BULL. AUSTRAL. MATH. SOC.	65R20
VOL. 21 (1980), 475-476.	45A05, 45B05, 45E10, 45L10

SUPERCONVERGENCE OF NUMERICAL SOLUTIONS TO SECOND KIND INTEGRAL EQUATIONS

G.A. CHANDLER

This thesis examines certain numerical methods for the solution of second kind Fredholm integral equations of the form

(1)
$$u_0(x) - (Ku_0)(x) = f(x), x \in [0, 1];$$

where K is the operator defined by

$$(Ku)(x) = \int_0^1 k(x, \xi)u(\xi)d\xi$$
.

Let u_n be the Galerkin solution to (1) using an *n*-dimensional space of piecewise polynomials of degree r as the basis space. It is known that $||u_n-u_0||_{\infty} \leq O(n^{-r-1})$. Chapter 2 shows that if u_n is used to calculate the iterated Galerkin solution, $u_n^* = f + Ku_n$, then (under suitable regularity conditions on k and f) the order of convergence is doubled to $||u_n^*-u_0||_{\infty} \leq O(n^{-2r-2})$. That is, u_n^* is globally superconvergent. If k fails to satisfy the regularity conditions because of a discontinuity along the diagonal $x = \xi$, then u_n^* still exhibits this $O(n^{-2r-2})$ superconvergence at the grid points, but not globally. Chapter 3 shows for smooth k and f that global superconvergence is preserved when the integrations required to form the Galerkin equations are performed numerically. The proofs of Chapters 2 and 3 use the duality argument from

Received 17 March 1980. Thesis submitted to the Australian National University, September 1979. Degree approved February 1980. Supervisors: Professor N. Trudinger and Dr R.S. Anderssen.

the finite element literature.

In practice the kernel function k is rarely smooth. Chapters 4 and 5 consider product integration solutions to (1) when the kernel is of convolution type with a weak singularity. The high rates of convergence observed for the product integration solution when u_0 is smooth have been explained previously. However the singularity in the kernel introduces certain typical singularities into u_0 which reduce the rate of convergence. Chapter 4 uses a modified duality argument and a characterization of the singularity of the solution in terms of Nikol'skii spaces to prove these reduced orders of convergence.

Chapter 5 reports numerical experiments which indicate that the order of convergence can be restored by using an appropriate non-uniform grid. Such grids may be generated automatically by an adaptive method. This method uses the characterisation of the product integration solution as an iterated collocation solution.

476