BULL. AUSTRAL. MATH. SOC. VOL. 17 (1977), 125-134.

On families of finite sets no two of which intersect in a singleton

Peter Frankl

Let X be a finite set of cardinality n, and let F be a family of k-subsets of X. In this paper we prove the following conjecture of P. Erdös and V.T. Sós.

If $n > n_0(k)$, $k \ge 4$, $|F| > \binom{n-2}{k-2}$ then we can find two members F and G in F such that $|F \cap G| = 1$.

1. Introduction and some lemmas

Let X be a finite set of cardinality n and let F be a family of k-subsets of X. Let us define

 $F_m = \{F - x \mid x \in F \in F\} .$

We say that a family of sets is intersecting if any two members of it have non-empty intersection. Let L be a set of non-negative integers. We say that F is an (n, L, k)-system if, for any two different members F, Gof F, $|G \cap F| \in L$.

The Erdös-Ko-Rado Theorem (Erdös, Ko, and Rado [4]) states that if F is an $(n, \{t, t+1, \ldots, k-1\}, k)$ -system and $n > n_0(k)$; then $|F| \leq \binom{n-t}{k-t}$ with equality holding if and only if for some t-element subset Y of X, $F = \{F \subset X \mid |F| = k, Y \subseteq F\}$, where t is a positive integer.

Erdös and Sós made the following conjecture (see Erdös [2]):

If F is an $(n, \{0, 2, 3, ..., k-1\}, k)$ -system, $k \ge 4$, $n \ge n_0(k)$,

Received 21 February 1977.

then $|F| \leq \binom{n-2}{k-2}$.

The aim of this paper is to prove this conjecture. For the case k = 4 it was proved by Katona [5].

Obviously the condition is equivalent to that for every $x \in X$, F_x is an intersecting family.

If G is an intersecting family of (k-1)-subsets of X then let us define

$$G^* = \left\{ E \subset X \mid E \neq \emptyset, \exists G_1, G_2, \ldots, G_k \mid E \mid \right\}$$

such that $G_i \cap G_j = E$, $1 \le i < j \le k^{|E|}$, $B(G) = \{B \in G^* \mid \not E \in G^* \text{ such that } E \subseteq B\}$.

From the definition it is evident that $G \subseteq G^*$ and consequently for every $G \in G$ there exists $B \in B(G)$ such that $B \subseteq G$. Therefore we call B the Δ -base of G.

A family $C = \{C_1, \ldots, C_s\}$ is called a Δ -system of cardinality sif for some set $K \subseteq C_1$ we have $C_i \cap C_j = K$ for $1 \le i < j \le s$. K is called the kernel of the Δ -system. Erdös and Rado [3] proved that there exists a function f(k, s) such that any family consisting of f(k, s)different k-sets contains a Δ -system of cardinality s.

LEMMA 1. Let F be an $(n, \{0, 2, 3, ..., k-1\}, k)$ -system, $k \ge 4$, $x \in X$, $1 \le i \le k-1$. Then we cannot find sets $B_1, \ldots, B_i \in B(F_x)$, forming a Δ -system of cardinality k^i and satisfying further $|B_j| = i + 1$ for $1 \le j \le k^i$.

Proof. Let us suppose that for B_1, \ldots, B_i the lemma fails; let k^i K be the kernel of the corresponding Δ -system.

By the definition of the Δ -base there exist sets $E_j^r \in F_x$ for $1 \le r \le k^i$, $1 \le j \le k^{i+1}$, such that for $1 \le j < j^* \le k^{i+1}$, $E_j^r \cap E_{j^*}^r = B_r$. As the sets $E_j^1 - B_1$ are pairwise disjoint and

$$\begin{vmatrix} k^{i} \\ \cup \\ p=2 \\ r=2 \end{vmatrix} < k \cdot k^{i} = k^{i+1} ,$$

we can find a j, $l \le j \le k^{i+1}$ such that $E_j^1 - B_1$ is disjoint to the union of the B^r 's. Let us define $D_1 = E_j^1$. Let us suppose that D_r is defined already for $r = 1, \ldots, s-1$. Let us set

$$C_{s} = \begin{pmatrix} s-1 \\ \cup \\ r=1 \end{pmatrix} \cup \begin{pmatrix} k^{i+1} \\ \cup \\ B_{r=s+1} \end{pmatrix} .$$

Then $|C_{s}| < k^{i+1}$.

Hence among the pairwise disjoint sets $E_1^{\mathcal{S}} - B_s$, \dots , $E_k^{\mathcal{S}} i + 1 - B_s$ we can find one, say $E_j^{\mathcal{S}} - B_s$, which is disjoint from C_s ; let us define $D_s = E_j^{\mathcal{S}}$. Let us continue this procedure until $s = k^i$. From the definition of the D_s 's it follows that they belong to F_x , and that they form a Δ -system of cardinality $k^i \geq k^{|K|}$ with kernel K, yielding $K \in F_x^*$. But this is a contradiction as $K \subsetneq B \in \mathcal{B}(F_x)$. //

In view of Lemma 1, $\mathcal{B}(F_x)$ contains at most $f(i+1, k^i)$ (i+1)-element sets for i = 1, 2, ..., k-1. Now the next lemma is obvious.

LEMMA 2. Let F be an $(n, \{0, 2, 3, ..., k-1\}, k)$ -system consisting of subsets of X, $x \in X$, $k \ge 4$. Suppose that F_x^* does not contain any 1-element set and let B_1, \ldots, B_v be the 2-element sets in it. Then

 $|F_x^{-} \{ E \in F_x \mid \exists j, 1 \le j \le v, B_j \subset E \} | < k.f(k-1, k^{k-2}) \cdot {\binom{n-4}{k-4}} .$ We need one more lemma. LEMMA 3. Let F be an $(n, \{0, 2, 3, \dots, k-1\}, k)$ -system consisting of subsets of X. Let y, x be two not necessarily different elements of X. If $B \in B(F_x)$, $C \in B(F_y)$, then $|(B \cup x) \cap (C \cup y)| \neq 1$.

Proof. If $B \in F_x$, $C \in F_y$, then the statement follows from the definition of $(n, \{0, 2, 3, \ldots, k-1\}, k)$ -systems. So we may assume that, for example, $B \notin F_x$. By the definition of $B(F_x)$ there exist $F_1, \ldots, F_k \in F$ forming a Δ -system with kernel $B \cup x$. As the sets $F_i - (B \cup x)$ are pairwise disjoint and in the case $(B \cup x) \cap (C \cup y) = 1$, $|(C \cup y) - (B \cup x)| \leq k - 1$, we can find an index j, $1 \leq j \leq k$, such that $|F_j \cap (C \cup y)| = 1$. If $(C \cup y) \in F$ then this is a contradiction to the definition of $(n, \{0, 2, 3, \ldots, k-1\}, k)$ -systems. If $C \notin F_y$ then by the definition of $B(F_y)$ there exist $G_1, G_2, \ldots, G_k \in F$ which form a Δ -system with kernel $C \cup y$. As the sets $G_i - (C \cup y)$ are pairwise disjoint and $|F_j - (C \cup y)| = k - 1$, we can find an index i, $1 \leq i \leq k$, such that $(F_j - (C \cup y)) \cap G_i = \emptyset$; that is, $|F_j \cap G_i| = 1$, a contradiction which proves the lemma.

2. The proof of the result

Let us first prove a slightly weaker result which, however, implies the conjecture of Erdös-Sós.

THEOREM 1. Let F be an $(n, \{0, 2, 3, ..., k-1\}, k)$ -system consisting of subsets of X, $n > n_0(k)$. Then one of the following cases occurs:

- (i) $|F| < \binom{n-2}{k-2}$;
- (ii) there exist $x \neq y \in X$ such that

 $F = \{F \subset X \mid |F| = k, x \in F, y \in F\};$

(iii) there exists $x \in X$ such that $|F_x| < {n-3 \choose k-3}$; (iv) there exist $x \neq y \in X$ such that

$$\left|\left\{F \in F \mid \{x, y\} \cap F \neq \emptyset\right\}\right| < \binom{n-3}{k-3} + \binom{n-4}{k-3}$$

Proof. Let us argue indirectly. By Lemma 2 we may assume that for for every $x \in X$, $\mathcal{B}(F_x)$ contains a set of cardinality at most 2. If it contains a 1-element set, say $\{y\}$, then the intersection property implies $\mathcal{B}(F_x) = \{\{y\}\}$ and conversely $\mathcal{B}(F_y) = \{\{x\}\}\)$. Indeed, if for some $F \in F$, $|F \cap \{x, y\}| = 1$ holds then let us consider a Δ -system of cardinality k and with kernel $\{x, y\}$, consisting of members of F such a system exists by the definition of $\mathcal{B}(F_x)$. Now as $|F-\{x, y\}| = k - 1$, there is a member of the Δ -system, say G, which is disjoint from it; that is, $|F \cap G| = 1$, a contradiction.

Now let us suppose that $\mathcal{B}(F_x)$ consists of sets of cardinality at least 2, and let B_1, \ldots, B_v be the 2-element sets belonging to it. By Lemma 3 the B_i 's form an intersecting family of 2-sets, and by Lemma 1 this family does not contain a Δ -system of cardinality k. As $k \geq 4$, it follows v < k. Now Lemma 2 and $|F_x| \geq \binom{n-3}{k-3}$ imply, for $n > n_0(k)$, that there exists an i, $1 \leq i \leq v$, such that

$$|\{G \in F_x \mid B_i \subset G\}| > 1/k \binom{n-3}{k-3} . \tag{1}$$

By symmetry reasons we may assume that (1) holds for i = 1. Let us suppose first that for some $G \in F_x$, $G \rightharpoonup B_1$ holds.

If $G \cap B_1 = \emptyset$ then let us choose k sets G_1, \ldots, G_k belonging to F_x and forming a Δ -system with kernel B_1 . Then $|G-B_1| = k - 1$ implies that G is disjoint from at least one of the G_i 's, say from G_u . As F_x is an intersecting family of sets, we see that $G \cap B_1 = \emptyset$ is impossible. Hence if $G \Rightarrow B_1$ then $|G \cap B_1| = 1$. We prove now that this is impossible, too.

Let us define $H = G \cup B_1 \cup \ldots \cup B_v$, and $E_1 = \{F-B_1 \mid B_1 \subseteq F \in F_x, (F-B_1) \cap H = \emptyset\}$.

https://doi.org/10.1017/S0004972700025521 Published online by Cambridge University Press

From (1) and $n > n_0(k)$ it follows that, for example,

$$|E_1| > 1/2k \binom{n-3}{k-3}$$

Hence there exists an element z of $X - (B_1 \cup x)$ which satisfies

$$|\{E \in E_1 \mid z \in E\}| > 1/2k \binom{n-4}{k-4}$$

In the case k = 4 we just choose $z = E - (B_1 \cup x)$ for some $E \in E_1$. By a result of Erdös [1] if a family \mathcal{D} of *s*-subsets of *X*, $s \ge 1$, does not contain f(s) pairwise disjoint members, then $|\mathcal{D}| = O\left(\binom{n}{s-1}\right)$.

We apply this theorem for $\mathcal{D} = \{E-z \mid E \in E_1, z \in E\}$, s = k - 4, f(s) = s + 4, to prove that there exist k members of E_1 , say C_1, \ldots, C_k , such that $C_i \cap C_j = \{z\}$, $1 \le i < j \le k$. In the case k = 4 we can choose $C_1 = \ldots = C_k = \{z\}$.

Let B be a member of $B(F_z)$ for which $|\{F \in F_z \mid B \subseteq F\}|$ is maximal. Then, as we proved it already for x, it follows that

$$|\{F \in F_z \mid B \subset F\}| > 1/k \binom{n-3}{k-3}$$
(3)

From Lemma 3 we know that $(B \cup z) \cap (B_1 \cup x) = 1$ is impossible. We prove now that these two sets cannot be disjoint either. Otherwise from a Δ -system F_1, \ldots, F_k consisting of members of F, and having kernel $B \cup z$, we could choose a set, say F_i , satisfying $F_i \cap (B_1 \cup x) = \emptyset$. But then there is an index j, $1 \le j \le k$, such that $C_j \cap F_i = \{z\}$. Now setting $G_j = (C_j \cup B_1 \cup x \cup z) \in F$, $|G_j \cap F_i| = 1$ is a contradiction, proving $(B \cup z) \cap (B_1 \cup x) \neq \emptyset$.

As $|B| \leq 2$, it follows now that |B| = 2 and $B \subset (B_1 \cup x)$.

If $B = B_1$ then from a Δ -system F_1, \ldots, F_k consisting of members of F and having kernel $B \cup z$ we can choose a set, say F_i , which is disjoint from G - B. But then we have $|F_i \cap (G \cup x)| = 1$, a contradiction.

Hence $x \in B$. This in turn implies $((B \cup z) - x) \in B(F_x)$, a contradiction since $z \notin (B_1 \cup \cdots \cup B_v)$. This final contradiction proves that $G \xrightarrow{1} B_1$ is impossible; that is, for every $G \in F_x$, $G \supseteq B_1$ holds, and in particular v = 1. Hence $B(F_x) = \{B_1\}$.

Let
$$B_1 = \{y_1, y_2\}$$
. We assert that $B(F_{y_1}) = \{\{y_2\}\}$.

Otherwise it follows from the definition of $\mathcal{B}\{F_{y_1}\}$ that $\{x, y_2\}$ is a member of it. Then repeating the argument applied to x for y_1 we obtain that $\mathcal{B}\{F_{y_1}\} = \{\{x, y_2\}\}$; that is, every member of F which contains y_1 contains x and y_2 as well. Consequently we have $|\{F \in F \mid F \cap \{x, y_1\} \neq \emptyset\}| \le |\{F \subset X \mid |F| = k, \{x, y_1, y_2\} \subset F\}|$ $= {n-3 \choose k-3} < {n-3 \choose k-3} + {n-4 \choose k-3}$,

contradicting the indirect assumptions.

So far we have proved that for every $x \in X$ either there exists a $y \in X$ such that $B(F_x) = \{\{y\}\}$, $B(F_y) = \{\{x\}\}$, or there exist $y, z \in X$ such that $B(F_x) = \{\{y, z\}\}$, $B(F_y) = \{\{z\}\}$, $B(F_z) = \{\{y\}\}$.

Now let $\{x_1, y_1\}, \ldots, \{x_w, y_w\}$ be the collection of all the different unordered pairs satisfying $x_i, y_i \in X$, $\mathcal{B}(F_{y_i}) = \{\{x_i\}\}$, $\mathcal{B}(F_{x_i}) = \{\{y_i\}\}$, $1 \le i \le w$. By Lemma 3 all the elements x_i, y_i are different; that is, they form w pairwise disjoint 2-subsets of X.

As we proved it is possible to divide the remaining elements of X into ω classes Z_1, \ldots, Z_ω such that for $1 \le i \le \omega$, $z_i \in Z_i$, we have $\mathcal{B}[\mathcal{F}_{z_i}] = \{\{x_i, y_i\}\}$. So we proved that \mathcal{F} is contained in the following family of subsets of X:

$$F^* = \{F \subset X \mid |F| = k, F \cap (Z_i \cup \{x_i, y_i\}) \neq \emptyset \text{ implies} \\ \{x_i, y_i\} \subset F, 1 \le i \le w\} .$$

If w = 1 then either (i) or (ii) holds. So we may assume $w \ge 2$. All we have to prove now is that in this case $|F^*| < \binom{n-2}{k-2}$.

We prove this by induction on w and for every n > k.

By symmetry reasons we may assume that $|Z_1| \leq |Z_2|$. We count the number of members of F^* according to the cardinality of their intersection with $Z_1 \cup \{x_1, y_1\}$. Let us define $n_1 = |Z_1 \cup \{x_1, y_1\}|$. Then $|Z_1| \leq |Z_2|$ implies $n_1 \leq n - n_1$. Using the induction hypothesis or the estimate for the case w = 1, we obtain

$$|F^*| \leq \binom{n_1 - 2}{k - 2} + \sum_{i=2}^{k-2} \binom{n_1 - 2}{k - 2 - i} \binom{n - n_1 - 2}{i - 2} + \binom{n - n_1 - 2}{i - 2} .$$
(4)

As

$$\binom{n_1 - 2}{k - 2} = \left(\binom{n_1 - 2}{(k - 2)} \binom{n_1 - 3}{k - 3} < n_1 \binom{n - n_1 - 2}{k - 3} \right),$$

and

$$\binom{n_1-2}{k-2-i} \leq \binom{n_1}{k-i}, \quad i = 2, \dots, k-2,$$

it follows from (4),

$$|F^*| < n_1 \binom{n-n_1-2}{k-3} + \sum_{i=2}^{k-2} \binom{n_1}{k-i} \binom{n-n_1-2}{i-2} + \binom{n-n_1-2}{k-2} = \sum_{i=2}^{k} \binom{n_1}{k-i} \binom{n-n_1-2}{i-2} = \binom{n-2}{k-2} . //$$

THEOREM 2. Let F be an $(n, \{0, 2, 3, ..., k-1\}, k)$ -system, $k \ge 4$. Suppose that $n > n_0(k) + 2 \binom{n_0(k)}{k}$, where $n_0(k)$ is the bound from Theorem 1. Then either there exist two different elements x, y such that $F = \{F \subset X \mid |F| = k, \{x, y\} \subset F\}$ or $|F| < \binom{n-2}{k-2}$.

132

Proof. Let us argue indirectly and let F be a counter-example. Let $|F| = \binom{n-2}{k-2} + d$, where d is a non-negative integer. We may apply Theorem 1 to F. Hence either there exists $x \in X$ such that $|F_x| < \binom{n-3}{k-3}$ or there exist two different elements x, y in X such that

$$|\{F \in F \mid F \cap \{x, y\} \neq \emptyset\}| < \binom{n-3}{k-3} + \binom{n-4}{k-3}$$

In the first case let us define $X_1 = X - x$ and in the second $X_1 = X - \{x, y\}$. In both cases we define $F_1 = \{F \subset X_1 \mid F \in F\}$. Then F_1 is an $(|X_1|, \{0, 2, 3, ..., k-1\}, k)$ -system of cardinality at least

$$\binom{|X_1|-2}{k-2} + d + 1 \quad .$$

Now we apply Theorem 1 to the family F_1 , and we construct a set X_2 and a family of subsets, F_2 , of X_2 such that F_2 is an $(|X_2|, \{0, 2, 3, ..., k-1\}, k)$ -system of cardinality at least $\binom{|X_2|-2}{k-2} + d + 2$, and so on, and so on until we get a set X_p and a family of k-subsets of X_p , F_p such that $|X_p| \leq n_0(k)$.

Now the method of construction implies that

$$|F_{p}| \geq \binom{|X_{p}|-2}{k-2} + d + \binom{n_{0}(k)}{k} > \binom{n_{0}(k)}{k}$$

a contradiction since the number of k-subsets of X_n is

$$\begin{pmatrix} |X_{p}| \\ k \end{pmatrix} \leq \begin{pmatrix} n_{0}(k) \\ k \end{pmatrix} \quad . \qquad //$$

REMARK. One might conjecture that for an arbitrary integer s and $k > k_0(s)$, $n > n_0(k)$, any family of more than $\binom{n-s-1}{k-s-1}$ k-subsets of an *n*-set contains two members intersecting in a set of cardinality s. The author can prove it only for $c_k \binom{n-s-1}{k-s-1}$, where c_k is a large constant

depending only on k .

References

- P. Erdös, "A problem on independent r-tuples", Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 93-95.
- [2] P. Erdös, "Problems and results in graph theory and combinatorial analysis", Proc. Fifth British Combinatorial Conference, 1975, 169-172 (University of Aberdeen, Aberdeen, 1975. Congressus Numerantium, 15. Utilitas Mathematica, Winnipeg, 1976).
- [3] P. Erdös and R. Rado, "Intersection theorems for systems of sets", J. London Math. Soc. 35 (1960), 85-90.
- [4] P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
- [5] Gyula Katona (unpublished).

Magyar Tudományos Akadémia, Matematikai Kutató Intézete, Budapest, Hungary.