ON THE NUMBER OF SIDES OF A PETRIE POLYGON

ROBERT STEINBERG

Let $\{p, q, r\}$ be the regular 4-dimensional polytope for which each face is a $\{p, q\}$ and each vertex figure is a $\{q, r\}$, where $\{p, q\}$, for example, is the regular polyhedron with p-gonal faces, q at each vertex. A Petrie polygon of $\{p, q\}$ is a skew polygon made up of edges of $\{p, q\}$ such that every two consecutive sides belong to the same face, but no three consecutive sides do. Then a Petrie polygon of $\{p, q, r\}$ is defined by the property that every three consecutive sides belong to a Petrie polygon of a bounding $\{p, q\}$, but no four do. Let $h_{p, q, r}$ be the number of sides of such a polygon, and $g_{p, q, r}$ the order of the group of symmetries of $\{p, q, r\}$. Our purpose here is to prove the following formula:

$$
\begin{equation*}
\frac{h_{p, q, r}}{g_{p, q, r}}=\frac{1}{64}\left(12-p-2 q-r+\frac{4}{p}+\frac{4}{r}\right) . \tag{1}
\end{equation*}
$$

We use the following result of Coxeter (1, p. 232; 2):

$$
\begin{equation*}
\frac{h_{p, q, r}}{g_{p, q, r}}=\frac{1}{16}\left(\frac{6}{h_{p, q}+2}+\frac{6}{h_{q, r}+2}+\frac{1}{p}+\frac{1}{r}-2\right), \tag{2}
\end{equation*}
$$

where $h_{p, q}$, for example, denotes the number of sides of a Petrie polygon of $\{p, q\}$. Both proofs referred to depend on the fact that the number of hyperplanes of symmetry of $\{p, q, r\}$ is $2 h_{p, q, r}$. This is proved in a more general form in (3). Clearly (1) is a consequence of (2) and the following result:

If h is the number of sides of a Petrie polygon of the polyhedron $\{p, q\}$, then

$$
\begin{equation*}
h+2=\frac{24}{10-p-q} . \tag{3}
\end{equation*}
$$

Proof of (3). The planes of symmetry of $\{p, q\}$ divide a concentric sphere into congruent spherical triangles each of which is a fundamental region for the group (5) of symmetries of $\{p, q\}(1$, p. 81$)$. The number of triangles is thus g, the order of (5). The vertices of one of these triangles can be labelled P, Q, R so that the corresponding angles are $\pi / p, \pi / q, \pi / 2$. There are $g / 2 p$ images of P under (5 , since the subgroup leaving P fixed has order $2 p$. At each of these points there are $p(p-1) / 2$ intersections of pairs of circles of symmetry. Counting intersections at the images of Q and R in a similar fashion, one gets for the total number of intersections of pairs of circles of symmetry the number

Received October 21, 1957.
$g(p+q-1) / 4$. However, the number of such circles is $3 h / 2(1, p .68)$, and every two intersect in two points. Hence

$$
\begin{equation*}
\frac{g(p+q-1)}{4}=\frac{3 h}{2}\left(\frac{3 h}{2}-1\right) . \tag{4}
\end{equation*}
$$

Dividing (4) by the relation $g=h(h+2)$ of Coxeter (1, p. 91), and solving for h, one obtains (3).

References

1. H. S. M. Coxeter, Regular polytopes (London, 1948).
2. -, The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765-782.
3. R. Steinberg, Finite reflection groups, submitted to Trans. Amer. Math. Soc.

University of California

