are
represented in a sample and that they are randomly sampled:

Shannon index Hð Þ ¼ �
Xs

i¼1

pi ln pi (1)

where (p) is the relative abundance, that is the proportion (n/N) of
individuals of one particular species (n) divided by the total
number of individuals (N) found in one plot, ln is the natural loga-
rithm, Σ is the sum of the calculations and s is the number of
species (Shannon 1948).

Secondly, we calculated the Simpson index (D), which is a domi-
nance index givingmore weight to common species. In this case, rare
species with only a few representatives will not affect the diversity:

Simpson index Dð Þ ¼ 1�
P

niðni � 1Þ
N N � 1ð Þ ; (2)

where (n) is the number of individuals of one particular species and
(N) is the total number of individuals found in one plot (Simpson
1949). The higher the number for this index, the higher the diver-
sity of species.

Thirdly, we wanted to know how uniform species composition
is, that is, if different species are represented by largely different or

similar numbers of individuals. For this purpose, we calculated
Pielou’s evenness index (J), which ranges between 0 and 1, where
zero means no evenness and one means complete evenness, so all
species occur with equal numbers of individuals.

Pielou0s evenness index : Jð Þ ¼ Shannon index Hð Þ
Maximum Shannon index HMAXð Þ :

(3)

where HMAX is the maximum possible value of the Shannon index
H (if every species was equally likely) calculated as

HMax ¼
Xs

i¼1

1
S
ln
1
S
¼ lns (4)

where (s) is the total number of species (Pielou 1966).

Diversity across scale

To compare species diversity amongst plots, we first calculated
“β-diversity” as the number of species in all plots divided by the
number of species in each individual plot (Whittaker 1972).
To then understand how diversity is affected by geographic distance,
we first created a data frame with the Bray–Curtis coefficient (BC),
which is a dissimilarity indexwith values between 0 and 1. The closer
the value is to 0, the more the communities have in common:

Bray-Curtis dissimilarity ðBCÞ ¼ 1� 2Cab

Saþ Sb
(5)

where (C) is the sum of the lowest number of species two commun-
ities a and b have in common, (Sa) is the total number of species
found in community a and (Sb) is the total number of species

Figure 1. Location of the study area is in the lowlands of the Eastern Andes in Ecuador in the province Morona Santiago. The area is located at 675m between the streamKosutka
and the mountain El Torre (1370 m) north of the river Macuma at S 02º 06.664' W 077º44.334'. Maps via OpenStreetMap (left, tiles courtesy of Andy Allan) and Google Earth (right,
Landsat/Copernicus, Maxar Technologies).
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found in community b (Bray & Curtis 1957). Then we created a
similar data frame with the haversine distances between all pairs
of plots and used the Mantel test for non-parametric Spearman
correlations between the two distance matrices with 9999 permu-
tations (Mantel 1967).

Soil analysis

In each plot (n = 12), approximately 150 g of the upper soil horizon
were sampled for further analysis at the Institute for Ecology and
Ecosystem Sciences at the University of Göttingen (Germany).
Samples were first classified according to USDA Soil Taxonomy
(Agriculture handbook 436, 1999). Then, soil pH was measured
in water (H20) and in potassium chloride (KCl) and soil water
content was determined on a subsample as mass fraction between
fresh soil and the mass of soil dried at 105°C for 48 hours. Carbon
and nitrogen contents were determined by combustion and
thermal conductivity detection. Moreover, the effective exchange-
able cation contents of aluminium (Al3+), calcium (Ca2+), iron (Fe2
+), magnesium (Mg2+), manganese (Mn2+), potassium (K+) and
sodium (Na+) were determined, where the sum of Ca2+, Mg2+, K
+, and Na+ is the soils’ total base saturation and the sum of all
exchangeable cations is the soils’ CEC, which equals its negative
charge.

Statistical analysis

To test if species richness and diversity measures were different
between the two elevational ranges (658–688 m) and (948–
1055 m), we used Welch’s t-test (Welch 1947). Partial least square
(pls) regression was applied to identify which geochemical param-
eters drive diversity, defined as species richness (α-diversity) and
via the two diversity indices after Shannon and Simpson, respec-
tively. In each pls model, the number of predictors was first
reduced via ordination and then a subset of latent variables was
extracted to predict the response using regression. The pls models
were fitted with the kernel algorithm, validated by inspecting the
root mean square error of prediction and cross-validated using
six leave-one-out segments (Liland et al. 2021, Mevic &
Wehrens 2021). All statistical analysis was carried out using
R 4.0.5 (R Core Team, 2021) with the additional packages
“geosphere” (Hijmans 2022), “ggplot2” (Wickham 2016), “ggpubr”
(Kassambara 2020), “pls” (Liland et al. 2021) and “vegan”
(Oksanen et al. 2022).

Results

Fern diversity

In total, 213 primary specimen samples were collected. They
comprised 133 different fern species, of which 116 occurred in
the plots presented here, while the additional species were collected
at mountain summits, between plots and along the river Kosutka
(Figure 1, supplementary data 1). The identified species belong to
49 genera of 22 families and stand representative for 3376 indi-
vidual ferns, of which 795 grew terrestrially while 1925 grew
epiphytically. An additional group of 656 individuals was found
partly climbing on roots, wood or rocks or in other semi-epiphytic
habitats. We identified two highly cosmopolitan species,
Campyloneurum repens (Aubl.) C. Presl and Nephrolepis rivularis
(Vahl) Mett., each of which occurred in 7 out of the 12 plots.
The overall most cosmopolitan genera were Polybotrya and
Microgramma, while the genera with the largest populations wereTa
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Dennstaedtia, Didymochlaena and Campyloneurum. The most
abundant family was Polypodiaceae representing 39 individuals
(18% of all specimen).

Environmental parameters

Most soils were classified in-between Entisoles and Inceptisols or
ranked as Alfisol or Ultisols (Table 1). Environmental parameters
followed the trends predicted from the literature to distinguish the
two elevations. For example, canopy height and total ground cover
were higher in lower elevations, while inclination was higher in
higher elevations. Soil pH, carbon and nitrogen contents and base
saturation were also higher in lower elevations. Most soils were
acidic to moderately acidic, with pH (in water) between 4 and 5.
In three plots (WIS2, WIS7, WIS11), soil pH was less acidic
(>5), with the highest pH measured for the soil of WIS 2
(pH = 6.82 in water). Carbon contents were between 5% and
15%, nitrogen contents between 0.5% and 0.9% and most soils
had a C:N ratio around 12. The sum of exchangeable cations
was also higher in lower elevations compared to high elevations.
Notably here is the elevated calcium, potassium and magnesium
in WIS11 and elevated sodium in the soils of WIS2, WIS12 and
WIS1. Finally, elevated aluminium and iron concentrations sepa-
rated the two high elevational sites WIS9 and WIS10 from the
other plots (P = 0.001) and manganese was overall more abundant
in the higher elevations as compared to the lower eleva-
tions (P = 0.04).

Fern diversity and elevation

We found a strong relationship (P = 0.0001) between elevation and
species diversity when assessing diversity as count data of species
occurrences (Figure 2). The simplest measure of species richness,
that is the number of species per plot (α-diversity), was higher in
lower elevations as compared to the higher elevational range
(Figure 2 left), while the differentiation amongst plots (β-diversity)
increased with increasing elevation (Figure 2 right).

When taking the complexity of community composition into
account, that is, the frequency of occurrences of individuals of a
single species in relation to overall species abundance, these general
trends were supported by higher Shannon and Simpsons indices in

the lower elevational range (Figure 3). There was no significant
difference in species evenness (Pielou index) between elevations
(P = 0.3). However, for the two high elevational plots WIS3 and
WIS4, we found lower diversity indices and also less evenness in
species composition.

To determine the drivers of diversity, we performed pls model-
ling for α-diversity and the two diversity indices (Table 2). In all
cases, the first two components explained over 90% of variance
(93.4%, 93.21% and 92.32%, respectively). Elevation was consis-
tently inversely correlated with the respective diversity measures,
while exposition was mostly positively correlated with diversity.
CEC was the second strongest vector for all three diversity
measures, mostly driven by aluminium and calcium
concentrations.

Geographic distance and dissimilarity

We used the Bray–Curtis dissimilarity (BC) to quantify diversifi-
cation between plant communities amongst all pairs of the 12 plots
as a function of geographic distance using Mantel test (Figure 4).
Overall, the dissimilarity between plots increased significantly with
increasing geographic distance between them (r = 0.39, P = 0.001).
Hence, the farther two plots are away from each other, the greater
the difference in community composition.

Discussion

In terms of species richness (α-diversity), the empirical data of this
study support our first hypothesis (H1), which stated that diversity
would decrease with elevation (P = 0.0002; Figure 2). This pattern
was confirmed when taking species abundance into account, as two
diversity indices also decreased with elevation (Figure 3). The
second hypothesis (H2), which stated that diversity would be unaf-
fected by soil nutrient richness, had to be rejected as CEC was
amongst the main drivers of the observed diversity patterns
(Table 2) and some plots were notably characterised through
moderately to strongly elevated aluminium concentrations in
the soil (WIS3,WIS4,WIS9,WIS10; Table 1). The third hypothesis
was confirmatory, stating that similarity between communities
would decrease with increasing geographic distance between

Figure 2. Fern α-diversity (left) and β-diversity (right) at two elevation ranges (658–688 m and 948–1055 m) in a low-montane Amazon rainforest. Results of Welch’s t-test
comparing means of species richness and beta diversity, respectively, are given in each plot with asterisks indicating the significance level at <0.001 ‘***’ and ≤0.01 ‘**’.
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Figure 3. Shannon (H), Simpson (D) and Pielou (J) diversity indices for the 12 plots studied. In lighter colors, the plots are from the higher elevational range (948–1055 m), and in
dark, the plots are from the lower elevational range (658–688m). Consistently lower species diversity (H, D) and evenness (J) in the higher elevational plots, notably plots WIS3 and
WIS4.

6 J Michel et al.

https://doi.org/10.1017/S0266467423000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0266467423000081


sampling sites and was strongly supported (r = 0.39, P = 0.001;
Figure 4).

Clear link between diversity and elevation

In the long and eventful history of describing species assemblages
along elevational gradients, Alexander von Humboldt was one of
the first to describe a hump-shaped pattern of species richness on
mountains, which increases towards mid-elevations and then
decreases again towards the summit (Humboldt 1860). This
pattern was confirmed in many subsequent studies (reviewed in
Hawkins et al. 2003), including for ferns and lycophytes in the
Himalayas (Bhattarai & Vetaas 2003), Africa (Aldasoro et al.
2004), Bolivia (Kessler 2001) and Costa Rica (Kluge et al. 2006).
The data presented here describes a low-elevational mountain
ridge, but the higher sampling sites are relatively close to mountain
summits El Torre at 1370 m and Cerro Copales at 996.5 m. The
mountain slopes studied here therefore share some geological
features with higher elevational mountain slopes, like exposure
and also at times north-eastern trade winds. Hence, the observed
decline of biodiversity with elevation is comparable to the decline
observed on longer gradients above the mid-elevation hump and
towards the summit.

Biological niche separation to boost biodiversity

The higher diversity in the lower elevational range may also be
explained by greater canopy cover and niche separation within
the denser forest, which favours species diversity through
habitat and niche differentiation (Suissa et al. 2021, Wright

2002). Niche separation was also expressed in the variation of fern
life form, for example, the ratio between terrestrial and epiphytic
ferns amongst plots, as well as in plant morphology. The strictly
terrestrial habitat wasmostly dominated by larger plants, including
tree ferns such as different Cyathea species, frequently found with
compound or dissected fronds. Meanwhile, the semi-epiphytic and
epiphytic habitats on tree trunks and branches were occupied by
smaller fern species, of generally single leaflets, present in large
populations (e.g. Didymoglossum ovale, several hundred in
WIS2). This habitat differentiation is common in tropical rain
forests and contributes to the high species diversity (Jones et al.
2011, Watkins & Cardelús 2009).

Soil heterogeneity enhances community dissimilarity
across geographic distance

Even though our sampling was restricted to a relatively small
geographical scale, we clearly observed that the farther away plots
were geographically, the greater was the difference in their commu-
nity composition (Figure 2 right, Figure 4). This well-described fact
is usually explained by dispersal limitation and/or changes in
climatic conditions (Colwell et al. 2008, Rehm & Feeley 2015)
and may in this study be amplified by effects of topography and
relief, which increases the actual distance between two sides
beyond the spherical distance. Especially plots WIS3 and WIS4
were separated from the other plots in terms of their fern commun-
ities, but also geographically, as they are physically separated from
the other plots by a steep hillside furrow (Figure 1). The plots
also showed lower evenness, which was likely driven by few
species occurring in particular high densities, namely Danaea

Table 2. Results of ordination and least square regression (pls) explaining species richness (α-diversity) and diversity (Shannon and Simpson indices) at plot level
based on the geochemical data. Only the loadings of the first two components are shown. They explain >90% variance in each model

Loadings

α-diversity Shannon Simpson

Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2

Elevation −0.957 −0.17 −0.903 −0.285 −0.782 −0.358

Canopy cover

Canopy height

Exposition 0.184 −0.126 0.286 0.101 0.347 0.248

Inclination

Total ground cover

Soil pH

Total soil nitrogen

Total soil carbon

Soil C:N

Aluminium (Al3+) −0.128 0.253 0.367

Calcium (Ca2+) 0.171 −0.632 0.220 −0.752 0.330 −0.729

Iron (Fe2+)

Potassium (K+)

Magnesium (Mg2+)

Manganese (Mn2+)

Sodium (Na+)

Sum of exchangeable cations −0.739 −0.521 0.392 −0.359

Explained variance (%) 39.32 54.08 45.19 48.02 52.58 39.74
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cf. bicolour (Marattiaceae) in WIS3 and Lindsaea schomburgkii
(Dennstaedtiaceae), Cochlidium serrulatum (Grammitidaceae)
and Didymoglossum hymenoides (Hymenophyllaceae) in WIS4.

Overall, soil formation and topography play a major role in
shaping the study area, which is located on the eastern side of
the foothills of the posterior ascended Cutucú uplift of the
Andean mountains. The major uplift of the Central Andes that
passes through the country has been dated back to the middle
Miocene when today’s two-ridged shape of the mountain chain
arose (Coltorti & Ollier 2000). A prominent event in geological soil
formation was the rise of the still active volcano Sangay (5230 m)
located 60 km west to the investigated sites at Wisuí. This led to
partially exposed Palaeozoic to Tertiary basements partially
covered by Jurassic to Cretaceous sedimentary and volcanic rocks,
including sandstone and volcanic basaltic and andesitic lavas
(Balseca et al. 1993, Ruiz et al. 2007, White et al. 1995). This sedi-
mentary sequence followed the individual topography of the Andes
down to the lowlands. Consequently, the soil presents highly
heterogenic patterns of erosion, sedimentation and exposed
preserved older rocks, which built a complex network of rather
distinct soils along the Ecuadorian landscape with the clay
containing layers typically formed by calcite (CaCO3) or dolomite
(CaMg(CO3)2) (Lathwell & Grove 1986), explaining the increased

CEC of magnesium (Mg2+) but most notably calcium (Ca2+) in the
here studied soils (Table 1). This diversity of soils is likely contrib-
uting to the high plant diversity (Tuomisto et al. 2014, da Costa
et al. 2019, Moulatlet et al. 2019).

Soil acidification and cation exchanges – between nutrient
enrichment and metal toxicity

The high water inputs from precipitation in the Amazon basin can
increase the elution of nutrients from soil by leaching (Richter &
Babbar 1991, Stallard & Edmond 1983), which can lead to soil
acidification when extended amounts of bases are swamped out.
This manifests in low soil pH, for example, the case for the plots
on Cerro Copales (WIS9 andWIS10). Due to the acidic milieu, the
light metal aluminium switches from the silicate lattices of the
subsoil horizon and the positions of the exchangers are occupied
by hydronium (H3O+). Aluminium becomes the predominant ion
of the exchange complex. The clay fraction of these soils is domi-
nated by kaolinite (Al2Si2O5(OH)4) and presumably contains
smaller amounts of goethite (HFeO2) and haematite (Fe2O3).
Therefore, only in these samples iron (Fe2+) could be detected
(Table 1). Environmental factors like warming, weathering and
nitrogen deposition can all trigger the exchanges of cations on soil

Figure 4. Heatmap shows Bray–Curtis dissimilarities between all pairs of plots (the closer a value is to 0, the more the communities have in common) and map in bottom left
corner shows the location of the 12 plots with arrows indicating haversine distance measure. Result of Mantel test investigating the correlation between diversity and geographic
distance was significant at P < 0.01 with r = 0.39 with geographic distance being proportional to diversification between plots.
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mineral binding sites (Cusack et al. 2016) and thus liberate
currently limiting nutrients like iron, but future studies could also
monitor closely the release of potentially toxic cations such as
aluminium (Al3+). If these cations are released in excess in the
future, the consequences for plant community composition and
species diversity could be severe.

Conclusion

Fern species richness and diversity were overall best explained by
elevation and soil CEC, notably aluminium and calcium concen-
trations. Further monitoring ferns could therefore help to better
understand and predict how environmental change may impact
biodiversity, with a particular focus on threads potentially arising
from elements being released in excess from tropical soils through
modified soil CEC.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0266467423000081
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