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ON THE METRIC THEORY OF CONTINUED FRACTIONS IN
POSITIVE CHARACTERISTIC

POJ LERTCHOOSAKUL AND RADHAKRISHNAN NAIR

Abstract. Let Fq be the finite field of q elements. An analogue of the regular
continued fraction expansion for an element α in the field of formal Laurent series
over Fq is given uniquely by

α = A0(α)+
1

A1(α)+
1

A2(α)+
. . .

,

where (An(α))
∞

n=0 is a sequence of polynomials with coefficients in Fq such that
deg(An(α)) > 1 for all n > 1. We first prove the exactness of the continued
fraction map in positive characteristic. This fact implies a number of strictly weaker
properties. Particularly, we then use the weak-mixing property and ergodicity to
establish various metrical results regarding the averages of partial quotients of
continued fraction expansions. A sample result that we prove is that if (pn)

∞

n=1
denotes the sequence of prime numbers, we have

lim
n→∞

1
n

n∑
j=1

deg(Ap j (α)) =
q

q − 1

for almost every α with respect to Haar measure. In the case where the sequence
(pn)

∞

n=1 is replaced by (n)∞n=1, this result is due to V. Houndonougbo, V. Berthé and
H. Nakada. Our proofs rely on pointwise subsequence and moving average ergodic
theorems.

§1. Introduction. Let Fq denote the finite field of q elements, where q is
a power of a prime p. If Z is an indeterminate, we denote by Fq [Z ] and
Fq(Z) the ring of polynomials in Z with coefficients in Fq and the quotient
field of Fq [Z ], respectively. For each P, Q ∈ Fq [Z ] with Q 6= 0, define
|P/Q| = qdeg(P)−deg(Q) and |0| = 0. The field Fq((Z−1)) of a formal Laurent
series is the completion of Fq(Z) with respect to the valuation | · |. That is,

Fq((Z−1)) = {an Zn
+ an−1 Zn−1

+ · · · + a0+ a−1 Z−1
+ · · · : n ∈ Z, ai ∈ Fq}

and we have |an Zn
+ an−1 Zn−1

+ · · · | = qn (an 6= 0) and |0| = 0, where
q is the number of elements of Fq . It is worth keeping in mind that | · | is a
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non-Archimedean norm, since |α + β| 6 max(|α|, |β|). In fact, Fq((Z−1)) is
the non-Archimedean local field of positive characteristic p. As a result, there
exists a unique, up to a positive multiplicative constant, countably additive Haar
measure µ on the Borel subsets of Fq((Z−1)). In [17, pp. 65–70], Sprindžuk
finds a characterization of Haar measure on Fq((Z−1)) by its value on the balls
B(α; qn) = {β ∈ Fq((Z−1)) : |α − β| < qn

}. Indeed, it was shown that the
equation µ(B(α; qn)) = qn completely characterizes Haar measure.

As in the classical context of real numbers, we have a continued fraction
algorithm in Fq((Z−1)). Note that, in the field of the formal Laurent series case,
we shall be considering that the roles of Z, Q and R in the classical theory of
continued fractions are played by Fq [Z ], Fq(Z) and Fq((Z−1)), respectively.
For each α ∈ Fq((Z−1)), we can uniquely write

α = A0 +
1

A1 +
1

A2 +
. . .

= [A0; A1, A2, . . . ],

where (An)
∞

n=0 is a sequence of polynomials in Fq [Z ] with |An| > 1 for all
n > 1. Note that, in the context of continued fractions, we shall often deal with
the set Fq [Z ]∗ = {A ∈ Fq [Z ] : |A| > 1}. As in the classical theory, we define
recursively the two sequences of polynomials (Pn)

∞

n=0 and (Qn)
∞

n=0 by

Pn = An Pn−1 + Pn−2 and Qn = An Qn−1 + Qn−2,

with the initial conditions P0 = A0, Q0 = 1, P1 = A1 A0 + 1 and Q1 = A1.

Then we have Qn Pn−1 − Pn Qn−1 = (−1)n, and hence Pn and Qn are coprime.
In addition, we have Pn/Qn = [A0; A1, . . . , An]. For a general reference on this
subject, the reader should consult [10] and [16].

In this setting, we wish to investigate some metrical questions regarding the
averages of partial quotients of continued fraction expansions. Indeed, we try to
answer the following types of question. Let (an)

∞

n=1 be any sequence of positive
integers. For a typical point α = [A0(α); A1(α), A2(α), . . . ], we would like to
identify the limits:
(1) limn→∞(1/n)

∑n
j=1 deg(Aa j (α));

(2) for each A ∈ Fq [Z ]∗, limn→∞(1/n) · #{1 6 j 6 n : Aa j (α) = A};
(3) for each m ∈ N, limn→∞(1/n) · #{1 6 j 6 n : deg(Aa j (α)) = m};
(4) let (bn)

∞

n=1 be another sequence of positive integers. We also ask about the
moving averages of the same quantities as in (1)–(3). For instance, what is
the limit,

lim
n→∞

1
bn

bn∑
j=1

deg(Aan+ j (α)).

In order to calculate these averages for a large class of the sequences (an)
∞

n=1,

we shall use pointwise subsequence and moving average ergodic theorems. In
the special case where (an)

∞

n=1 = (n)
∞

n=1, we note that Houndonougbo [8] and
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Berthé and Nakada [2] gave almost complete answers to the first three questions
by using Birkhoff’s pointwise ergodic theorem.

We finally introduce the continued fraction map in positive characteristic,
which shall be used with the ergodic theorems to calculate the averages. Define
T on the unit ball B(0; 1) = {a−1 Z−1

+ a−2 Z−2
+ · · · : ai ∈ Fq} by

Tα =
{

1
α

}
and T 0 = 0,

where {an Zn
+ · · · + a0 + a−1 Z−1

+ · · · } = a−1 Z−1
+ a−2 Z−2

+ · · · denotes
its fractional part. We note that if α = [0; A1(α), A2(α), . . . ], then we have, for
all m, n > 1,

T nα = [0; An+1(α), An+2(α), . . . ] and Am(T nα) = An+m(α).

We now summarize the contents of this paper. In §2, we establish some
essential mixing properties of the continued fraction map. In §3, we summarize
the relevant portions of subsequence pointwise ergodic theory. In §4, we
summarize the relevant material about the moving average ergodic theorem. In
§5, subsequence pointwise ergodic theory is used to prove results about various
averages of convergents. Finally, in §6, analogous results for moving averages
are given.

§2. Exactness and weak mixing. In [8, Théorème II.3.1], Houndonougbo
proved that the dynamical system (B(0; 1),B, µ, T ) is measure-preserving
and ergodic. Nevertheless, in order to calculate the more general averages of
convergents of continued fraction expansions we need subsequence pointwise
ergodic theory, which requires a stronger property of the dynamical system,
called weak mixing. Indeed, we shall systematically prove that the continued
fraction map in positive characteristic is exact with respect to Haar measure.
This fact of exactness implies all mixing properties and ergodicity.

Let (X,B, µ, T ) be a dynamical system consisting of a set X with the
σ -algebra B of its subsets, a probability measure µ, and a transformation
T : X → X. We say that (X,B, µ, T ) is measure-preserving if, for all E ∈ B,
µ(T−1 E) = µ(E). Let N = {E ∈ B : µ(E) = 0 or µ(E) = 1} denote the
trivial σ -algebra of subsets of B of either null or full measure. We say that the
measure-preserving dynamical system (X,B, µ, T ) is exact if

∞⋂
n=0

T−nB = N ,

where T−nB = {T−n E : E ∈ B}.
THEOREM 1. The dynamical system (B(0; 1),B, µ, T ) is exact.

To proceed, the following notation is useful.
Recall that Fq [Z ]∗ = {A ∈ Fq [Z ] : |A| > 1}. Let n be a natural number, and

let A1, . . . , An ∈ Fq [Z ]∗. The cylinder 1A1,...,An of length n is defined to be
the set of all points in B(0; 1) whose continued fraction expansions are of the
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form [0; A1, . . . , An, . . . ]. That is,

1A1,...,An = {[0; A1, . . . , An−1, An + β] : β ∈ B(0; 1)}.

We give some relationship between a cylinder and a ball by the following lemma.
This is crucial for calculating the measure of each cylinder.

LEMMA 2. Let n be a natural number, and let A1, . . . , An ∈ Fq [Z ]∗. We
have

1A1,...,An = B([0; A1, . . . , An]; |A1 · · · An|
−2).

Proof of Lemma 2. First we show that the cylinder 1A1,...,An belongs to the
ball B([0; A1, . . . , An]; |A1 · · · An|

−2). Let α = [0; A1, . . . , An−1, An + β],

where β ∈ B(0; 1), and let Pn/Qn = [0; A1, . . . , An]. Then we have∣∣∣∣α − Pn

Qn

∣∣∣∣ = ∣∣∣∣ (An + β)Pn−1 + Pn−2

(An + β)Qn−1 + Qn−2
−

Pn

Qn

∣∣∣∣
=

∣∣∣∣β(Pn−1 Qn − Pn Qn−1)

Qn(Qn + βQn−1)

∣∣∣∣ = |β|

|Qn||Qn + βQn−1|

<
1
|Qn|2

=
1

|A1 · · · An|2
.

This shows that α ∈ B([0; A1, . . . , An]; |A1 · · · An|
−2).

To prove the converse, suppose that α /∈1A1,...,An . Then we can write α as the
continued fraction [0; B1, . . . , Bn−1, Bn + γ ], where γ ∈ B(0; 1) and Bi 6= Ai
for some i = 1, . . . , n. Let j be the first position where B j 6= A j , so α = [0; A1,

. . . , A j−1, B j , . . . , Bn−1, Bn + γ ]. If Pj/Q j = [0; A1, . . . , A j ], then

|[0; A1, . . . , A j−1, B j , . . . , Bn−1, Bn + γ ] − [0; A1, . . . , A j−1, A j , . . . , An]|

=

∣∣∣∣ [B j ; . . . , Bn−1, Bn + γ ]Pj−1 + Pj−2

[B j ; . . . , Bn−1, Bn + γ ]Q j−1 + Q j−2
−
[A j ; . . . , An]Pj−1 + Pj−2

[A j ; . . . , An]Q j−1 + Q j−2

∣∣∣∣
=

|[B j ; . . . , Bn−1, Bn + γ ] − [A j ; . . . , An]|

|[B j ; . . . , Bn−1, Bn + γ ]Q j−1||[A j ; . . . , An]Q j−1|

=
|A j − B j |

|A j ||B j ||Q j−1|2
=

1
min(|A j |, |B j |)|Q j−1|2

>
1
|Qn|2

.

This shows that α /∈ B([0; A1, . . . , An]; |A1 · · · An|
−2), as required.

From Lemma 2, it follows immediately that µ(1A1,...,An ) = |A1 · · · An|
−2.

We note also that two cylinders 1A1,...,An and 1B1,...,Bn are disjoint if and only
if A j 6= B j for some 1 6 j 6 n.

Let A denote the algebra of finite unions of cylinders. Then A generates the
Borel σ -algebra of the dynamical system (B(0; 1),B, µ, T ). This follows from
the fact that the cylinders are clearly Borel sets themselves and that they separate
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points, that is, if α 6= β, then there exist disjoint cylinders 11 and 12 such that
α ∈ 11 and β ∈ 12.

In order to prove the exactness, we need the following three lemmas. Note
that the first two lemmas appear in [8] in slightly different language.

LEMMA 3. The dynamical system (B(0; 1),B, µ, T ) is measure-preserving.

Proof of Lemma 3. By the Kolmogorov extension theorem, it suffices
to show that, for any cylinder 1A1,...,An , we have µ(T−11A1,...,An ) =

µ(1A1,...,An ). First, we note that µ(1A1,...,An ) = |A1 · · · An|
−2. Then we notice

that
T−11A1,...,An =

⋃
A∈Fq [Z ]∗

1A,A1,...,An . (2.1)

Note that, for each j > 1, #{A ∈ Fq [Z ]∗ : |A| = q j
} = (q − 1)q j . Now, by the

disjointness of cylinders, it follows from (2.1) that

µ(T−11A1,...,An ) =
∑

A∈Fq [Z ]∗
|AA1 · · · An|

−2
= |A1 · · · An|

−2
∑

A∈Fq [Z ]∗
|A|−2

= |A1 · · · An|
−2
∞∑
j=1

(q − 1)q j

q2 j = |A1 · · · An|
−2
∞∑
j=1

q − 1
q j

= |A1 · · · An|
−2
= µ(1A1,...,An ).

This shows that the continued fraction map preserves Haar measure.

LEMMA 4. For the dynamical system (B(0; 1),B, µ, T ), suppose that E ∈
B. Then, for any n > 1 and any cylinder 1A1,...,An , we have

µ(1A1,...,An ∩ T−n E) = µ(1A1,...,An )µ(E).

Proof of Lemma 4. By the Kolmogorov extension theorem, we need only to
prove the case that E = 1B1,...,Bm is any cylinder. We first observe that

T−n1B1,...,Bm =

⋃
C1,...,Cn∈Fq [Z ]∗

1C1,...,Cn,B1,...,Bm .

By the disjointness of cylinders, it follows immediately that

1A1,...,An ∩ T−n1B1,...,Bm = 1A1,...,An,B1,...,Bm .

Therefore, we conclude that

µ(1A1,...,An ∩ T−n1B1,...,Bm ) = |A1 · · · An B1 · · · Bm |
−2

= µ(1A1,...,An )µ(1B1,...,Bm ).

This completes the proof of Lemma 4.

LEMMA 5. Let (X,B, µ) be a probability space, and let E ∈ B. Suppose
that A ⊆ B is an algebra that generates B. Suppose further that there exists
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an ω > 0 such that
µ(E ∩1) > ωµ(E)µ(1)

for all 1 ∈ A. Then either µ(E) = 0 or µ(E) = 1.

Proof of Lemma 5. Let ε > 0. As A generates B, there exists a 1 ∈ A such
that µ((Ec

\1)∪(1\Ec)) < ε.Hence, |µ(Ec)−µ(1)| < ε.Note that E∩1 ⊆
(Ec
\1) ∪ (1 \ Ec) so that µ(E ∩1) < ε. It now follows that

µ(E)µ(Ec) < µ(E)(µ(1)+ ε) 6 µ(E)µ(1)+ ε 6
1
ω
µ(E ∩1)+ ε

<

(
1
ω
+ 1

)
ε.

As ε > 0 is arbitrary, we have µ(E)µ(Ec) = 0. Thus, µ(E) = 0 or 1, and this
completes the proof of Lemma 5.

We are now in a position to prove that the continued fraction map T is exact
with respect to Haar measure.

Proof of Theorem 1. It is not hard to check that we need only to prove the
inclusion

⋂
∞

n=1 T−nB ⊆ N . Let E ∈
⋂
∞

n=1 T−nB. It follows immediately that,
for each n > 1, there exists an En ∈ B such that E = T−n En andµ(En)= µ(E).
Then, for each cylinder 1A1,...,An of length n, we always have

µ(E ∩1A1,...,An ) = µ(T
−n En ∩1A1,...,An ) = µ(E)µ(1A1,...,An ).

It follows that µ(E) = 0 or 1, so E ∈ N . This proves the exactness.

If (X,B, µ, T ) is exact, then a number of strictly weaker properties arise.
Firstly, for any natural number n and any E0, E1, . . . , En ∈ B, we have

lim
j1,..., jn→∞

µ(E0 ∩ T− j1 E1 ∩ · · · ∩ T−( j1+···+ jn)En) = µ(E0)µ(E1) · · ·µ(En).

This is called mixing of order n. Mixing of order n = 1 is

lim
j→∞

µ(E0 ∩ T− j E1) = µ(E0)µ(E1),

and this is called strong mixing, which in turn implies

lim
m→∞

1
m

m∑
j=1

|µ(E0 ∩ T− j E1)− µ(E0)µ(E1)| = 0,

which is called weak mixing. The weak-mixing property implies the condition
that if E ∈ B and if T−1 E = E, then either µ(E) = 0 or µ(E) = 1. This
last property is referred to as ergodicity in measurable dynamics. All these
implications are known to be strict in general, see [6, pp. 22–26].

§3. Subsequence ergodic theory. In this section, we describe the arithmetic
and number-theoretic context in which the results of §5 are proved. The two
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issues here are which sequences of integers satisfy a pointwise ergodic theorem
and calculating the limit of the ergodic averages in the instances where this limit
exists. We begin with some formal definitions for describing the framework in
which this is done.

A sequence of integers (an)
∞

n=1 is called L p-good universal if, for each
dynamical system (X,B, µ, T ) and f ∈ L p(X,B, µ), the limit

lim
n→∞

1
n

n∑
j=1

f (T a j−1α)

exists µ-almost everywhere. Recall that we say that a sequence of real
numbers (xn)

∞

n=1 is uniformly distributed modulo 1 if, for each interval
I ⊆ [0, 1), we have

lim
n→∞

1
n
· #{1 6 j 6 n : {x j } ∈ I } = |I |,

where |I | denotes the length of I and {x j } denotes the fractional part of x j . Also,
we say that a sequence of integers (an)

∞

n=1 is uniformly distributed on Z if, for
each m ∈ N \ {1} and k ∈ [0,m − 1] ∩ N, we have

lim
n→∞

1
n
· #{1 6 j 6 n : a j ≡ k mod m} =

1
m
.

A sequence of integers (an)
∞

n=1 is said to be Hartman uniformly distributed
on Z if ({anγ })

∞

n=1 is uniformly distributed modulo 1 for each irrational γ and if
(an)

∞

n=1 is uniformly distributed on Z. See [11] for further background.
Now we give some examples of L p-good universal sequences for some p > 1.

The examples 1 and 2 are not in general Hartman uniformly distributed. The
examples 3–6 are Hartman uniformly distributed.
(1) The natural numbers. The sequence (n)∞n=1 is L1-good universal. This is

Birkhoff’s pointwise ergodic theorem.
(2) Polynomial like sequences. If φ(x) is a polynomial such that φ(N) ⊆ N

and p > 1, then (φ(n))∞n=1 and (φ(pn))
∞

n=1, where pn is the nth prime,
are L p-good universal sequences. See [4, 5, 12].
Note that if n ∈ N, then n2

6≡ 3 mod 4, so in general the sequences
(φ(n))∞n=1 and (φ(pn))

∞

n=1 are not Hartman uniformly distributed. We do,
however, know that if γ ∈ R \ Q, then (φ(n)γ )∞n=1 and (φ(pn)γ )

∞

n=1 are
uniformly distributed modulo 1 from [19].

(3) Condition H. Sequences (an)
∞

n=1 that are both L p-good universal and
Hartman uniformly distributed can be constructed as follows. Denote
by [x] the integer part of a real number x . Set an = [τ(n)] (n = 1,
2, . . . ), where τ : [1,∞) → [1,∞) is a differentiable function whose
derivative increases with its argument. Let �n denote the cardinality of
the set {n : an 6 n}, and suppose, for some function ϕ : [1,∞)→ [1,∞)
increasing to infinity as its argument does, that we set

%(m) = sup
{z}∈[1/ϕ(m), 1

2 )

∣∣∣∣ ∑
n : an6m

e(zan)

∣∣∣∣,
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where e(x)= e2π ix for a real x . Suppose also, for some decreasing function
ρ : [1,∞)→ [1,∞) and some positive constant ω > 0, that

%(m)+�[ϕ(m)] + m/ϕ(m)
�m

6 ωρ(m).

Then if we have
∞∑

n=1

ρ(θn) <∞

for all θ > 0, we say that (an)
∞

n=1 satisfies condition H, see [14].
Sequences satisfying condition H are both Hartman uniformly distributed
and L p-good universal. Specific sequences of integers that satisfy
condition H include an = [τ(n)] (n = 1, 2, . . . ) where:
(I) τ(n) = nγ if γ > 1 and γ /∈ N;

(II) τ(n) = elogγ n for γ ∈ (1, 3
2 );

(III) τ(n) = bknk
+· · ·+b1n+b0 for bk, . . . , b1 not all rational multiplies

of the same real number;
(IV) Hardy fields. By a Hardy field, we mean a closed subfield (under

differentiation) of the ring of germs at+∞ of continuous real-valued
functions with addition and multiplication taken to be pointwise. Let
H denote the union of all Hardy fields. If (an)

∞

n=1 = ([ψ(n)])
∞

n=1,

where ψ ∈ H satisfies the condition that, for some k ∈ Z and k > 2,

lim
x→∞

ψ(x)
xk−1 = ∞ and lim

x→∞

ψ(x)
xk = 0,

then (an)
∞

n=1 satisfies condition H. This example is given in [3].
(4) A random example. Suppose that S = (bn)

∞

n=1 is a strictly increasing
sequence of natural numbers. By identifying S with its characteristic
function χS, we may view it as a point in 3 = {0, 1}N, the set of maps
from N to {0, 1}. We may endow 3 with a probability measure by viewing
it as a Cartesian product3 =

∏
∞

n=1 Xn, where, for each natural number n,
we have Xn = {0, 1} and specify the probability νn on Xn by νn({1}) = ωn
with 0 6 ωn 6 1 and νn({0}) = 1− ωn such that limn→∞ ωnn = ∞. The
desired probability measure on 3 is the corresponding product measure
ν =

∏
∞

n=1 νn. The underlying σ -algebra A is that generated by the
cylinders

{(1n)
∞

n=1 ∈ 3 : 1n1 = αn1, . . . ,1nk = αnk }

for all possible choices of n1, . . . , nk and αn1, . . . , αnk . Then almost every
point (an)

∞

n=1 in 3, with respect to the measure ν, is Hartman uniformly
distributed, [4].

(5) Block sequences. Suppose that (an)
∞

n=1 =
⋃
∞

n=1[dn, en] is ordered by
absolute value for disjoint ([dn, en])

∞

n=1 with dn−1 = O(en) as n tends
to infinity. Note that this allows the possibility that (an)

∞

n=1 is zero density.
This example is an immediate consequence of Tempelman’s semigroup
ergodic theorem [18, p. 218].
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(6) Random perturbation of good sequences. Suppose that (an)
∞

n=1 is an L p-
good universal sequence which is also Hartman uniformly distributed.
Let θ = (θn)

∞

n=1 be a sequence of N-valued independent, identically
distributed random variables with basic probability space (Y,A,P), and
a P-complete σ -field A. Let E denote expectation with respect to the
basic probability space (Y,A,P). Assume that there exist 0 < α < 1 and
β > 1/α such that

an = O(enα ) and E logβ+ |θ1| <∞.

Then (an + θn(ω))
∞

n=1 is both L p-good universal and Hartman uniformly
distributed [15].

We introduce the following two pointwise subsequence ergodic theorems.
The first lemma, which was proved in [13], enables us to calculate the limit of the
ergodic averages for an L p-good universal sequence. This lemma is what makes
it possible to make the calculations in §5 given an L p-good universal sequence.

LEMMA 6. Let (X,B, µ, T ) be a weak-mixing dynamical system. Suppose
that (an)

∞

n=1 is L2-good universal. Also suppose that, for any irrational number
γ, the sequence ({anγ })

∞

n=1 is uniformly distributed modulo 1. Then, for any
f ∈ L2(X,B, µ),

lim
n→∞

1
n

n∑
j=1

f (T a jα) =

∫
X

f dµ

µ-almost everywhere.

The second lemma, which was proved in [7], shows that, for all but example
(2) in our list of examples, we only need ergodicity of the continued fraction map
in positive characteristic. This lemma, while informative, is not strictly necessary
for the calculations in §5.

LEMMA 7. Let (X,B, µ, T ) be an ergodic dynamical system. Suppose that
(an)

∞

n=1 is an L2-good universal sequence which is also Hartman uniformly
distributed on Z. Then, for any f ∈ L2(X,B, µ),

lim
n→∞

1
n

n∑
j=1

f (T a jα) =

∫
X

f dµ

µ-almost everywhere.

Note that these two lemmas extend readily to p > 1 by approximation by L2

functions. We forego the details as we do not use this degree of generality in our
applications.

§4. Moving averages. We begin by introducing some notation. Let Z be a
collection of points in Z× N, and let

Zh
= {(m, n) ∈ Z : n > h},

Zh
α = {(x, y) ∈ Z2

: |x − m| < α(y − n) for some (m, n) ∈ Zh
},

Zh
α(k) = {x : (x, k) ∈ Zh

α} (k ∈ N).
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Geometrically, we can think of Z1
α as the lattice points contained in the union

of all solid cones with aperture α and vertex contained in Z1
= Z . We say

that a sequence of pairs of natural numbers (an, bn)
∞

n=1 is Stoltz if there exist a
collection of points Z in Z× N and a function h = h(t) tending to infinity with
t such that (an, bn)

∞
n=t ∈ Zh(t), and if there exist h0, α0, and c > 0 such that,

for all k ∈ N, we have the cardinality #Zh0
α0 (k) 6 ck. This technical condition is

interesting because of the following lemma from [1].

LEMMA 8. Let (X,B, µ, T ) be an ergodic dynamical system. Suppose that
(an, bn)

∞

n=1 is a Stoltz sequence. Then, for any f ∈ L1(X,B, µ), the limit

lim
n→∞

1
bn

bn∑
j=1

f (T an+ j−1α)

exists µ-almost everywhere.

Note that if we set

M f (α) = lim
n→∞

1
bn

bn∑
j=1

f (T an+ j−1α) and Mn, f (α) =
1
bn

bn∑
j=1

f (T an+ j−1α)

and observe that

Mn, f (Tα)− Mn, f (α) =
1
bn
( f (T an+bnα)− f (T anα)),

then we can see that M f (Tα) = M f (α) µ-almost everywhere. A standard fact
in ergodic theory is that if (X,B, µ, T ) is ergodic and if M f (Tα) = M f (α) µ-
almost everywhere, then M f (α) =

∫
X f dµ µ-almost everywhere, [6, p 14]. We

have the following lemma that will be used in §6.

LEMMA 9. Let (X,B, µ, T ) be an ergodic dynamical system. Suppose that
(an, bn)

∞

n=1 is a Stoltz sequence. Then, for any f ∈ L1(X,B, µ),

lim
n→∞

1
bn

bn∑
j=1

f (T an+ j−1α) =

∫
X

f dµ

µ-almost everywhere.

We note that the term “Stoltz” is used here because the condition on (an,

bn)
∞

n=1 is analogous to the condition required in the classical non-radial limit
theorem for harmonic functions, also called a Stoltz condition, which suggested
Lemma 8 to the authors of [1]. Averages where an = 1 for all n will be called
non-moving. This is as opposed the more general moving averages which are
averages along intervals whose initial element, i.e. an , may not be 1. Moving
averages satisfying the above hypothesis can be constructed by taking, for
instance, an = 22n

and bn = 22n−1
.

§5. Application of the pointwise subsequence ergodic theorems. In this section
we assume the sequence (an)

∞

n=1 is L2-good universal. We also suppose for
any irrational number γ that the sequence ({anγ })

∞

n=1 is uniformly distributed
modulo 1.
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Recall the elementary identities
∞∑

n=1

nxn
=

x
(1− x)2

and
∞∑

n=1

n2xn
=

x(1+ x)
(1− x)3

for |x | < 1.

Also, as is easily verified, a simple computation shows that

µ({α ∈ B(0; 1) : |α| = q−n
}) =

q − 1
qn (n = 1, 2, . . . ).

From this, we get∫
B(0;1)

|α| dµ =
∞∑

n=1

n · µ({α ∈ B(0; 1) : |α| = q−n
}) =

1
q − 1

,

∫
B(0;1)

|α|2 dµ =
∞∑

n=1

n2
· µ({α ∈ B(0; 1) : |α| = q−n

}) =
q(q + 1)
(q − 1)2

.

These two identities, in the light of the results of this section, also indicate the
relation between the expectation of the variable |α| and the frequency with which
it takes a specific value for almost all α. Analogous observations hold for other
variables in this section. In particular, the valuation | · | is in L2(B(0; 1),B, µ),
and so we have the following results.

THEOREM 10. Suppose that F : R>0 → R is a continuous increasing
function such that ∫

B(0;1)
|F(|A1(α)|)|

2 dµ <∞.

For each n ∈ N and arbitrary non-negative real numbers d1, . . . , dn, we define

MF,n(d1, . . . , dn) = F−1
(

F(d1)+ · · · + F(dn)

n

)
.

Then we have

lim
n→∞

MF,n(|Aa1(α)|, . . . , |Aan (α)|) = F−1
(∫

B(0;1)
F(|A1(α)|) dµ

)
almost everywhere with respect to Haar measure.

Proof. Apply Lemma 6 with f (α) = F(|A1(α)|).

THEOREM 11. Suppose that H : Nm
→ R is a function such that∫

B(0;1)
|H(|A1(α)|, . . . , |Am(α)|)|

2 dµ <∞.

Then we have

lim
n→∞

1
n

n∑
j=1

H(|Aa j (α)|, . . . , |Aa j+m−1(α)|)

=

∑
(i1,...,im)∈Nm

H(q i1, . . . , q im )

(
(q − 1)m

q i1+···+im

)
almost everywhere with respect to Haar measure.
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Proof. Apply Lemma 6 with f (α) = H(|A1(α)|, . . . , |Am(α)|).

Theorems 10 and 11 are general results for calculating means. They both
readily extend from L2 to L p for p ∈ (1, 2] whenever (an)n>1 is L p good
universal, though this is primarily of technical interest. Specializing for instance
to the case where F(x) = logq x, we recover the positive characteristic analogue
of Khinchin’s famous result that

lim
n→∞
|A1(α) · · · An(α)|

1/n
= qq/(q−1)

almost everywhere with respect to Haar measure, [2] and [10]. Results for means
other than the geometric mean can be obtained by making different choices of
F and H, see [9, p 230–232] for more details. In addition, the following three
theorems can be viewed as corollaries of Theorem 10.

THEOREM 12. We have

lim
n→∞

1
n

n∑
j=1

deg(Aa j (α)) =
q

q − 1

almost everywhere with respect to Haar measure.

Proof. Apply Lemma 6 with f (α) =
∑
∞

n=1 n · χ{qn}(|A1(α)|).

THEOREM 13. For any A ∈ Fq [Z ]∗, we have

lim
n→∞

1
n
· #{1 6 j 6 n : Aa j (α) = A} = |A|−2

almost everywhere with respect to Haar measure.

Proof. Apply Lemma 6 with f (α) = χ{A}(A1(α)).

THEOREM 14. For any natural numbers k < l, we have

lim
n→∞

1
n
· #{1 6 j 6 n : deg(Aa j (α)) = l} =

q − 1
ql ,

lim
n→∞

1
n
· #{1 6 j 6 n : deg(Aa j (α)) > l} =

1
ql−1 ,

lim
n→∞

1
n
· #{1 6 j 6 n : k 6 deg(Aa j (α)) < l} =

1
qk−1

(
1−

1
ql−k

)
almost everywhere with respect to Haar measure.

Proof. Apply Lemma 6 with f1(α) = χ{ql }(|A1(α)|), f2(α) = χ[ql ,∞)

(|A1(α)|), and f3(α) = χ[qk ,ql )(|A1(α)|), respectively.

§6. Application of the moving average pointwise ergodic theorem. In this
section, we state moving average variants of the results in the previous section.
The proofs, which are very similar to those in the previous section, are foregone.
Note that we use Lemma 9 for the calculations in this section.
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THEOREM 15. Let (an, bn)
∞

n=1 be a Stoltz sequence. Suppose F : R>0 → R
is a continuous increasing function such that∫

B(0;1)
|F(|A1(α)|)| dµ <∞.

For each n ∈ N and arbitrary non-negative real numbers d1, . . . , dn, we define

MF,n(d1, . . . , dn) = F−1
(

F(d1)+ · · · + F(dn)

n

)
.

Then we have

lim
n→∞

MF,bn (|Aan+1(α)|, . . . , |Aan+bn (α)|) = F−1
(∫

B(0;1)
F(|A1(α)|) dµ

)
almost everywhere with respect to Haar measure.

THEOREM 16. Let (an, bn)
∞

n=1 be a Stoltz sequence. Suppose H : Nm
→ R

is a function such that∫
B(0;1)

|H(|A1(α)|, . . . , |Am(α)|)| dµ <∞.

Then we have

lim
n→∞

1
bn

bn∑
j=1

H(|Aan+ j (α)|, . . . , |Aan+ j+m−1(α)|)

=

∑
(i1,...,im)∈Nm

H(q i1, . . . , q im )

(
(q − 1)m

q i1+···+im

)
almost everywhere with respect to Haar measure.

THEOREM 17. Suppose that (an, bn)
∞

n=1 is Stoltz. Then

lim
n→∞

1
bn

bn∑
j=1

deg(Aan+ j (α)) =
q

q − 1

almost everywhere with respect to Haar measure.

THEOREM 18. Let A ∈ Fq [Z ]∗, and suppose that (an, bn)
∞

n=1 is Stoltz. Then

lim
n→∞

1
bn
· #{1 6 j 6 bn : Aan+ j (α) = A} = |A|−2

almost everywhere with respect to Haar measure.

THEOREM 19. Let k, l ∈ N, and suppose that (an, bn)
∞

n=1 is Stoltz. Then

lim
n→∞

1
bn
· #{1 6 j 6 bn : deg(Aan+ j (α)) = l} =

q − 1
ql ,

lim
n→∞

1
bn
· #{1 6 j 6 bn : deg(Aan+ j (α)) > l} =

1
ql−1 ,

lim
n→∞

1
bn
· #{1 6 j 6 bn : k 6 deg(Aan+ j (α)) < l} =

1
qk−1

(
1−

1
ql−k

)
almost everywhere with respect to Haar measure.
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