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ASPECTS OF LASER LORENZ DYNAMICS
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Abstract

The laser Lorenz equations are studied by reducing them to a form suitable for application of
an extension of a method developed by Kuzmak. The method generates a flow in a Poincarg
section from which it is inferred that a certain Hopf bifurcation is always subcritical.

1. Introduction

A version of the complex Lorenz equations models the behaviour of certain lasers,
and an extensive discussion of the background to this model may be found in the
text by Weiss and Vilaseca [8]. The theoretical studies of the original complex
Lorenz equations made by Fowler, Gibbon and McGuinness [4], and by Fowler and
McGuinness [5] contain results that may not be relevant to the laser case — see the
remark by Zeghlache et al. [9]. Although they have many of the properties of the
"complex Lorenz" equations, the "laser Lorenz" equations studied below are more
tractable than the former.

The present method is distinct from that followed by Fowler and McGuinness [5].
Here the first step is to reduce the fifth order laser Lorenz equations to effectively
fourth order by choosing a new set of variables, and this is possible in the case of
major interest when a physical parameter A (the pump parameter) exceeds a critical
value Aaa, necessarily greater than unity. The physical variables are scaled with
respect to the quasi-steady solutions (in fact supercritical, Hopf bifurcated solutions
which are now designated as primary) that become available when (A — ACTit) is
positive. Then a new choice of variables produces a fourth order system, which for
large ((A — ACTit) oc e~2) can be viewed as essentially an e-perturbed, nonlinear,
oscillatory second order system. The reduction, which is exact, together with its
associated local, fixed point linear dynamics is set out in Section 2. The nonlinear
dynamics of the reduced system are studied in the subsequent ones.
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[2] Aspects of laser Lorenz dynamics 153

In Section 3 solutions of the underlying (e = 0) steady nonlinear oscillator are
constructed. The description appears to be the simplest possible with the ultimate
computation in mind and proceeds by (fairly) direct computation of the Fourier rep-
resentation of the oscillations, suitably parameterized, rather than by appealing to
appropriate but less convenient special functions. The coefficients of the Fourier rep-
resentation are infinite series in the describing parameter A, with non-small common
convergence radius. They can be calculated to arbitrary powers of A but the effort
required increases very rapidly with the index.

With such a description of the underlying oscillator, an extended form of Kuz-
mak's [7] method applies to the perturbed (e ^ 0) system. The present analytic
framework differs from that adopted by Bourland and Haberman [1], who also use
essentially Kuzmak's method in their study of a nonlinear oscillator, but the basic
ideas are the same. In Section 4 a solution matrix and its inverse are found for the
linear homogeneous equations of first variation for the unperturbed system. All the
entries in these matrices can be directly expressed in terms of the Fourier represent-
ations described earlier. Then, in Section 5, Kuzmak's [7] idea is used: conditions
are specified whereby the slow evolution of parameters determining the underlying
oscillator's Fourier representation forces the solution of the non-homogeneous first
variation system to be periodic in a fast variable. These calculations are presented
in a general and systematic framework, and they lead to a first order equation whose
direction field can be interpreted as an abstract Poincare section of the trajectories of
the fourth order system.

Calculations (Section 6) elucidate some of the properties of this field. Most signific-
antly it is found that Hopf bifurcation of the reduced system, designated as secondary,
is always subcritical. This result distinguishes the laser Lorenz system from the com-
plex Lorenz system, which (Fowler, Gibbon and McGuinness [4]) may show both sub-
and supercritical Hopf bifurcations in certain regions in parameter space. A second
result is that the toroidal frequency of all oscillatory solutions asymptotically tends to
that (o>) of the primary Hopf bifurcation solutions.

The writer is unaware of any proof of validity of approximations obtained with
Kuzmak's technique. (The original paper [7] contains a proof that the residual is
suitably small but this, while suggestive, is not quite the same thing.) An outline of a
proof is given in Section 7.

2. The laser Lorenz dynamical system

The dynamical system studied is (Zeghlache et al. [9])

E = -K(l + i8)E -KAP, (2.1)

P = -KiO + iA)P - yxDE, (2.2)
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D = -Y\\{D - 1) + Yl]1U(P*E), (2.3)

where K, A, y± and y^ are positive constants; 5 and A are also real constants but they
may have either sign. The independent variable is t and differentiation with respect
to it is denoted by . The dependent variables E and P are complex, while D is real.
Complex conjugation is denoted by *. The theory will be directed towards describing
the behaviour of the system when the parameter A is large, with scaling imposed by
bifurcation dynamics.

There is a singular point of the system (2.1-3) at E = P — 0, D = \. Here its local
linear approximation has a coefficient matrix with one real eigenvalue (—y{) exactly,
and a quartet of eigenvalues which are generally complex. For "small A" they are
approximately

-yx(l±iA) + O(A); (2.4a)

in the "large A" case they are approximately

y/y±KA + 0(1), -JyxicA + O(l) (2.4b)

and their conjugates, that is, complex numbers whose arguments are close to zero
or it. This follows from the usual calculations, and the change in sign of the real
part of one of the pair signals a supercritical Hopf bifurcation with A the bifurcation
parameter.

These primary Hopf bifurcation solutions exist when A exceeds a critical value
/4cri, and they are the quasi-steady solutions

, (2.5)

P(t) = Pdt) = Poe
ia", (2.6)

D(t) = Do, (2.7)

where Do and a> are real constants, and Eo and Po are generally complex constants (that
is, independent of t) determined to within a unimodular, constant factor corresponding
to a choice of t origin. Thus, without significant loss of generality one of them, Po

say, can be taken to be real and positive

arg(/>0) = 0.

It follows that such solutions require

a> = - * y ± ( A + 8)/{<c + y±), (2.8)

https://doi.org/10.1017/S033427000001033X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001033X
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— notably, &> has no A dependence — and the remaining real constant Do to be
determined from the relation

7U(P0E*0) = H = Do - 1

+ Y±)2)/ {A(K + y±)2) (2.9)

which incidentally defines the positive parameter ACTit. As the ratio

E0/P0 = -KA/(K + i(KS + co)) (2.10)

is fixed from (2.1), then because

P0E*0 = P2E*0/PQ, (2.11)

it follows that H must be negative in order that the quasi-steady solutions can exist,
in fact

H = -P2K2A/(K2 + (K8 + O>)2). (2.12)

This requires that the earlier (2.9) evaluation of H must also be negative, and its sign
is so determined only for sufficiently large

A > AcHt = 1 + (K8- KLA) 2 / (* + Y±)2 > 1-

When this condition is met, then the magnitude of Po can be calculated from (2.12)

/>0
2 = -H (K2 + (KS + co)2) /(K2A) (2.13)

and with arg(/3
0) chosen to be zero, (2.10) determines Eo.

The eigenvalues of the system obtained by linearization about the quasi-steady
solution (2.5-7), using substitutions

£ = £ t ( l+ j c ) , P -

are zero (exactly); two real and negative

and a complex conjugate pair which are expressible as

- ( K - K i - y i l ) / 2 + O(A-'/2) (2.15)

when (A — i4crU) = A\H\ is sufficiently large. So, asymptotically at least, the
hyperplane (K — yL — y,,) = 0 in parameter space is a stability boundary for the quasi-
steady solutions (2.5-7), and experience suggests that interesting dynamics could
occur in its neigbourhood.
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The facts that the (fifth order in real variables) perturbation system from the quasi-
steady state obtained from (2.1-3) is autonomous, and its linearization has a zero
eigenvalue, suggest that the problem can be reduced to an effectively fourth order
one in real variables. As well, the "large A" requirement for instability makes a
perturbation theory a natural approach.

With these thoughts in mind, proceed as follows. As a preliminary move, scale
with respect to the primary Hopf bifurcated solutions by setting

E = ELU; P = PLV; D = D0 + d (2.16)

in (2.1-3), reduce them, and then introduce a scaled variable

T=€~lt (2.17)

with the perturbation (small) parameter

€ = {\H\ATX'2 = (A - Acrity
l/2. (2.18)

(In these variables, similarities with and differences from the complex Lorenz equa-
tions [4,5] are evident.) Denote the derivative with respect to T with a', and eliminate
V from the system by replacing it with a new variable

W = U'. (2.19)

After expressing U in polar form

U = Re'*, (2.20)

with R and ^ both real functions of T, it transpires that the resulting real equations
can all be expressed with a variable

T = R2V (2.21)

instead of * , and so the effective order of the system is reduced by one in variables
R, T, d and

5 = R'. (2.22)

This last system can then be reformulated as a weakly fourth order, essentially per-
turbed, second order one by replacing the variable d with

v = \H\-ld + y^R2/(2K). (2.23)

Finally, it is an advantage to replace the variables R and S with the variables

r = R2 > 0,
(2.24)

s=r' = 2RR', S = r'/i2r112).
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Then the final system reduces to (2.21), now

* ' = T/r,

which can be integrated separately using solutions of the system

r' = s, (2.25)

s' = (s2 + 4T2)/(2r) - €(ps - 2qT) + 2KY± {V - Y^/(2K)) r, (2.26)

T' = -e(pT + qs/2), (2.27)

v' = -€K|I (v - 1 + (1 - y,|/(2K))/-), (2.28)

obtained on invoking relations among the Eo and Po. Here parameter combinations

P = K + Y± (2.29)

and

q = KS + y±A + 2u>

= (K - Y±.)(K8 - y±A)/(K + y±) (2.30)

are introduced, and they are independent of A. It is emphasised that the reduction to
(2.25-28) is exact. (The corresponding reduction in [5] is evidently approximate; see
2.83 in that study.) Properties of the special case y^ = 2K, in which the last equation
(2.28) of the system decouples, are studied by Flessas [3] (without recourse to the
reduction described above), so his results are not placed in a general context.

Singular points of the reduced system occur at

C : (/-, s, T, v) = (0, 0, 0, 1) (2.31)

(corresponding to E = P = 0, D = I) and

D : (r, s, T, v) = (1,0, 0, YJ2K). (2.32)

It will be seen below that the possibly suspect procedure of local linearization of the
system (2.25-28) at the point C can be justified. If it is done (ignoring the singular
term (s2 + 4T2)/(2r) in (2.26)), it will be found that for small c the eigenvalues of
the linearization are all real; two of unit order

and two small and negative,

—eyn and —
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The eigenvalues at the point D have in essence been stated (2.14-15); in the present
scaling and when e is small there are two small real ones

O(e3) and - ep + O(e3)

and a complex conjugate pair

2. (2.33)

When e is large, that is when (A — A^i) is small but positive, the real eigenvalues
have negative real parts. The real ones are

-y,|6 + 0(6"') and - 2Kyxp/((p2 + q2)e) + 0(e~3)

(one large, one small), and the complex conjugate pair are

-(p±iq)e + O {€-'). (2.34)

Equation (2.33) suggests, and it can be shown that for small enough e (large enough
A — A^i) a necessary and sufficient condition for the real part of some eigenvalue to
become positive is

(K - y± - XH) > 0,

and it can also be shown that a sufficient condition for no eigenvalue to have a positive
real part is

(f - Y± ~ Y\\) < 0

for any non-negative e. It can also be inferred that there is at most one boundary
crossing possible as e decreases (that is, for A — Acrit e [0, oo)), so just one consequent
secondary bifurcation is indicated.

The aim is now to investigate the dynamics of the secondary bifurcation by approx-
imating solutions of equations (2.25-28) for small e on intervals of the independent
variable of extent greater than O(e~'), using what is effectively a generalization of
the method proposed by Kuzmak [7] for problems involving a restricted class of
perturbation to otherwise autonomous oscillators.

3. The unperturbed system

When € = 0 the system (2.25-28) is

r' = s, (3.1)

s' = (s2 + 4T2)/(2r) + 2KY± {v - y,r/(2«)) r, (3.2)

T' = v' = 0. (3.3)
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Suitable descriptions of solutions of this system are central to the application of
Kuzmak's method. Obviously, two components of its solution vector are

T = r0 and v = v0, (3.4)

both constant. These solutions force all phase trajectories r(s) of (3.1-2) to be closed
(that is, r(r) to be oscillatory). For consider the equation

(r')2 = 2Lr - AT2 + 4ar2 - 2br\ (3.5)

where L, To, a and b are constants. Then differentiating, factoring and substituting
for L the second order equation

r" = L + Aar - 3br2 (3.6)

= {{r'f + 4ro
2)/(2r) + 2r2,

equivalent to the system (3.1-2) and the integrals (3.4), is the outcome if the constants
a and b are chosen to be

a = Ky±v0 and b = y±y\\/2. (3.7)

So the system (3.1-3) can be replaced by the pair

s2 = 2Lr -AT2 + Aar2 -2br\ (3.8)

s' = L + Aar - 3br2, (3.9)

and it is convenient to do so. This is the case despite the unorthodox feature of the
latter whereby what is, in effect, an integration constant of (3.9) occurs as a coefficient.
For with a and b fixed, To and say r(s = 0 ) given, as in an orthodox initial value
problem, the constant L must then be specified consistent with these values. So the
initial values determine a coefficient in the equation.

Here it is remarked that the reformulation of (3.1-3) as (3.8-9) to some extent
justifies the local linearization of the full system (2.25-8) at the point C discussed
in the previous section — there are no overtly singular terms in (3.8-9) at the field
singularity, in contrast with (2.26) and (3.2).

Consider (3.8), and recall that r (the square of a real variable) must be positive.
Solutions can only exist for its right hand side positive on some interval r > 0, and
since the coefficient b is strictly positive then, by Descartes' rule of signs:

if To # 0, there are no more than two roots of (s(r))2 in r > 0, and as (s(0))2 < 0,
if one, then two;

and if To = 0, then

either (s(r))2 > 0 on 0 < r < a, (s(r))2 < 0, r > a, 1 ,
} (s(0)Y = 0.

or (s(r))2 > 0 on 0 < 0 < a, (s(r))2 < 0, r > a I
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Thus, if solutions of the system (3.8-9) exist at all, they are oscillatory.
Although it is tempting to indulge in the legerdemain of Jacobian Elliptic functions

in the solution of (3.8), the calculations are more straightforward if a direct line
is taken. If L were known, all such solutions could be expressed in terms of an
amplitude parameter A (unrelated to the physical parameter A), and angular frequency
X(L,a,b, A)

,b, A,ir)

= po(L, a, b) + A J2 A 1 " - 1 1 ^ , a, b, A)cos(wAr), (3.10)
o

where
«i = l, (3.11)

and the other an and A2 are analytic functions of A2 whose radius of convergence need
not be small. The A-independent part of the mean is

Po = (2a + (4a2 + 3Lb)1/2)/(3b) (3.12)

and the coefficient of A0 in the power (Taylor) series expansion of A2 is

A2 = 2(4<z2 + 3L6)1/2, (3.13)

the first of these (3.12) being the value of r for which the right hand side of (3.9) is
zero, and the second the negative of the value of the r-derivative of that right hand
side at its zero. The constant L is related to T^,a,b and A by solving

[2Lr - 4T2 + 4ar2 - 2br3]r=0 = 0 (3.14)

for the function L(A, 7J2, a, b). As might be anticipated, the behaviour of L depends
strongly on the sign of the parametera. The solution of (3.14) is discussed in Section 6
in (what turns out as) the relevant case To = 0.

If the last described operation is executed, it can be assumed that

p(L, a, b, A; ix) = p(T0, a, b, A; Xz) (3.15)
OO

= PO + AJ^ A1"" V cos(rtAr)
o

and
i(L,a,b, A) =X(T2,a,b, A) (3.16)

are known functions of the parameters (ro
2, a, b, A). It is useful to observe that

r(\(r) = P(TQ, a, b, A; \jr) satisfies the system

dr
X— = s,

ds <3-17)
A — = (s2 + 4T2)/(2r) + 2ar - 2br2.

d\j/
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4. The varied system

161

The nonlinear system (3.1-3), now re-expressed as

dr ds , ,

(4.1)
—^ = 0, A-f = 0,

induces a linear homogeneous system of first variation. Suppose 5 = Xdp/d^r = a
and r = P(TQ, 2KY±V0, b; \jr) are known solutions of the system (4.1). Then this
induced system is

dx

-£- = -{o + 4T*)x/(2p2) + (2ay - Abpx,

(4.2)

A solution matrix for this system is

M =

- dp
df

0

0

dp
dA

dip• dA

0

0

dp
dT

Xdijr \dTj
1

0

dp
dv

df \
0

1

(4.3)

the matrix entries being evaluated at To, v0, and A. The matrix entries formally
denoted as dp/dA etc. are in fact

dv dv X dv t-r1dv dv dv

d T \ n

(4.4)
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where p0 and an are assumed known functions of T, v and A. All these are even
functions of \jx on [—n, n] and, indicative of the exceptional case of Floquet theory,
all contain a term proportional to

di/
(4.5)

The inverse M ' of the solution matrix is needed, and since M partitions into four
2 x 2 submatrices

"AS
M =

0 /

then its inverse is

-i _ I" A~l ~A~'B 1
= L o / J -

In calculating A"1, the factor {detA)"1 can be calculated from the Wronskian rela-
tionship

det A oc exp I / trace of the coefficient matrix of (4.2) I

and so, referring to (4.2) (the trace is 2oy/(2pk) = p^dp/di/s),
det A oc p, (4.6)

and the inverted submatrix is

ocp -!

-A.

\dA
d2p

dA
dp

(4.7)

The fourth column of M ' which will be required explicitly is proportional to

- i

_^dp_d_ /dp\ xdp_^_ (dp
dvdf\dAj dAdf\dv

\ 1
)

d^r d\j/ \dv
0
1

(4.8)

The first and second entries of the vector (4.8) are respectively odd and even functions
of ^f on [—n, 7r].
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5. Application of the extended Kuzmak method

Now revert to the problem of synthesizing approximations to the solutions of (2.25-
28) by an extension of the method of Kuzmak [7]. The first step is to invoke two time
scales for the problem: a slow one

t =€X,

that is, the original t of the problem resurrected (the derivative with respect to which
being again denoted by where unambiguous), and a fast one

dT
|

dv

dT
€~o~t

dv

This last is an elaboration of the Kuzmak [7] algorithm; its purpose is to allow for
more general perturbations — specifically those which are even in the fast time scale
— should they occur in the calculations.

Then (2.25-28) for r(yjr, t) etc. are formally

4=s' (5i)
at
j ; = is2+4r2)/(2r) ~ € { p s ~2qT)+2lcy±vr -2br2' (5-2)

(5.3)

. (5.4)

In essence, Kuzmak's method is to construct formal approximate solutions of these
equations that are periodic in the fast variable yfr.

The equations governing the leading terms of formal expansions in powers of e of
the dependent variables are

0OTT=5O, (5.5)
oifr

<J>°TT = (Jo + 4r o
2 ) / (2r o ) + 2KYxv0r0 - Ibr^ (5.6)

axj/

^ = 0, (5.7)

0o^y=O, (5.8)
ay
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and those governing the next are

. 9/-, 3A-O • dr0

4>o-rr = Si - — - <t>\ — ,
ayr at dys

ay/
4 7 o 2Kyj.iv,

dso • 3SQ
- (ps0 - 2qT0) - fa — ,

dt difr

at dy/

- n/2K)r0) - ^ - 0 , 0 .

[13]

(5.9)

(5.10)

(5.11)

(5.12)

Equations (5.5-8) have ^-periodic solutions expressible in terms of the functions
introduced in Section 3,

(5.13)

(5.14)

(5.15)0
2, a, ft, A) = k,

and it is also inferred from (5.5-8) that

a = KY±v0(t), A(O, (5.16)

are independent of yr, but have otherwise to be determined, for b = y±Y\\/2. The
four unknowns 0i (t), T0(t), vo(t) and A(/) are found by requiring (Kuzmak [7]) the
solutions r\, su Tt and Ui also to be periodic in \jr, and this will be so if the four
conditions

f

dr0 • dr0

h <P\

dt av

dt dy/

yn(v0 - - /u/2/c)r0) + — A

(5.17)

are satisfied. The entries in the vector above are the non-homogeneous terms in (5.9-
12), simplified by the partial solutions (5.16) which show To and v0 to be independent
of y/. Thus some terms vanish identically, and partial t -derivatives of To and v0 are
replaced with ordinary ^-derivatives.
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The third row (0, 0, 1,0) of the matrix M ' leads to an immediate result. This
component of the condition (5.17),

/

jr /

lpT0 + qso/2 +
AT \

-± \ df = 0,

reduces because so(rj/, t) is an odd function of \jr on [—n, JT] and its integral over that
interval therefore vanishes. Thus T0(t) must satisfy the differential equation

and so

To = constant, exp(-pt) = Kexp(—(ic + y±)t). (5.18)

The constant K is determined by initial conditions, but if solutions are sought evolving
from large negative t, or if asymptotic states are considered, then the natural reduction
is

0 (5.19)

and it is adopted for what follows.
With this assumption (5.19), the matrix M is significantly simplified. Recalling

that the coefficient in (3.1-2) defining p is To, and the equations are not generally
singular when To = 0, then both

dp ,
8f a n d

d_(dp\
df \dTj

evaluated at To = 0 are identically zero, so the third column of M is now

M3 =

0

0

1

0

From the structure of M, the third column of M ' i s also M3, so the third element
of the vector factor (potentially only the term qso/2) in the integrand (5.17) takes no
further part in proceedings.

The fourth condition (5.17) is

J L («o - 1 + (1 - yj,/(2*f))r0) + ^f\ dx/r = 0.
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By referring to the solution (5.13), and the evaluation (3.15) of p, it will be seen that
if the T/T-period mean of p(0, a, b, A; \j/) is defined to be

p = po + A2a0, (5.20)

then this condition is

dVn , .
-T + Yl («b - 1 + (1 - n/{2ic))p) = 0. (5.21)
dt

This last result will later be used in the form

- P). (5.22)

The first condition (5.17) contracts because of the parity of the terms in the integral.
Thus it follows that, on omitting terms which vanish by their parity property, one
obtains

dA dij/2

after integrating by parts. Since 4>i is independent of ty, then it follows that this
integral will vanish in general only if

0i = 0. (5.23)

After some manipulation, the second condition (5.17) reduces to

d \d

= -no - */(*» £ L-HP - P
(5.24a)

and this, and (5.21) are the conditions required to determine the remaining unknowns

A(O andi>0(0-
Two simplifications can be made in (5.24a). The term \_\dk/dt can be omitted

from its left hand side operator if both the operand and the right hand side are multiplied
by X, and so it becomes

£
(5.24)
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Also, and more significantly, the structure of the factor dp/dv (4.4-5) allows a
reduction in calculation of the right hand side of (5.24). This factor contains a term
which is the product of slowly varying factors with yjfdp/d\fr; integrating by parts the
term containing the second derivative shows that

dp y \ dp

- df. (5.25)
"A/

(The integrated part vanishes because dp/difr does at the integration terminals.)
Equations (5.21) and (5.24) together then control the evolution of the two slow

variables v0 and A. There is an obvious further reduction; if the two equations are
expressed as

—- = / (A, u0) (5.21a)
dt

and
—G(A, v0) = 1 = //(A, v0), (5.24b)
dt 3 A dt dvn dt

(5.25)

then the first order system describing a phase plane

dA _ H - JdG/dvp
~dv~0 ~ JdG/dA

is the result. Thus the underlying dynamics of the Kuzmak approach to this problem
has produced what is, in effect, a description of an abstract Poincar6 section of the
trajectories of the system (5.1-4), or the system (2.25-28) sampled at local minima
of r. That this is the case follows from the construction. It determines the slow
modulation of A and v0 by (condition (5.17)) forcing fast variable (YO periodicity on
approximations to r and v, sampling them at 2n intervals at points that are also local
minima of the approximation to r.

6. Calculations

The Fourier representation (3.10) of the solution of (3.6) is first calculated. The
Fourier coefficients an are all analytic in powers of A2 so the calculations are routine;
but here the calculation is only taken to A3. Recall that the asymptotic state To = 0
only is considered.

If
n = r-Po, (6.1)

https://doi.org/10.1017/S033427000001033X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001033X


168 P. B. Chapman [17]

where r — p0 is the zero of the right hand side of (3.6), and is evaluated in (3.12),
then (3.6) can be expressed as

tf" = -2(4a2 + 3Lb)x/2r) - 3brj2 (6.2)

say. The Fourier representation of the solution of the last equation, correct to 0(A3)
in the amplitude parameter A is

IJ(A.T) = A cos(Xr) + A2{-(Q/(2P)) + (Q/(6P)) cos(2Ar)}

+ A3(Q2/(4SP2) cos(3Ar) + 0(A4), (6.3)

X2 = P(l - 5A2Q2/(6P2)) + O(A4), (6.4)

i = />1/2(1 - 5A2Q2/(l2P2)) + O(A4),

provided P is not small. The coefficients of cos(Or), cos(2r) and cos(3r) are respect-
ively the leading terms in the expansions in powers of A2 of a0, a2 and a-$.

The calculation of L (A) can now be made. Attention is restricted to the asymptotic
state To = 0 in (3.14), as foreshadowed in Section 5. In essence, L must be chosen so
that the two statements

^ | n - 1 | a n (6.5)
0

and
/•max = {a + {a2 + Lb)1/2)/b (6.6)

are compatible. Equation (6.4) is the evaluation of (3.10) at T = 0, and (6.5) is the
location of the largest zero of (3.14) when To = 0. As remarked earlier the evaluation
of L is strongly influenced by the sign of a.

Recalling the evaluation (3.12) of p0, (6.4-5) require that

3(a2 + Lb)xl2 - (4a2 + 3Lb)1/2 =-a + 3bA + 3bA2{a0 + a2) + O(A3).

This equation can be solved for L(A), depending on the sign of a. Solutions are:
when a < O, both {\a\, 1 » A} and

, (6.7)

and when both [a, 1 » A > 0}

L(A) = -(a2 IV) + bA2 + O(A3). (6.8)

When \a\ ~ O(A), L is continuous and O(A2) but series representation of L(A)
converges only slowly. This is because P becomes 0(A), and the coefficients in
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the Fourier representation (3.10) decrease arithmetically only — that is, unassisted
by powers of A when A is small. (The calculation of the Fourier coefficients is not
essentially restricted to small A, but approximations using short truncations of power
series are only useful if it is.)

The critical surd which recurs through the calculations can now be expressed
independently of L. When \a\, 1 3> A, and a < 0 it is

(4a2 + 3Lb)x'2 = 2|o|(l + 36A/(2|a|) + O(A2))

and when a, 1 ~S> A it is

(4a2 + 3Lb)i/2 = a(\ + 3b2 A2/(2a2) + O(A3)).

Corresponding evaluations of p0 are

(a < 0) : po = A + 0(A2), (6.9)

(a > 0) : p0 = (3a + 3b2A2/(2a) + O(A3))/(3b). (6.10)

The lowest order approximations to p and A. can be used to check (5.21) and (5.24)
against linear stability theory. Suppose a > 0; then, correct to O(A), we have

p = (alb) + A cos(^) = {2KVO/Y\I> + A cos(^),

Po, p = (2KVO/Y{1),

so (5.21) is approximated as

dvQ
r + KH^O 1) + KB(1 - Vn/(2/c))(2/c-uo/yn) = ~r + 2KV0 - y\\ = 0

at at

which indicates that v0 = (Y\\/2K) is a stable fixed point with eigenvalue (—2K).

Similarly, with (3.13) A. approximated by the truncated approximation to

and p ' and (pp~2) both approximated as p0 ', (5.24) gives

'4: + P) (A2/uo/2) = (2K - yil)(A2/v0
/2).

Recalling p = K + Y±, this gives the eigenvalue (—K + Y\\ + Y±) (f°r A2, twice the
eigenvalue for A) at the fixed point A = 0 (that is, r = 1). So, as must be the case, the
Kuzmak theory is consistent with linear local analysis stated at the end of Section 2
for the fixed point D — recall that (2a)l/2 = (Y\]Y±)>/2 and note the eigenvalue (—p)
from the To (5.18) — when v0 (or a) is positive.
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If, on the other hand, an initial condition has v0 negative (but |vo| not small) then,
on substituting for p = p0 (6.8) in (5.21) it is seen that v0 evolves as

-£ + n (̂ o - 1 + (1 - Kn/(2/c))A) = 0

and since (again for v0 negative) dp/dv = 0, then (5.24) reduces to

These last two equations taken together imply (since p is positive) that v0 —• 0 at
some finite t and the analysis fails. It seems reasonable to interpret this as indicating
a sign change for v0 so that the v0 > 0 analysis applies. Considerations are now
restricted to the latter case.

For making higher order calculations, truncations are made appropriately and one
has

a0 = -3b/(4a); a2 = b/(4a)\ X = (2a)l/2(l - 3b2A2/(16a2))

A, = a(\ + b2A2/(2a2))/b; p = a(\ - b2A2/(4a2))/b. (6.11)

It is convenient to introduce a parameter combination

c = yl/(2K) (6.12)

so that
b/a = c/v0. (6.13)

The calculations required to take (5.24) into the form (5.25) to <9(A4) are tedious,
but routine. If some obvious parameter and constant cancellations are made, then the
truncations are

G(A,v0) = A2vl'2 (1 + 3c2A2/(16i;0
2)),

H(A, vo) = (2K - y,,)A V / 2 (1 + c2A2/(4v2
0)) - pG(A, v0)

= A V / 2 ((K - n - y±) + (3(* - y,, - Kx) + 2K- K||)C2A2/(16I;2)) ,

/ ( A , vo) = KH (1 - vo/c + (1 - c)cA2/(4uo))

= Y\ (c2/4 - (v0 - c/2)2 + (1 - c)c2A2/4) /(cv0).

Since the coefficient d G/d A is positive in the interior of the first quadrant of the (v0, A)
plane, the direction field associated with (5.25) has singular points (in particular) at
the intersections, if any, of the contours J = 0 and H = 0. If c < 1 (that is, 2K > y{),
J — 0 is a half branch of a hyperbola in the interior of the first quadrant; if c > 1,
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it is the quadrant of an ellipse. In each case the conic section is centered at (c/2, 0),
and its intersection with A = 0 locates the fixed point (c, 0) whose bifurcation is of
interest. The contour H = 0 is the one of the lines obtained from solving

\6v\ = - ( 3 + (2K - yd/be ~ Y\\ ~ Y±))c2A2 (6.14)

and a real line is available only if the right hand side coefficient is positive. Thus there
is a restriction to the region in parameter space for which an asymptotic bifurcated
solution is available. If (/c — y\\ — Y±) *s small, then (2K — Y{) is positive (c < 1) and
not small. Then (K — Y\\ — Y±) c a n always be chosen sufficiently small and negative
that the right hand side coefficient in (6.14) is .positive and large enough that the
contour H = 0 intersects the right, top half branch of the hyperbola J = 0. Call this
intersection F.

If, on the other hand, 2K - Y\\ is negative, then (K — Y\\ — y±) must be negative and
H is positive in the interior of the first quadrant of the (v0, A) plane, so there can be
no fixed points in the neighbourhood of (c, 0). (In this case (K — Y\\ ~ Y±) cannot be
small as the parameters are assumed not to be small, so the question of bifurcation
does not really arise.)

When the fixed point F exists, the local linearization of (5.25) can be computed, at
least for small A. Routine calculations show that the flow is a saddle, with its unstable
manifold having large positive slope, and its stable manifold having small positive
slope. The fixed point F represents the subcritically bifurcated solution in the original
equations (2.1-3). This result, namely that the bifurcation is only subcritical when
possible, is the same as that for the real Lorenz equations (see for example Weiss
and Vilaseca [8]) but it is at variance with the property found by Fowler, Gibbon and
McGuinness [4] for the complex Lorenz equations where both sub- and supercritical
bifurcations can occur for different parameter combinations.

7. An outline of a proof

The present writer is unaware of any literature which discusses the validity limit-
ations of the Kuzmak algorithm. An argument along the following lines may suffice.
The system whose solution is approximated (5.1-4) can be written in vector notation
(but suppressing explicit slow variation)

• d\

K(Y) A(Y) (7.1)

and the Kuzmak algorithm constructs an approximation Z to Y which satisfies

. dZ4> K(Z) + eA(Z) + 60q(tfr), (7.2)
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where the components of eq are known, periodic functions of rjr having a mean of
O (e2) with respect to that variable, and uniformly bounded on intervals of iff on which
both the dependent variable r, and 0, are bounded away from zero. On such intervals,
a Lipschitz "constant" L{t) can be assigned to </>~'(K + eh) so that, in the 1-norm,
and pointwise, the error E satisfies the inequality of the form

|| Z - 1 W ) = E(ir) < f LEdxf, + e j Qdf. (7.3)

The integrand Q is arrived at as follows. The components of etpq are examined
separately, and the second Mean Value Theorem of the integral calculus (Jeffreys and
Jeffreys [6]) applied to their integrals. With respect to their fast variation they are
integrable, and their slow variation will be a factor with bounded variation. Hence
the second MVT applies, and with it a 1-norm bound on these terms which, for
immediate convenience, is written as e / Qd-ty. The solution of (7.3) (see Coddington
and Levinson [2]) is {(. = max(L))

E(\fr) < eexp(^) / Qdjr. (7.4)

This suggests that the approximations supplied by (5.13) and (5.15), with A, v0

evolving as required respectively by (5.24), (5.22) and r0 = 0 could be adequate
only on a moderately large, but technically sufficiently large, x/r interval (say ifr ~

8. Conclusions

It has been shown in the preceding sections how the fifth order laser Lorenz equa-
tions (2.1-3) can be reduced (in parameter ranges where the dynamics are interesting)
to a fourth order but apparently essentially only a perturbed second order system (2.25-
28). It would seem that this reduction is in any case an advantage. The variables are
identified in (2.5-24).

For the classes of solution discussed, the analysis suggests that there is asymptotic
locking onto the toroidal eigenfrequency co of the quasi-steady solution (2.5-7). This
conclusion follows from the asymptotic vanishing of the variable T ((5.18); for its rela-
tionship with the solution structure see (2.16), (2.20-1).). The fundamental parameter
groupings determining solution behaviour are, in decreasing order of importance,

(K - /„ - YL), (2K - Y\\) and /„;

the bifurcation parameter A — Acrit acts through the scale (e) of perturbations, with no
other generic input. The parameters A and S have little significance for the essentials
of the problem.
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In the analysis, it has been convenient to work with the slowly evolving fundamental
amplitude A, and it transpires that the asymptotic dynamics can be described in a
(u0, A) phase plane — an abstract Poincare section of trajectories. The evaluation of
A — presumably by Fourier analysis of individual oscillations of the variable r —
would not be convenient in assessment of numerical simulations, but it can be shown
that A is an analytic function of a variable (m, say) equal to the difference of the
greatest and least values of p on a cycle for the oscillations of the type described in
Section 3, and this would be easily inferred from data if r were identified with p. Such
a variable could be used instead of A in a numerically generated (vo,m) phase plane.

It is not unreasonable to speculate that continuation to higher order of the cal-
culations of Section 6, or numerical reconstruction of the phase plane as suggested
above might lead to interesting insights. The subcritical limit cycle is determined as
a fixed point in the phase plane by the intersection F of the line H = 0 with the
hyperbola branch / = 0. In the low order theory above, this requires satisfaction of
the inequality

(1 - c)1/2 > 2 (-(3 + (2K - ytl)/(/c - Y\\ ~ YA.))
1/2

(c = Y\\/2K). Near equality, but in a higher order theory, there could be a proliferation
of fixed points, and more significant dynamics. (The writer confesses that initially he
had hoped to find evidence of a limit cycle in the phase plane, but so far there is none).

It is useful to examine the outcome of the method used here on the complex
Lorenz model studied in [4] and [5]. The essential difference occurs at the equation
corresponding to (2.27), which generally has an extra small term on its right hand
side which is a constant multiple of r, and consequently the equation whose solution
generates To ((5.18) above) will generally contain an extra term that is a constant
multiple of p. Such further coupling would make subsequent calculations significantly
more elaborate, and the dynamics are fundamentally more complicated. This will be
so as there is inherently a (A, v0, To) space for consideration, rather than a (A, i>o)
space (at least asymptotically) as above.
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