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1. A discussion of the Erdelyi-Kober operator

«)dM (a>0) (1)

and its adjoint operator K^a together with an account of some of their applications can be
found in the book by Sneddon [5].

Erdelyi [1] has shown that this operator can be used to connect singular differential
operators of the form

dx dx

He proved, under appropriate conditions, that

(3)

and demonstrated that this relation could be used in work on partial differential equations
involving the operator Lx which occur in generalized axially symmetric potential theory.
A comprehensive list of references to this and related topics is given in Gilbert's book [2]

In this paper we consider the generalized Erdelyi-Kober operators [4] defined by

3k(t|, a)f(x) = 2-x-a("+'")k1- u2"+1(x2- u*f~-naJ.-1{M(x2- u2)}f(u) du, (4)

where a > 0 , ks^O, Ja_,(x) is the Bessel function of the first kind and the operator
Sjk(T), a), which is defined as in equation (4) but with /a_, replaced by /„_,, the modified
Bessel function of the first kind.

These operators have the properties

3k(t|, a)x2f3/(x) = x2fJ3k(T, + ft a)f(x), SSk(ij + a, |3)3lk(T,, a) = I^a+&, (5)

»j-1(r],a) = 3jfc(i] + a,-a),»rk
1(T,,a) = 3fc(T, + a , - a ) . (6)

Defining the adjoint operator ®k(r\, a) by

xg(x)^k(T»,a)/(x)dx, (7)|

we find that it is given by the formula [4]

®k(TJ, a)f(x) = 2"x2rik'— [ u l - ^ ~ 2 " ( u
2 - x2)<"-1)/2/et_1{fcV(u2- x2)}/(u) du, (8)

when a > 0 .
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Under stated assumptions we first of all prove that

3k(i,, a)LJ(x) = ( L ^ + k2)3k(T,, o)/(x), (9)

which reduces to equation (3) when fc = 0 since %0(T], a) = In-a.
This result is then applied-to deduce properties of the solutions of the generalized

axially symmetric Helmholtz equation from the corresponding solutions of Laplace's
equation in two-dimensions.

No claim about the originality of the results presented in this paper is made, but it is
felt that the elementary use of operators of fractional integration to obtain them might
appeal to the applied mathematician.

2. We shall now prove the following result.
(i) If a>0, feC2(0,b) for some b>0, x2ri+1f(x) is integrable at the origin and

x2tl+1f(x)->0 as x->0; or
(ii) if a<0, H = x2l^+a)%k(-n, <*)f(x) exists, HeC 2 (O, b), xH(x) is integrable at the

origin and

then

3k(t|, a)LJ(x) = (L,,+a + fc2)3k(r|, a)/(x). (10)

Proo/ of (i)
We set

= 3k(t,,a)/(x)

) * , (ID

where a > 0 and £ = fcxV(l -12).

Now G(x) is differentiable and we find that

) * (12)

+ T (kx)1""!r2+2"(l - t2)(-1) /2Jr
a_1(0f (xO dt.

Integrating the second integral in this equation by parts we see that with our assumptions
the integrated part vanishes and equation (12) becomes

G'(x) = 2°x(kx)-° j V + 2 " ( l - t2)al2JM)\Fixi) - k2f(xt)] dt, (13)
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where we have written

F(x) x ^ x f ( x ) . (14)
dx

On applying the operator x~(2tl+1)(d/dx)x2i1+1 to equation (12) it can easily be shown
that we get

| \ dt

+ 2"(fcx)1-a [ r3+2"(l-t2/a-'W2Jr
a_1(£)F(x0 dt

-2a + 1k(kx)1-" | r 2 + 2 "( l - (15)

Integrating the last integral in the above equation by parts we find that the integrated part
vanishes and it becomes

(16)

Combining equations (11), (13), (15) and (16) we obtain

,+a + k2)G(x) = 3k(T,, a)LJ(x)

( 1 ) / 2 [ ) 2 « ) ( dt

. (17)

Finally, performing an integration by parts twice on the last integral in equation (17)
and noting that under our assumptions the integrated parts vanish, it can be shown that
the second and third terms on the right hand side of the equation cancel and we are left
with the required result given by equation (10).

In a similar way we can prove that

lk(i,, a)LJ(x) = ( L ^ - k2)%ik(-n, o)/(x). (18)

Proof of (ii)
Here we write

G,(x) = S ^ T I , a)f(x) = x-2("+a)H(x)

and using the results (6) we see that equation (18) may be written as

3(t(T? + a,-a)LT1+aG1(x) = (Ln + k2)3k(T, + a,-a)G1(x). (19)

But - a > 0 and we can apply to G,(x) the result already proved in (i), with TJ replaced by
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ri + a. In this case G,eC2(0, b), x2(v+a)+lGl{x) = xH{x) is integrable at the origin and

x
2^+a)+i G',(x) = xH'(x) - 2(TJ + a)H(x)-*0

as x—»0. This completes the proof of (ii).

3. The operator LK appears in many partial differential equations [2], for example

1 ) 3 U I 3 2 U
- - + ^ = 0) (20)

which is the equation satisfied by axially symmetric solutions of Laplace's equation in
(2TJ + 3)-dimensions. In general r\ need not be an integer and equation (20) is called the
generalized axially symmetric potential equation (GASPE), a study of which has given rise
to generalized axially symmetric potential theory (GASPT).

As a consequence of the result (10) we have that

%k(v, «)Mn«(x, y) = (JVL,+<, + k2)X(v, «)«(*, y), (21)

under appropriate conditions on u(x, y).
The equation

n+a + k2)v(x,y) = 0 (22)

is known as the generalized axially symmetric Helmholtz equation (GASHE) in (2TJ +
2a + 3) dimensions [2].

Following reasoning similar to that used by Erdelyi [1] we can deduce the following
result.

If T J > - 1 , T] + a > - l and u(x, y) is a solution of the (2TJ + 3) dimensional GASPE
then 3k(T), a)u(x, y) exists and is a solution of the (2r| + 2a + 3) dimensional GASHE.

4. As a first example let h(x, y) be a solution of the two dimensional Laplace's
equation

— + — = 0, (23)

which satisfies the condition hx(0, y) = 0; i.e. h is an even function of x.
Then if a> — 1,

y) (24)

exists and is a solution of the (2a + 3) dimensional GASHE

(A4 + k2)u(x,y) = 0. (25)

In order to find an explicit solution of the above equation subject to the boundary
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condition u(0, y) = g(y) we have from equation (24) that

g(y) = u(0,y)

= lim » k H , a +±)h(x, y) = — ^ - h(0, y), (26)
x-.o 1 (a +1)

which shows that the corresponding even harmonic function is given by

ix)]. (27)

From equation (24) we see that the solution of equation (25) which satisfies the
condition u(0, y) = g(y) is

" U y) = ̂ § | ^ » k H . « + 2)[g(y + «) + g(y -«) ] , (28)

provided that g(s + it) is analytic for s = y, - x

When a > —j, we have, on using the definition (4), that

. y) = [" (x2 - t2)(

Jo

(29)

from which we obtain the following expression for M(X, y) in terms of its axial value
"(0, y). .

u(x,y)= l
r ^ y j J (sin0r+1/2Ja_1/2(kxsin0)M(O,y + Jxcos0)da (30)

This agrees with the result found by Henrici [3] (cf. the representation given by Gilbert [2,
p. 214]). Letting k—>0 in the above equation we obtain the Laplace integral representa-
tion of solutions of the (2a + 3) dimensional GASPE given by Erdelyi [1].

5. For a second example consider the two dimensional Laplace's equation (23) with
the boundary conditions h(x, 0) = /(x), 0<x<°°, ^ (0 , y) = 0, 0<y<°° and h-»0 as
y—*oo.

The solution of this problem can be written as

h(x, y) = - f A(t)e-& cos(£c) dfc (31)
IT J

where

t. (32)
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Using the previous results we find that the solution of the (2a + 3) dimensional GASHE

( 3 3 )

where a>—%, u(x,0) = Sk(—5,a+|)/(x) and u —»0 as y—»°°, is given by

y)

( 4 , « +i)cos(£x) ̂  (34)=1 r
IT Jo

where A(£) is defined by equation (32) and Sk(- | , a +§)cos(£x) has been evaluated using
a result in [5, p. 31].

Confining our attention to the three dimensional case (a = 0), we have that the usual
form of the solution of the Helmholtz equation subject to the conditions given above is

u3(x, y) = ^\B(\)e-^2-kV0(Kx) dk, (35)

where V(A2-fc2) = -iV(k2-A2), k>k, and

B{k) = £° tJ0(kt)%k H , Mt) dt. (36)

Using the result (7), equation (36) can be written as

0 *

where H(x) is the Heaviside unit function and ^ ( - i s U o U O has been evaluated using a
result in [5, p. 31].

After an obvious change of variable it is easily seen that the solution given by
equations (35) and (37) agrees with that given by equations (34) and (32) when a = 0.
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