On families of finite sets no two of which intersect in a singleton

Peter Frankl

Let X be a finite set of cardinality n, and let F be a family of k-subsets of X. In this paper we prove the following conjecture of P. Erdös and V.T. Sós.

If $n>n_{0}(k), k \geq 4,|F|>\binom{n-2}{k-2}$ then we can find two members F and G in F such that $|F \cap G|=1$.

1. Introduction and some lemmas

Let X be a finite set of cardinality n and let F be a family of k-subsets of X. Let us define

$$
F_{x}=\{F-x \mid x \in F \in F\}
$$

We say that a family of sets is intersecting if any two members of it have non-empty intersection. Let L be a set of non-negative integers. We say that F is an (n, L, k)-system if, for any two different members F, G of $F,|G \cap F| \in L$.

The Erdös-Ko-Rado Theorem (Erdös, Ko, and Rado [4]) states that if F is an $(n,\{t, t+1, \ldots, k-1\}, k)$-system and $n>n_{0}(k)$; then $|F| \leq\binom{ n-t}{k-t}$ with equality holding if and only if for some t-element subset Y of X, $F=\{F \subset X| | F \mid=k, Y \subseteq F\}$, where t is a positive integer.

Erdös and Sós made the following conjecture (see Erdös [2]): If F is an $(n,\{0,2,3, \ldots, k-1\}, k)$-system, $k \geq 4, n \geq n_{0}(k)$,

Received 21 February 1977.
then $|F| \leq\binom{ n-2}{k-2}$.
The aim of this paper is to prove this conjecture. For the case $k=4$ it was proved by Katona [5].

Obviously the condition is equivalent to that for every $x \in X, F_{x}$ is an intersecting family.

If G is an intersecting family of ($k-1$)-subsets of X then let us define

$$
G^{*}=\left\{E \subset X\left|E \neq \varnothing, \exists G_{1}, G_{2}, \ldots, G_{k}\right| E \mid\right.
$$

such that $\left.G_{i} \cap G_{j}=E, 1 \leq i<j \leq k^{|E|}\right\}$,
$B(G)=\left\{B \in G^{*} \mid \nmid \notin \in G^{*}\right.$ such that $\left.E \varsubsetneqq B\right\}$.
From the definition it is evident that $G \subseteq G^{*}$ and consequently for every $G \in G$ there exists $B \in B(G)$ such that $B \subseteq G$. Therefore we call B the Δ-base of G.

A family $C=\left\{C_{1}, \ldots, C_{s}\right\}$ is called a Δ-system of cardinality s if for some set $K \varsubsetneqq C_{l}$ we have $C_{i} \cap C_{j}=K$ for $1 \leq i<j \leq s . K$ is called the kernel of the Δ-system. Erdös and Rado [3] proved that there exists a function $f(k, s)$ such that any family consisting of $f(k, s)$ different k-sets contains a Δ-system of cardinality s.

LEMMA 1. Let F be an $(n,\{0,2,3, \ldots, k-1\}, k)$-system, $k \geq 4$, $x \in X, 1 \leq i \leq k-1$. Then we cannot find sets $B_{1}, \ldots, B_{k} i \in B\left(F_{x}\right)$, forming a Δ-system of cardinality k^{i} and satisfying further $\left|B_{j}\right|=i+1$ for $1 \leq j \leq k^{i}$.

Proof. Let us suppose that for $B_{1}, \ldots, B_{k}{ }^{i}$ the lemma fails; let K be the kernel of the corresponding Δ-system.

By the definition of the Δ-base there exist sets $E_{j}^{r} \in F_{x}$ for $1 \leq r \leq k^{i}, 1 \leq j \leq k^{i+1}$, such that for $1 \leq j<j^{*} \leq k^{i+1}$,
$E_{j}^{r} \cap E_{j *}^{r}=B_{r}$. As the sets $E_{j}^{\beth}-B_{1}$ are pairwise disjoint and

$$
\left|\begin{array}{ll}
k_{r=2}^{i} & B_{r}
\end{array}\right|<k \cdot k^{i}=k^{i+1}
$$

we can find a $j, 1 \leq j \leq k^{i+1}$ such that $E_{j}^{1}-B_{1}$ is disjoint to the union of the $B^{r^{\prime}}$'s. Let us define $D_{1}=E_{j}^{l}$. Let us suppose that D_{r} is defined already for $r=1, \ldots, s-1$. Let us set

$$
C_{s}=\left(\begin{array}{cc}
s-1 & \\
U_{r=1} & D_{r}
\end{array}\right) \cup\left(\begin{array}{cc}
k^{i+1} & \\
U_{r=s+1} & B_{r}
\end{array}\right)
$$

Then $\left|C_{s}\right|<k^{i+1}$.
Hence among the pairwise disjoint sets $E_{1}^{s}-B_{s}, \ldots, E_{k_{i+1}^{s}}^{-B_{s}}$ we can find one, say $E_{j}^{s}-B_{s}$, which is disjoint from C_{s}; let us define $D_{s}=E_{j}^{s}$. Let us continue this procedure until $s=k^{i}$. From the definition of the D_{s}^{\prime} 's it follows that they belong to F_{x}, and that they form a Δ-system of cardinality $k^{i} \geq k^{|K|}$ with kernel K, yielding $K \in F_{x}^{*}$. But this is a contradiction as $K \underset{\nexists}{ } B \in B\left(F_{x}\right)$. //

In view of Lemma $1, B\left(F_{x}\right)$ contains at most $f\left(i+1, k^{i}\right)(i+1)-$ element sets for $i=1,2, \ldots, k-1$. Now the next lemma is obvious.

LEMMA 2. Let F be an ($n,\{0,2,3, \ldots, k-1\}, k)$-system consisting of subsets of $X, x \in X, k \geq 4$. Suppose that F_{x}^{*} does not contain any l-element set and let B_{1}, \ldots, B_{v}, be the 2 -element sets in it. Then

$$
\left|F_{x^{-}}\left\{E \in F_{x} \mid \exists j, 1 \leq j \leq v, B_{j} \subset E\right\}\right|<k \cdot f\left(k-1, k^{k-2}\right) \cdot\binom{n-4}{k-4}
$$

We need one more lemma.
LEMMA 3. Let F be an $(n,\{0,2,3, \ldots, k-1\}, k)$-system
consisting of subsets of X. Let y, x be two not necessarily different elements of X. If $B \in B\left(F_{x}\right), C \in B\left(F_{y}\right)$, then $|(B \cup x) \cap(C \cup y)| \neq 1$.

Proof. If $B \in F_{x}, C \in F_{y,}$, then the statement follows from the definition of $(n,\{0,2,3, \ldots, k-1\}, k)$-systems. So we may assume that, for example, $B \notin F_{x}$. By the definition of $B\left(F_{x}\right)$ there exist $F_{1}, \ldots, F_{k} \in F$ forming a Δ-system with kernel $B \cup x$. As the sets $F_{i}-(B \cup x)$ are pairwise disjoint and in the case $(B \cup x) \cap(C \cup y)=1$, $|(C \cup y)-(B \cup x)| \leq k-1$, we can find an index $j, 1 \leq j \leq k$, such that $\left|F_{j} \cap(C \cup y)\right|=1$. If $(C \cup y) \in F$ then this is a contradiction to the definition of $(n,\{0,2,3, \ldots, k-1\}, k)$-systems. If $C \neq F_{y}$ then by the definition of $B\left(F_{y}\right)$ there exist $G_{1}, G_{2}, \ldots, G_{k} \in F$ which form a Δ-system with kernel $C \cup y$. As the sets $G_{i}-(C \cup y)$ are pairwise disjoint and $\left|F_{j}-(C \cup y)\right|=k-1$, we can find an index i, $1 \leq i \leq k$, such that $\left(F_{j}-(C \cup y)\right) \cap G_{i}=\emptyset$; that is, $\left|F_{j} \cap G_{i}\right|=1$, a contradiction which proves the lemma.

2. The proof of the result

Let us first prove a slightly weaker result which, however, implies the conjecture of Erdös-Sós.

THEOREM 1. Let F be an ($n,\{0,2,3, \ldots, k-1\}, k)$-system consisting of subsets of $X, n>n_{0}(k)$. Then one of the following cases occurs:
(i) $|F|<\binom{n-2}{k-2}$;
(ii) there exist $x \neq y \in X$ such that

$$
F=\{F \subset X| | F \mid=k, x \in F, y \in F\} ;
$$

(iii) there exists $x \in X$ such that $\left|F_{x}\right|<\left[\begin{array}{l}n-3 \\ k-3\end{array}\right)$;
(iv) there exist $x \neq y \in X$ such that

$$
|\{F \in F \mid\{x, y\} \cap F \neq \emptyset\}|<\binom{n-3}{k-3}+\left(\begin{array}{l}
n-4 \\
k-3
\end{array}\right]
$$

Proof. Let us argue indirectly. By Lemma 2 we may assume that for for every $x \in X, B\left(F_{x}\right)$ contains a set of cardinality at most 2 . If it contains a l-element set, say $\{y\}$, then the intersection property implies $B\left(F_{x}\right)=\{\{y\}\}$ and conversely $B\left(F_{y}\right)=\{\{x\}\}$. Indeed, if for some $F \in F,|F \cap\{x, y\}|=1$ holds then let us consider a Δ-system of cardinality k and with kernel $\{x, y\}$, consisting of members of F such a system exists by the definition of $B\left(F_{x}\right)$. Now as
$|F-\{x, y\}|=k-1$, there is a member of the Δ-system, say G, which is disjoint from it; that is, $|F \cap G|=1$, a contradiction.

Now let us suppose that $B\left(F_{x}\right)$ consists of sets of cardinality at least 2 , and let B_{1}, \ldots, B_{v} be the 2 -element sets belonging to it. By Lemma 3 the B_{i} 's form an intersecting family of 2 -sets, and by Lemma 1 this family does not contain a Δ-system of cardinality k. As $k \geq 4$, it follows $v<k$. Now Lemma 2 and $\left|F_{x}\right| \geq\binom{ n-3}{k-3}$ imply, for $n>n_{0}(k)$, that there exists an $i, 1 \leq i \leq v$, such that

$$
\begin{equation*}
\left|\left\{G \in F_{x} \mid B_{i} \subset G\right\}\right|>1 / k\binom{n-3}{k-3} \tag{I}
\end{equation*}
$$

By symmetry reasons we may assume that (1) holds for $i=1$. Let us suppose first that for some $G \in F_{x}, G \nsubseteq B_{1}$ holds.

If $G \cap B_{1}=\emptyset$ then let us choose k sets G_{1}, \ldots, G_{k} belonging to F_{x} and forming a Δ-system with kernel B_{1}. Then $\left|G-B_{1}\right|=k-1$ implies that G is disjoint from at least one of the G_{i} 's, say from G_{u}. As F_{x} is an intersecting family of sets, we see that $G \cap B_{1}=\emptyset$ is impossible. Hence if $G \ngtr B_{1}$ then $\left|G \cap B_{1}\right|=1$. We prove now that this is impossible, too.

Let us define $H=G \cup B_{1} \cup \ldots \cup B_{v}$, and

$$
E_{1}=\left\{F-B_{1} \mid B_{1} \subseteq F \in F_{x},\left(F-B_{1}\right) \cap H=\emptyset\right\}
$$

From (l) and $n>n_{0}(k)$ it follows that, for example,

$$
\left|E_{1}\right|>1 / 2 k\binom{n-3}{k-3}
$$

Hence there exists an element z of $X-\left(B_{1} \cup x\right)$ which satisfies

$$
\begin{equation*}
\left|\left\{E \in E_{1} \mid z \in E\right\}\right|>1 / 2 k\binom{n-4}{k-4} \tag{2}
\end{equation*}
$$

In the case $k=4$ we just choose $z=E-\left(B_{1} \cup x\right)$ for some $E \in E_{1}$. By a result of Erdös [1] if a family D of s-subsets of X, $s \geq 1$, does not contain $f(s)$ pairwise disjoint members, then $|D|=O\left(\binom{n}{s-1}\right)$.

We apply this theorem for $\mathcal{D}=\left\{E-z \mid E \in E_{1}, z \in E\right\}, s=k-4$, $f(s)=s+4$, to prove that there exist k members of E_{1}, say C_{1}, \ldots, C_{k}, such that $C_{i} \cap C_{j}=\{z\}, 1 \leq i<j \leq k$. In the case $k=4$ we can choose $C_{1}=\ldots=C_{k}=\{z\}$.

Let B be a member of $B\left(F_{z}\right)$ for which $\left|\left\{F \in F_{z} \mid B \subseteq F\right\}\right|$ is maximal. Then, as we proved it already for x, it follows that

$$
\begin{equation*}
\left|\left\{F \in F_{z} \mid B \subset F\right\}\right|>1 / k\binom{n-3}{k-3} \tag{3}
\end{equation*}
$$

From Lemma 3 we know that $(B \cup z) \cap\left(B_{1} \cup x\right)=1$ is impossible. We prove now that these two sets cannot be disjoint either. Otherwise from a Δ-system F_{1}, \ldots, F_{k} consisting of members of F, and having kernel $B \cup z$, we could choose a set, say F_{i}, satisfying $F_{i} \cap\left(B_{1} \cup x\right)=\varnothing$. But then there is an index $j, 1 \leq j \leq k$, such that $C_{j} \cap F_{i}=\{z\}$. Now setting $G_{j}=\left(C_{j} \cup B_{1} \cup x \cup z\right) \in F,\left|G_{j} \cap F_{i}\right|=1$ is a contradiction, proving $(B \cup z) \cap\left(B_{1} \cup x\right) \neq \emptyset$.

As $|B| \leq 2$, it follows now that $|B|=2$ and $B \subset\left(B_{1} \cup x\right)$.
If $B=B_{1}$ then from a Δ-system F_{1}, \ldots, F_{k} consisting of members of F and having kernel $B \cup z$ we can choose a set, say F_{i}, which is
disjoint from $G-B$. But then we have $\left|F_{i} \cap(G \cup x)\right|=1$, a contradiction.

Hence $x \in B$. This in turn implies $((B \cup z)-x) \in B\left(F_{x}\right)$, a contradiction since $z \&\left(B_{1} \cup \ldots \cup B_{v}\right)$. This final contradiction proves that $G \nsupseteq B_{1}$ is impossible; that is, for every $G \in F_{x}, G \supseteq B_{1}$ holds, and in particular $v=1$. Hence $B\left(F_{x}\right)=\left\{B_{1}\right\}$.

Let $B_{1}=\left\{y_{1}, y_{2}\right\}$. We assert that $B\left(F_{y_{1}}\right)=\left\{\left\{y_{2}\right\}\right\}$.
Otherwise it follows from the definition of $B\left(F_{y_{1}}\right)$ that $\left\{x, y_{2}\right\}$ is a member of it. Then repeating the argument applied to x for y_{1} we obtain that $B\left(F_{y_{1}}\right)=\left\{\left\{x, y_{2}\right\}\right\}$; that is, every member of F which contains y_{1} contains x and y_{2} as well. Consequently we have

$$
\begin{aligned}
&\left|\left\{F \in F \mid F \cap\left\{x, y_{1}\right\} \neq \varnothing\right\}\right| \leq\left|\left\{F \subset X| | F \mid=k,\left\{x, y_{1}, y_{2}\right\} \subset F\right\}\right| \\
&=\binom{n-3}{k-3}<\binom{n-3}{k-3}+\binom{n-4}{k-3}
\end{aligned}
$$

contradicting the indirect assumptions.
So far we have proved that for every $x \in X$ either there exists a $y \in X$ such that $B\left(F_{x}\right)=\{\{y\}\}, B\left(F_{y}\right)=\{\{x\}\}$, or there exist $y, z \in X$ such that $B\left(F_{x}\right)=\{\{y, z\}\}, B\left(F_{y}\right)=\{\{z\}\}, B\left(F_{z}\right)=\{\{y\}\}$.

Now let $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{w}, y_{w}\right\}$ be the collection of all the different unordered pairs satisfying $x_{i}, y_{i} \in X, B\left(F_{y_{i}}\right)=\left\{\left\{x_{i}\right\}\right\}$, $B\left(F_{x_{i}}\right)=\left\{\left\{y_{i}\right\}\right\}, 1 \leq i \leq w$. By Lemma 3 all the elements x_{i}, y_{i} are different; that is, they form w pairwise disjoint 2-subsets of X.

As we proved it is possible to divide the remaining elements of X into w classes Z_{1}, \ldots, Z_{w} such that for $1 \leq i \leq w, z_{i} \in Z_{i}$, we have $B\left(F_{z_{i}}\right)=\left\{\left\{x_{i}, y_{i}\right\}\right\}$. So we proved that F is contained in the following family of subsets of X :

$$
\begin{aligned}
F^{*}=\left\{F \subset X| | F \mid=k, F \cap\left(z_{i} \cup\left\{x_{i}, y_{i}\right\}\right) \neq \emptyset\right. & \text { implies } \\
& \left.\left\{x_{i}, y_{i}\right\} \subset F, 1 \leq i \leq w\right\} .
\end{aligned}
$$

If $w=1$ then either (i) or (ii) holds. So we may assume $w \geq 2$. All we have to prove now is that in this case $|F *|<\binom{n-2}{k-2}$.

We prove this by induction on ω and for every $n>k$.
By symmetry reasons we may assume that $\left|z_{1}\right| \leq\left|z_{2}\right|$. We count the number of members of F^{*} according to the cardinality of their intersection with $z_{1} \cup\left\{x_{1}, y_{1}\right\}$. Let us define $n_{1}=\left|z_{1} \cup\left\{x_{1}, y_{1}\right\}\right|$. Then $\left|z_{1}\right| \leq\left|z_{2}\right|$ implies $n_{1} \leq n-n_{1}$. Using the induction hypothesis or the estimate for the case $w=1$, we obtain

$$
\begin{equation*}
|F *| \leq\binom{ n_{1}-2}{k-2}+\sum_{i=2}^{k-2}\binom{n_{1}-2}{k-2-i}\binom{n-n_{1}-2}{i-2}+\binom{n-n_{1}-2}{i-2} . \tag{4}
\end{equation*}
$$

As

$$
\binom{n_{1}-2}{k-2}=\left(\left(n_{1}-2\right) /(k-2)\right)\binom{n_{1}-3}{k-3}<n_{1}\binom{n-n_{1}-2}{k-3}
$$

and

$$
\binom{n_{1}-2}{k-2-i} \leq\binom{ n_{1}}{k-i}, \quad i=2, \ldots, k-2,
$$

it follows from (4),

$$
\begin{align*}
\left|F^{*}\right|<n_{1}\binom{n-n_{1}-2}{k-3}+\sum_{i=2}^{k-2}\binom{n_{1}}{k-i}\binom{n-n_{1}-2}{i-2} & +\binom{n-n_{1}-2}{k-2} \\
& =\sum_{i=2}^{k}\left\{\begin{array}{c}
n_{1} \\
k-i
\end{array}\right)\left[\begin{array}{c}
n-n_{1}-2 \\
i-2
\end{array}\right)=\binom{n-2}{k-2}
\end{align*}
$$

THEOREM 2. Let F be an ($n,\{0,2,3, \ldots, k-1\}, k)$-system, $k \geq 4$. Suppose that $n>n_{0}(k)+2\binom{n_{0}(k)}{k}$, where $n_{0}(k)$ is the bound from Theorem 1. Then either there exist two different elements x, y such that $F=\{F \subset X| | F \mid=k,\{x, y\} \subset F\}$ or $|F|<\binom{n-2}{k-2}$.

Proof. Let us argue indirectiy and let F be a counter-example. Let $|F|=\binom{n-2}{k-2}+d$, where d is a non-negative integer. We may apply

Theorem l to F. Hence either there exists $x \in X$ such that $\left|F_{x}\right|<\binom{n-3}{k-3}$ or there exist two different elements x, y in X such that

$$
|\{F \in F \mid F \cap\{x, y\} \neq \varnothing\}|<\binom{n-3}{k-3}+\binom{n-4}{k-3}
$$

In the first case let us define $X_{1}=X-x$ and in the second $X_{1}=X-\{x, y\}$. In both cases we define $F_{1}=\left\{F \subset X_{1} \mid F \in F\right\}$. Then F_{1} is an $\left(\left|X_{1}\right|,\{0,2,3, \ldots, k-1\}, k\right)$-system of cardinality at least

$$
\binom{\left|x_{1}\right|-2}{k-2}+d+1
$$

Now we apply Theorem l to the family F_{1}, and we construct a set X_{2} and a family of subsets, F_{2}, of X_{2} such that F_{2} is an $\left(\left|x_{2}\right|,\{0,2,3, \ldots, k-1\}, k\right)$-system of cardinality at least $\binom{\left|X_{2}\right|-2}{k-2}+d+2$, and so on, and so on until we get a set X_{r} and a family of $\cdot k$-subsets of X_{r}, F_{r} such that $\left|X_{r}\right| \leq n_{0}(k)$.

Now the method of construction implies that

$$
\left|F_{p}\right| \geq\binom{\left|X_{r}\right|-2}{k-2}+d+\binom{n_{0}(k)}{k}>\binom{n_{0}(k)}{k}
$$

a contradiction since the number of k-subsets of X_{r} is

$$
\binom{\left|x_{r}\right|}{k} \leq\binom{ n_{0}(k)}{k}
$$

REMARK. One might conjecture that for an arbitrary integer s and $k>k_{0}(s), n>n_{0}(k)$, any family of more than $\binom{n-s-1}{k-s-1} \quad k$-subsets of an n-set contains two members intersecting in a set of cardinality s. The author can prove it only for $c_{k}\binom{n-s-1}{k-s-1}$, where c_{k} is a large constant
depending only on k.

References

[1] P. Erdös, "A problem on independent r-tuples", Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 93-95.
[2] P. Erdös, "Problems and results in graph theory and combinatorial analysis", Proc. Fifth British Combinatorial Conference, 1975, 169-172 (University of Aberdeen, Aberdeen, 1975. Congressus Numerantium, 15. Utilitas Mathematica, Winnipeg, 1976).
[3] P. Erdös and R. Rado, "Intersection theorems for systems of sets", J. London Math. Soc. 35 (1960), 85-90.
[4] P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
[5] Gyula Katona (unpublished).

Magyar Tudományos Akadémia,
Matematikai Kutató Intézete,
Budapest,
Hungary.

