
J. Functional Programming 10 (2): 191–225, March 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

191

Container types categorically

PAUL HOOGENDIJK

Philips Research Laboratories, Prof. Holstlaan 4,

5656 AA Eindhoven, The Netherlands

OEGE DE MOOR

Programming Research Group, Oxford University,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

A program derivation is said to be polytypic if some of its parameters are data types. Often

these data types are container types, whose elements store data. Polytypic program derivations

necessitate a general, non-inductive definition of ‘container (data) type’. Here we propose such

a definition: a container type is a relator that has membership. It is shown how this definition

implies various other properties that are shared by all container types. In particular, all

container types have a unique strength, and all natural transformations between container

types are strong.

Capsule Review

Progress in a scientific dicipline is readily equated with an increase in the volume of knowledge,

but the true milestones are formed by the introduction of solid, precise and usable definitions.

Here you will find the first generic (‘polytypic’) definition of the notion of ‘container

type’, a definition that is remarkably simple and suitable for formal generic proofs (as is

amply illustrated in the paper). Among the startling results is the proof that any lax natural

transformation between two container types is strong.

1 Introduction

What is a container type? It is easy to list a number of examples: pairs, lists, bags,

finite sets, possibly infinite sets. . . , but such a list of examples hardly makes a

definition. The obvious formalisation is a definition that builds up the class of con-

tainer types inductively; such an inductive definition, however, leads to cumbersome

proofs if we want to prove a property of all container types. Here we aim to give

a non-inductive characterisation, defining a container type as a mathematical object

that has certain properties.

Why is such a definition desirable? In recent years it has become apparent that

significant advances in formal program development are possible if both specifi-

cations and programs are parametrised by container types (and sometimes more

general types as well). For example, one can reason about a program that finds a

minimum element of a data structure, without actually committing oneself to lists,

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

192 P. Hoogendijk and O. de Moor

arrays, trees, bags or sets. Such type parametric programs and their derivations

are said to be polytypic. To carry out polytypic program derivations we need to

appeal to properties that are shared by all container types. This paper does not go

into examples of polytypic program derivation, and the reader is referred elsewhere

(Backhouse et al., 1993; Bird et al., 1996; Doornbos, 1996; Hoogendijk & Back-

house, 1997; Jeuring, 1995; Meertens, 1996) for such examples, and a more in-depth

motivation of polytypism. In particular, Bird et al. (1996) and Bird & De Moor

(1996) go into applications that motivated the theory presented here.

Because our interest is in a definition that is useful in specification, the class

of container types considered here may be somewhat too liberal for those whose

primary interest is in executable code. For example, possibly infinite sets are an

essential ingredient of any specification formalism, but they rarely feature as a data

type in executable programs.

The structure of the paper is as follows. First, we briefly introduce those elements

of category theory that are necessary for our purposes, as well as the relational

calculus. We shall occasionally make reference to more advanced aspects of category

theory, but we have taken pains to make the paper as self-contained as possible.

Next, we accumulate a number of informal requirements of container types: this

culminates in a technical definition. Briefly, we shall argue that container types are

functors. Motivated by a need to deal with nondeterminism, we subsequently note

that container types are a special kind of functor called relators. We then examine

the notion of membership tests; not all relators support this notion, and we define

a container type as a relator that has membership. Of course one should not only

be able to inspect data structures; one also needs ways of creating them. This leads

to an investigation of fans, and it turns out that any relator with membership also

has a unique fan. Next we compare our work with the definition of strong functors,

which is the leading notion of what data types ‘really are’ among category theorists.

We show that any relator that has membership is strong, and that much of the

tedious conditions involved in reasoning about strength are vacuously satisfied. The

results about fans and strength give some credence to our claim that container types

can be defined as relators that have membership.

2 Preliminaries

2.1 Categories

A category is a universe of typed specifications: it consists of objects (types) and

arrows (specifications or programs). Each arrow h has a target type A and a source

type B . We write h : A ← B to indicate this type information. For each object A

there is a distinguished arrow idA : A ← A. Arrows can be composed, subject to

some typing rules. That is, when f : A ← B and g : B ← C , their composite is

f · g : A← C . Composition is associative and has identity element id . We shall use

C and D to denote arbitrary categories.

The canonical example of a category is Fun , where the objects are sets and the

arrows are total functions. Another example is Rel , where the objects are also sets,

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 193

but where the arrows are binary relations, i.e. sets of pairs, composed in the usual

manner. The category Fun is often named Set in the literature.

All our examples are drawn from Fun and Rel , but the definitions work in more

general categories, including certain models of programming languages. For those

with a background in category theory, we remark that all our proofs go through in

a logos that satisfies the axiom of subextensionality.

An isomorphism is an arrow i : A← B that has an inverse i−1 : B ← A such that

i · i−1 = idA and i−1 · i = idB . We say that the objects A and B are isomorphic. In

Fun , the isomorphisms are bijective functions, and these are also the isomorphisms

in Rel .

2.2 Functors and natural transformations

Functors. A functor is a structure-preserving mapping between categories. That is,

a functor to C from D is a mapping F that maps objects of D to objects of C and

arrows of D to arrows of C, preserving the type information. If h : A ← B , then

F h : F A ← F B . Furthermore, it is required that functors preserve identities and

composition:

F idA = idFA and F (h · k) = F h · F k .

We write F : C ← D to indicate that F is a functor to C from D.

An example of a functor Fun ← Fun is list . It maps a set A to the set list A is the

set of lists over A:

list A = {[a1, a2, . . . , an] |ai ∈ A}.
On arrows, list applies a function to all elements of a list:

list h [a1, a2, . . . , an] = [h a1, h a2, . . . , h an].

The reader may wish to check for herself that list does indeed preserve identities

and composition.

Another example of a functor is J : Rel ← Fun . It leaves objects unchanged, and

it maps each function to the corresponding set of pairs.

In the opposite direction of J , we have the existential image functor E : Fun ←
Rel . It takes a set to the collection of all its subsets, and a relation is mapped to its

existential image:

E R x = { a | ∃b ∈ x : aRb }.
Functors can be composed by defining (F · G)h = F (G h). For instance, the

composite P = E · J : Fun ← Fun is the powerset functor that applies a function to

all elements of a set.

Natural transformations. A natural transformation is a mapping between functors.

That is, given two functors F and G of type C ← D, a natural transformation

φ : F ← G is a collection of arrows

φA : F A← G A for each object A of D.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

194 P. Hoogendijk and O. de Moor

Furthermore, this collection of arrows should satisfy the equation

F h · φB = φA · G h for each h : A← B in D.

We shall usually omit the index of the components of a natural transformation.

For example, consider the operation setify that turns a list of elements into the

corresponding set. This is a natural transformation P ← list .

2.3 Finite products

A terminal object of a category C is an object 1 such that for each object A

there exists exactly one arrow 1 ← A. That unique arrow is written !A, and it is

pronounced ‘pling’. The index of !A is omitted whenever it is clear from the context.

The definition of ! can be stated as the equivalence:

h = ! ≡ h : 1← A, for all h .

In Fun , any singleton set is a terminal object. More generally, it can be shown that

any two terminal objects are isomorphic. When we speak of the terminal object, we

mean that a canonical representative has been chosen from the class of all terminal

objects. The empty set is the terminal object of Rel .

Given two objects A and B , their product is an object A × B together with two

arrows outl : A← A×B and outr : B ← A×B . The product is characterised by the

following property: for each pair of arrows f : A ← C and g : B ← C there exists

an arrow 〈f , g〉 : A× B ← C such that

h = 〈f , g〉 ≡ outl · h = f and outr · h = g ,

for all h : A× B ← C . Again, this defines products up to isomorphism.

In Fun , the set A×B is the cartesian product of A and B , and 〈f , g〉 a = (f a , g a).

The same construction does not define a product in Rel because 〈∅,R〉 = ∅ for any

R. Products satisfy the expected isomorphisms, such as

rid : A← A× 1

and associativity

assl : (A× B)× C ← A× (B × C).

2.4 Allegories and relation algebra

While Rel is in many respects similar to Fun , it has some additional structure that

is useful to our purposes. In particular, relations of the same type can be compared

by inclusion, R ⊆ S , and composition is monotonic with respect to inclusion.

The largest relation of type A ← B is written Π : A ← B . The smallest relation

of type A← B is the empty set, written ∅ : A← B .

The intersection of two relations R and S of the same type is denoted R∩S . Note

that composition does not distribute over intersection; in general, we only have the

inclusion

(R ∩ S) · T ⊆ (R · T) ∩ (S · T).

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 195

Every relation R : A ← B has a converse R◦ : B ← A, obtained by flipping the

pairs in R. Note that the converse operation leaves identities unchanged, but that it

reverses composition:

id◦ = id and (R · S)◦ = S ◦ · R◦.
A useful fact relating composition and converse is the so-called modular law

(R · S) ∩ T ⊆ (R ∩ (T · S ◦)) · S ,
which, in predicate calculus, shows how intersection distributes over existential

quantification:

(∃b : aRb ∧ bSc) ∧ aTc ⇒ ∃b : (aRb ∧ (∃c′ : aTc′ ∧ bSc′) ∧ bSc).

Note that we obtain the symmetric law

(R · S) ∩ T ⊆ R · (S ∩ R◦ · T)

by applying converse to the formulation above.

Given two relations that share the same target, say R : A ← B and S : A ← C ,

the division of R by S is a relation of type B ← C , characterised by the equivalence

X ⊆ R\S ≡ R ·X ⊆ S , for all X : B ← C .

In words, R\S is the largest relation X such that R ·X ⊆ S . For this reason, R\S
is sometimes called the weakest prespecification (Hoare & He, 1986a, 1986b). As a

predicate, R\S can be written

b(R\S)c ≡ (∀a : aRb : aSc).

Here we use the quantifier notation (∀a : aRb : aSc) as an alternative to the more

conventional (∀a : aRb ⇒ aSc). Some useful facts about division that we shall use

in the sequel are

S ⊆ R\(R · S)

R\Π = Π

(R\S) · T ⊆ R\(S · T).

2.5 Special relations

A relation R : A ← B is said to be total if each element in the source is related to

at least one element in the target. In a formula:

R◦ · R ⊇ id .

A relation R : A ← B is said to be single-valued if each element in the source is

related to at most one element in the target. In a formula:

R · R◦ ⊆ id .

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

196 P. Hoogendijk and O. de Moor

A function is a relation that is both total and single-valued. Functions are important

because they satisfy all sorts of useful identities and equivalences that are not gener-

ally valid. We shall denote functions by lower case identifiers so these equivalences

are easy to spot. For example, here is the so-called shunting rule for functions:

f · R ⊆ S ≡ R ⊆ f ◦ · S .

Inclusion of functions is the same as equality, that is

f ⊆ g ≡ f = g .

Every arrow in Rel can be factored in terms of functions. That is, for each arrow

R : A ← B there exist f : A ← C and g : B ← C such that R = f · g◦. This

fact is very useful in generalising operations on functions to relations. For example,

to generalise the functor list : Fun ← Fun to a functor Rel ← Rel , we can define

F R = F f · (F g)◦. We shall have more to say about generalising functors of Fun to

functors of Rel below.

In the special case of functions, the modular law that we quoted above can be

strengthened from an inclusion to an equation:

(h · R · k ◦) ∩ S = h · (R ∩ (h◦ · S · k)) · k ◦.
Below we shall refer to this fact as the modular identity.

2.6 Derived operators on relations

A coreflexive relation is a subset of an identity arrow. The domain of a relation

R : A ← B is the subset of B on which R is defined, represented as a coreflexive

B ← B :

Dom R = id ∩ (R◦ · R).

It is easily shown that R is total if and only if Dom R = id . The domain of the

intersection of two relations is given by

Dom (R ∩ S) = id ∩ (R◦ · S).

Similarly, the domain of a composite relation is always smaller than the domain of

the right-hand component:

Dom (R · S) ⊆ Dom S .

The range of a relation R is the domain of the converse of R:

Ran R = Dom R◦.
Each property of Dom has an equivalent for Ran .

Besides coreflexives, one can also represent ranges as so-called left-conditions. A

relation C is said to be a left-condition if

C : A← 1

Any relation can be mapped to a left-condition through

Cond R = R · !◦.
The connection with range is made explicit in the equations

Ran(Cond R) = Ran R and Cond (Ran R) = Cond R.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 197

2.7 From functions to relations and back

As we have seen, functions can be characterised as a special kind of relations.

Furthermore, every relation can be factored as a pair of functions.

Relators. Having identified this fundamental way of constructing relations from

functions and vice versa, the next question to ask is how functors of Fun generalise

to Rel . A minimum healthiness condition on functors of Rel is that they are

monotonic with respect to inclusion of relations: we shall call monotonic functors of

Rel relators. For each functor of Fun , there is a unique generalisation to relations,

and each relator of Rel can be viewed as a functor of Fun:

Fact 1

(Kawahara, 1973a) Let F be a functor of Fun . There exists at most one relator F ′
of Rel that agrees with F on functions in the sense that F ′ · J = J · F . Conversely,

any monotonic functor F ′ of Rel preserves functions.

We shall consequently use the same identifier for a functor of Fun and its

generalisation to Rel . As an example of a functor that is a relator, consider the list

functor. Its generalisation to relations is given by

[a1, a2, . . . , an](list R)[b1, b2, . . . , bm]

≡
n = m ∧ (∀i : 0 6 i 6 n : ai Rbi).

The powerset functor is also a relator, and its action on relations is well-known

from the Plotkin powerdomain:

x (P R)y ≡ (∀a ∈ x : (∃b ∈ y : aRb)) ∧ (∀b ∈ y : (∃a ∈ x : aRb)).

Again, we use the quantifier notation (∀a : P : Q) as an alternative to the more

conventional (∀a : P ⇒ Q), and (∃a : P : Q) in lieu of (∃a : P ∧ Q). The example

of the powerset functor is instructive because the relator P does not preserve

intersection of relations.

Finally, the exponential functor is a relator:

f (FromAR)g ≡ ∀a : (f a)R(g a).

To prove that this definition actually preserves composition of relations, one needs

the axiom of choice. This is an indication that our definition of relators is somewhat

too strong. A much weaker definition is considered in Mitchell & Ščedrov (1993).

There exist functors of Fun that do not have a generalisation to Rel . An example

is the following:

F A =

{ ∅, if A = ∅
{0}, otherwise

On arrows, F sends arrows whose source is empty, and whose target is non-empty

to the unique arrow {0} ← ∅; all other arrows are mapped to the identity on {0}.
The notion of a relator was first introduced by Kawahara (1973a); the concept

then went unnoticed for a long time, until it was reinvented in Carboni et al. (1991).

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

198 P. Hoogendijk and O. de Moor

Almost simultaneously, Backhouse and his colleagues started to write a series of

papers that demonstrate the relevance of relators to computing (Backhouse et al.,

1991). Backhouse has the additional requirement that a relator preserves converse;

this does in fact follow from monotonicity:

Fact 2

If F is a relator, then F (R◦) = (F R)◦.

Lax natural transformations. What happens to natural transformations of type F ←
G if F and G are generalised from Fun ← Fun to Rel ← Rel? As an example,

consider again the operation setify that turns a list into a set. Above we saw that

this is a natural transformation P ← list when P and list are read as functors

Fun ← Fun:

P h · setify = setify · list h .

Note, however, that the above equation for setify is not true when the function h is

replaced by an arbitrary relation R: we only have the inclusion

P R · setify ⊇ setify · list R.

So while setify is a natural transformation in Fun , it is not natural when considered

as a collection of arrows in Rel . This is a very common phenomenon, and we shall

say that φ is a lax natural transformation of type F ←↩ G when

F R · φ ⊇ φ · G R,

for all R. In fact, writing J for the inclusion of Fun into Rel , we have

Fact 3

For any collection φ of arrows φ : F A← G A, we have φ : F · J ← G · J if and only

if φ : F ←↩ G .

2.8 Lifting products from Fun to Rel

Let us now return to the discussion of finite products. As we have already remarked,

the constructions in Fun do not give rise to categorical products in Rel . However, we

can of course define them as products in Fun , and then investigate their properties

in Rel . This is the topic of the present subsection. The key idea is that ! is very

closely related to Π, and 〈 , 〉 is very closely related to intersection.

Recall that there is precisely one function ! : 1 ← A (pronounced ‘pling’). It

follows that this function is the largest relation of its type. For let R : 1 ← A. This

relation R can be factorised as a pair of functions: R = ! · h◦. Now

R = ! · h◦ = ! · h · h◦ ⊆ !.

By taking R =! ·Π and using the shunting rule, we conclude that

Π = !◦ · !.
This already hints at the possibility that a condition in terms of Π might also be

phrased in terms of !.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 199

We shall also need a number of further operations for manipulating binary

products. The most important of these is the split operation, defined by

〈R, S 〉 = (outl◦ · R) ∩ (outr◦ · S).

An important fact about split, which we shall use repeatedly, is

〈R, S 〉◦ · 〈U ,V 〉 = (R◦ ·U) ∩ (S ◦ · V).

This hints at the possibility that a property in terms of intersection might also be

phrased in terms of split.

The split 〈R, S 〉 is a function whenever R and S are functions. The product relator

is defined by

R × S = 〈R · outl , S · outr〉,
and we have, for example, the product absorption rule

(R × S) · 〈U ,V 〉 = 〈R ·U , S · V 〉,
as well as the naturality properties

outl · (R × id) = R · outl and outr · (id × S) = S · outr .

If one is willing to accept inclusions instead of equalities, the above two equations

can be generalised to

outl · (R × S) ⊆ R · outl and outr · (R × S) ⊆ S · outr .

The properties of products in a relational setting have been thoroughly explored by

numerous researchers; the most comprehensive account we know of can be found in

Aarts et al. (1992). To get some practice in pushing all these new operators around,

and for future reference, we first prove two little lemmas.

Lemma 4
For any relator F , and relations R and S , we have

(F R × F S) · 〈F outl ,F outr〉 = 〈F outl ,F outr〉 · F (R × S).

Proof
The containment (⊇) is easy, and details are omitted. For the other inclusion, the

proof is in two stages. First,

(F R × id) · 〈F outl ,F outr〉
= {product absorption}
〈F R · F outl ,F outr〉

= {F relator, naturality of outl}
〈F outl · F (R × id),F outr〉

⊆ {modular law: 〈R · S ,T 〉 ⊆ 〈R,T · S ◦〉 · S }
〈F outl ,F outr · F (R◦ × id)〉 · F (R × id)

⊆ {F relator, naturality of outr}
〈F outl ,F outr〉 · F (R × id)

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

200 P. Hoogendijk and O. de Moor

By symmetry, we also have

(id × F S) · 〈F outl ,F outr〉 ⊆ 〈F outl ,F outr〉 · F (id × S).

Therefore,

(F R × F S) · 〈F outl ,F outr〉
= {product relator}

(id × F S) · (F R × id) · 〈F outl ,F outr〉
⊆ {above}

(id × F S) · 〈F outl ,F outr〉 · F (R × id)

⊆ {above}
〈F outl ,F outr〉 · F (id × S) · F (R × id)

= {F and product relators}
〈F outl ,F outr〉 · F (R × S)

q

Note the slightly curious structure of the above proof, where (F R × F S) is first

decomposed into id × F S and F R × id . We have no good heuristic for justifying

this decision at present; the unexpected nature of the proof does however explain

why we originally thought this fact needed the side condition that F preserves

intersections of binary relations. It was a pleasant discovery that no such side

condition is necessary. An important consequence is

Lemma 5

For any relator F , and any relations R and S , we have

〈F R,F S 〉 = 〈F outl ,F outr〉 · F 〈R, S 〉.

Proof

〈F outl ,F outr〉 · F 〈R, S 〉
= {product absorption: 〈R, S 〉 = (R × S) · 〈id , id〉, F relator}
〈F outl ,F outr〉 · F (R × S) · F 〈id , id〉

= {Lemma 4}
(F R × F S) · 〈F outl ,F outr〉 · F 〈id , id〉

= {F relator, outl · 〈id , id〉 = id = outr · 〈id , id〉}
(F R × F S) · 〈id , id〉

= {product absorption}
〈F R,F S 〉

q

Proofs of other facts cited in this section are all elementary, and can be found in

Bird & De Moor (1996).

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 201

3 A definition of container types

We now proceed to present our definition of container types. If F is a container

type, then an F -structure x : F A, for some type A, can be thought of as having

‘slots’ which are ‘filled’ with values of type A, and we say then that x ‘contains’

these values, or that these values are ‘members’ of x . The following questions are

meaningful. Does x contain a member having some given property? In particular:

does some given a : A occur as a member of x? Do all members of x have some

given property?

Some container types are ‘shapely’ (Jay, 1995b). For such types it is meaningful

to ask whether x : F A and y : F B have the same ‘shape’, and if they do there is

a canonical one-to-one correspondence (bijection) between their slots. If x , y and z

have the same shape, the correspondence between x and z is given by composing

the correspondences between x and y , and y and z . If x and y have the same shape

and all pairs of members in corresponding slots are related by a given relation

R : A← B , we say that x and y are F R-related.

It is (informally) clear that F preserves identities and composition, commutes with

converse, and is monotonic with respect to relation inclusion (see the picture below):

x

a

a ′

a ′′
�
�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
L
LL

y

b

b ′

b ′′
�
�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
L
LL

z

c

c′

c′′
�
�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
L
LL

```````````̀
F R

   
   

   
   F S

```````````

R

``````````̀

R

``````````̀
R

 S

S

S

We conclude that the container type F is in fact a relator. Note that this conclusion

does not refer to ‘shapes’ and ‘corresponding slots’. The approach, now, is to do the

same more generally: gather properties which hold for all shapely types, but which

can be formulated without reference to shapes and correspondences (notions not

meaningful for, for example, the power set type), and then postulate them for all

container types, shapely or not.

Here are two such properties:

• If x is F R-related to y then each member of x is R-related to some member

of y (for shapely types, the corresponding one).

• If each member of x is R-related to at least one value, then x is F R-related to

some value (for shapely types, the value y of the same shape as x , such that

each slot of y is filled with a value b such that aRb, where a is the contents

of the corresponding slot of x).

To formalise the first item, write aεx for “a is a member of the F -structure x”. We

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

202 P. Hoogendijk and O. de Moor

then have

x (F R)y ⇒ (∀a : aεx : (∃b : bεy : aRb)), (1)

or, abstracting from x and y ,

F R ⊆ ε\(R · ε).
This holds for all R, which (by the definitions of (\) and (←↩)) means that

ε : id ←↩ F .

Using (F R)◦ = F (R◦), we also get from (1):

x (F R)y ⇒ (∀b : bεy : (∃a : aεx : aRb)). (2)

Formalising the second item in the two bullet points above gives:

(∀a : aεx : (∃b : aRb)) ⇒ (∃y : x (F R)y). (3)

We now explore the formal consequences of this formalisation. Define aRbb ′ ≡
aRb ∧ b ′ = b. Then

(∀a : aεx : aRb)

≡ {since aRb ≡ (∃b ′ : aRbb ′)}
(∀a : aεx : (∃b ′ : aRbb ′))

⇒ {Implication (3)}
(∃y : x (F Rb)y : x (F Rb)y)

⇒ {since Rb ⊆ R, Implication (2)}
(∃y : x (F R)y : (∀b ′ : b ′εy : (∃a : aεx : aRbb ′)))

⇒ {since (∃a : aεx : aRbb ′)⇒ (∃a : aεx : b = b ′)⇒ b = b ′}
(∃y : x (F R)y : (∀b ′ : b ′εy : b ′ = b))

⇒ {Implication (1)}
(∃y : (∀a : aεx : (∃b ′ : b ′εy : aRb ′)) ∧ (∀b ′ : b ′εy : b ′ = b))

⇒ {predicate calculus}
(∃y : (∀a : aεx : (∃b ′ : b ′εy : aRb ′ ∧ b ′ = b)))

⇒ {predicate calculus}
(∃y : (∀a : aεx : aRb))

≡ {Heidegger}
(∀a : aεx : aRb)

This proves by circular implication that

(∀a : aεx : aRb)) ≡ (∃y : x (F R)y : (∀b ′ : b ′εy : b ′ = b)),

or, abstracting from x and b,

ε\R = F R · ε\id . (4)

We take this equation as a definition: a collection of arrows ε is said to be a

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 203

membership relation for F if it satisfies the above equation for all R. Below it is

proven that there exists at most one such ε. (The symbol ε was chosen on account

of its mild similarity to ∈). A relator F is said to have membership if there exists a

membership relation for F .

Summarising the above discussion, we propose the following definition of a

container type:

A type constructor F is a container type if it is a relator that has membership.

In the remainder of this paper we explore the consequences of that definition. As an

aside, we remark that the definition of membership implies the two properties that

were used to motivate it.

4 Elementary properties of membership

To prove uniqueness of membership, we assume the identification axiom, which

says that the largest lax natural transformation of type id ←↩ id is id itself. The

identification axiom is satisfied in any reasonable model of a programming language,

as it follows from subextensionality. (Subextensionality says that two functions f

and g are equal if f · p = g · p for all single-valued relations p of type A ← 1.) We

do not know whether the identification axiom is equivalent to subextensionality.

Fact 6

Suppose that ε is a membership relation for F . Then ε is a lax natural transformation

of type id ←↩ F .

We shall defer detailed proofs of the facts stated here until section 4.1. The

membership relation on lists is given by

aε[a0, a1, . . . , an] ≡ (∃i : a = ai).

The membership relation for the powerset functor is simply set membership ∈. The

membership relation for the exponential functor FromB tests for existence in the

range of a function

aεf ≡ (∃b : a = f b).

One might wonder whether every relator has membership, and indeed we originally

believed that the membership relation could be constructed as the largest lax natural

transformation of type id ←↩ F . However, Peter Freyd provided us with an example

that this construction does not necessarily satisfy the required property:

Fact 7

(Freyd) There exists a relator that does not have membership.

It is, however, true that if membership exists, it is the largest lax natural transfor-

mation of its type. More generally,

Fact 8

Let F and F ′ be relators with membership relations ε and ε′ respectively. Then the

largest lax natural transformation of type F ←↩ F ′ is ε\ε′.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

204 P. Hoogendijk and O. de Moor

It is interesting to interpret this result in set theory. It says that a lax natural

transformation φ : F ←↩ G can never invent new values: if xφy , the set of elements

of x is a subset of the elements of y . This captures one aspect of what it means for

an operator to be polymorphic, but the converse is not true: one can have φ ⊆ ε\ε′,
with φ not a lax natural transformation.

Finally, we remark that the class of relators that have membership is closed under

composition of functors. In particular, all regular functors (built from products,

sums, composition, and least fixed points) have membership, and are thus container

types.

In the subsection below, proofs of the above three facts are spelled out. Readers

who first wish to get a general overview of our results can skip to the next section

without loss of continuity.

4.1 Proofs

We start by giving an equivalent definition of membership which is sometimes more

convenient in proofs than the official version given above. It does, however, contain

another bound variable, and therefore the official definition is perhaps easier to

digest on first encounter.

Lemma 9

A collection of arrows ε is a membership relation for F iff for all R and S we have

ε\(R · S) = F R · ε\S .

Proof

The follows-from direction is trivial: take S = id . For implies, we argue

ε\(R · S)

= {ε membership}
F (R · S) · ε\id

= {F relator}
F R · F S · ε\id

= {ε membership}
F R · ε\S

q

Note that neither the original definition of membership nor the preceding lemma

make reference to the fact that membership is a lax natural transformation. The

reason is, of course, that naturality can be deduced from the definition of member-

ship:

Restatement of Fact 6. If ε is a membership relation for F , then ε : id ←↩ F .

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 205

Proof

ε · F R ⊆ R · ε
≡ {division}

F R ⊆ ε\(R · ε)
≡ {ε membership, Lemma 9}

F R ⊆ F R · ε\ε
≡ {since id ⊆ ε\ε}

true

q

While exploring naturality of membership, we might as well mention that the

relation ε\id in the original definition of membership is also natural, in the opposite

direction of ε itself. Although the proof of this fact is nearly trivial, it is still

worthwhile to record it separately for future reference.

Lemma 10

Suppose that ε is a membership relation for F . Then ε\id is a lax natural transfor-

mation of type F ←↩ id .

Proof

ε\id · R
⊆ {division}

ε\R
= {membership}

F R · ε\id
q

Now we are in a position to prove the fundamental result that asserts uniqueness

of membership. We take the elegance of the proof as evidence that the definitions

given here are right: one certainly would not wish the definition of ‘container type’

to lead to intricate and cumbersome proofs.

Fact 11

If ε is a membership relation for F , then ε is the largest lax natural transformation

of type id ←↩ F .

Proof

Let ε be a membership relation for F . By Lemma 6, ε : id ←↩ F . Let φ be another

lax natural transformation of type id ←↩ F . Then

φ

⊆ {division}
φ · ε\ε

= {membership}

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

206 P. Hoogendijk and O. de Moor

φ · F ε · ε\id
⊆ {since φ : id ←↩ F}

ε · φ · ε\id
⊆ {claim: see below}

ε

The claim is that φ · ε\id ⊆ id . This does in fact follow from the identification axiom,

which says that id is the largest lax natural transformation of type id ←↩ id . We

have φ · ε\id : id ←↩ id because φ : id ←↩ F , and Lemma 10 says that ε\id : F ←↩ id .

q

Finally, as an application of the little theory developed above, we prove a result

about largest lax natural transformations between an arbitrary pair of relators that

have membership. It also happens that a special case of this result is useful in the

section on fans below.

Restatement of Fact 8. Let F and F ′ be relators with membership relations ε and ε′
respectively. Then ε\ε′ is the largest lax natural transformation of type F ←↩ F ′.

Proof

First note that ε\ε′ : F ←↩ F ′, for it is the composition of two lax natural transfor-

mations (Fact 6 and Lemma 10):

ε\ε′ = F ε′ · ε\id .

To prove that ε\ε′ contains any other lax natural transformation of type F ←↩ F ′,
let φ : F ←↩ F ′. We have

φ ⊆ ε\ε′
≡ {division}

ε · φ ⊆ ε′
⇐ {Lemma 11}

ε · φ : id ←↩ F ′

≡ {since ε : id ←↩ F and φ : F ←↩ F ′}
true

q

While these initial results are encouraging, there remains the question whether we

could not have avoided the peculiar definition of membership, by simply defining

the membership relation for F as the largest lax natural transformation id ←↩ F . It

is easily checked that in Rel such a largest lax natural transformation exists for any

F , since the union of a collection of lax natural transformations is again lax natural.

We aim to show, therefore, that there exist relators that do not have membership in

our sense, hence we show that the largest lax natural transformation id ←↩ F is not

necessarily a membership relation.

Restatement of Fact 7. There exists a relator that does not have membership.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 207

As a first step towards constructing such an example, observe that a container

type constructor ought to preserve intersection of subsets: for any collection X

of subsets of a set C , the set of F -structures over
⋂

X should be precisely the

intersection
⋂{F A′ |A′ ∈ X }. Indeed, it is easily verified that this condition holds

for the examples (lists, powersets and exponentials) considered so far.

We can formalise the above intuition as follows (the restriction to Rel is necessary

to guarantee existence of arbitrary intersections):

Lemma 12

Let F be a relator of Rel that has membership. Then F preserves arbitrary intersec-

tions of coreflexives.

Proof

It is possible to give a direct proof of this lemma, but such a proof is clumsy. Instead,

we prefer to use the fact that the right (or upper) adjoint in a Galois connection

preserves intersections; readers who are not familiar with Galois connections are

referred to Gierz et al. (1980). Below it is shown that F is a right adjoint: let C and

D be coreflexives of an object A. We have

D ⊆ FC

≡ {order-isomorphism between coreflexives and left-conditions}
D ·Π ⊆ F C ·Π

≡ {division: ε\Π = Π}
D ·Π ⊆ F C · ε\Π

≡ {membership}
D ·Π ⊆ ε\(C ·Π)

≡ {division}
ε · D ·Π ⊆ C ·Π

≡ {range: R ·Π = Ran(R) ·Π, order-isomorphism}
Ran(ε · D) ⊆ C

q

This last result suggests a strategy for proving that not every relator has a

membership relation. It suffices to find a relator F , an object A and a collection X

of coreflexives of A such that F does not preserve the intersection of X . Since any

relator preserves finite intersections of coreflexives, the collection X will have to be

infinite.

A truly convincing example would satisfy a number of additional requirements.

First, F should be a functor of Fun , for that is the model of primary interest.

Second, F should preserve binary intersections of relations: this is a property of

many container types, albeit not of the power set relator. Readers who are intimately

familiar with category theory will realise that these requirements can be stated a

bit more concisely: we want a functor F on Fun that preserves pullbacks, plus an

object A and a collection X of subobjects of A such that F does not preserve the

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

208 P. Hoogendijk and O. de Moor

intersection of X . This formulation in categorical terms has the advantage that

it does not mention relations. Although we were able to phrase our requirements

in this style, at the time we were unable to construct an example ourselves. The

question was finally answered by Peter Freyd, and we now proceed to sketch his

construction.

First consider the functor G = FromN , where N is the set of natural numbers.

For any set A, one can think of G A as the set of infinite sequences over A. As we

have already seen, G is a relator. For any A, we can define an equivalence relation

R on G A by

sRt ≡ (∃m : (∀i : m 6 i : s i = t i)).

In words, two sequences s and t are related by R when they are ‘eventually equal’.

It is easily checked that R is indeed an equivalence relation. Define F A to be the

set of equivalence classes in G A, and let qA : F A← G A be the function that sends

a sequence to the corresponding equivalence class.

We can make F into a functor by defining its action on functions by

F h = qA · G h · qB
◦, for h : A← B .

There are quite a number of things to verify now: we should check that F h is indeed

a function, that F preserves composition and identities, and that F is a relator which

preserves binary intersections. These verifications are however rather tedious, and

we omit details.

It remains to construct an object A, together with a collection X of subsets of A

so that F does not preserve the intersection of X . We take for A the set of natural

numbers itself, and X is defined by

X = {{i |m < i} |m ∈ N }.
Technically speaking the components of X should be subsets of the identity relation,

but we sweep the distinction between such relational subsets and ordinary subsets

under the carpet. Note that the intersection of X is empty, and that F (
⋂

X) is also

the empty set. However, for each C ∈ X , F C contains qN id . So the intersection⋂{F C |C ∈ X } is nonempty. Freyd’s counterexample is therefore complete. As we

shall see below, his construction is useful in refuting other conjectures in the theory

of container types.

5 Container types have fans

Not only do we wish to inspect the contents of data structures; we should also

be able to create them. Therefore, any type constructor F comes equipped with a

family of relations that captures the idea of creating F -structures. There are various

formalisations of such families in the literature, notably strengths and copy maps.

We shall consider these in the next section, but first we explore an intuitively simpler

notion of data structure creation.

A fan is a nondeterministic mapping that, when given a seed value a , creates an

F -structure all of whose elements are equal to a . Formally, a fan is a lax natural

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 209

transformation of type φ : F ←↩ id such that the function λR : (F R · φ) preserves

finite intersections (Π : A← B is the largest relation of its type):

F Π · φ = Π and F (R ∩ S) · φ = (F R · φ) ∩ (F S · φ).

This definition of fans originated with Backhouse et al. (1993), where they were

called generators. Remarkably, membership guarantees the existence of unique fans:

Fact 13

If F has membership, then ε\id is the unique fan for F .

The converse is not true: as Freyd’s example shows, it is possible for a relator

to have a fan, but no membership. It follows that there is no need to revise our

current definition of a container type: we stick to the view that it is a relator that

has membership. Again, the proofs in the next subsection can be skipped without

loss of continuity.

5.1 Proof

The proof strategy will be as follows. First, we show that any two fans are either

incomparable (under ⊆), or they are equal. Then we note that ε\id is the largest fan

for F . Together these two lemmas give the desired result, namely that ε\id is the

unique fan for F .

To prove the first lemma, we shall need an auxiliary technical result, which states

that two F -structures of the same shape, both of which have been created with the

same fan, are equal. (To be precise, this is what the lemma below says when we take

R = Π, and S = T = id .) The proof is admittedly somewhat unattractive, but we

see no other way.

Lemma 14

Let φ be a fan for F . Then, for all R, S and T , we have

(F R) ∩ (F S · φ · φ◦ · F T) ⊆ F (R ∩ (S · T)).

Proof

In the proof below, we shall use the fact that for any relation R, there exist functions

f and g so that R = f · g◦. We shall also need the properties of the range operator

Ran , as discussed in section 2.6. With these facts in hand, we calculate as follows:

F (f · g◦) ∩ (F S · φ · φ◦ · F T)

= {modular identity, F relator}
F f · (id ∩ (F (f ◦ · S) · φ · φ◦ · F (T · g))) · Fg◦

= {range of intersection}
F f · Ran(F (f ◦ · S) · φ ∩ F (T · g)◦ · φ) · Fg◦

= {φ is a fan}
F f · Ran(F ((f ◦ · S) ∩ (T · g)◦) · φ) · Fg◦

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

210 P. Hoogendijk and O. de Moor

⊆ {since Ran(X · Y) ⊆ Ran X }
F f · Ran(F ((f ◦ · S) ∩ (T · g)◦)) · Fg◦

= {relators preserve range}
F f · F (Ran((f ◦ · S) ∩ (T · g)◦)) · Fg◦

= {range of intersection}
F f · F (id ∩ (f ◦ · S · T · g)) · Fg◦

= {modular identity, F relator}
F ((f · g◦) ∩ (S · T))

q

The above result, though somewhat tricky to prove itself, facilitates a nice proof

that fans are either incomparable or equal:

Lemma 15

Let µ and φ both be fans of F . If φ ⊆ µ, then φ = µ.

Proof

In the proof below, Π stands for the largest relation of appropriate type. We argue

µ

= {intersection}
µ ∩Π

= {since φ is a fan}
µ ∩ (FΠ · φ)

⊆ {modular law (also known as Dedekind’s rule)}
(µ · φ◦ ∩ FΠ) · φ

⊆ {given: φ ⊆ µ}
(µ · µ◦ ∩ FΠ) · φ

⊆ {Lemma 14}
φ

q

The above results do not make use of membership. When a relator has member-

ship, there is an obvious candidate for the fan, namely the relation ε\id . Given the

importance of this relation in the definition of membership, it should be no surprise

that ε\id is of independent interest.

Fact 16

Let F be a relator whose membership relation is ε. Then ε\id is a fan for F .

The proof of this fact is trivial, for λX : Y \X preserves intersections for all Y , in

particular when Y = ε. Finally, we can put all the above results together to obtain

that a relator with membership has precisely one fan.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 211

Restatement of Fact 13. Let F be a relator that has membership. Then ε\id is the

unique fan for F .

Proof

We have just proved that ε\id is indeed a fan. Furthermore, by Fact 8, it is the

largest lax natural transformation of its type. Therefore any other fan is included in

it, and Lemma 15 gives the desired result. q

6 Container types have strength

Above we already alluded to work of others which also (at least implicitly) aimed

to pin down the notion of container types (as well as more general data types).

Because the details are rather more technical than those in preceding sections, we

first outline the main ideas and results.

The related work concentrates on ways of creating data structures; it is not

concerned with relators or membership. Functors that have a certain data structure

creation mechanism are said to be strong (Moggi, 1991; Cockett & Spencer, 1992).

Because little interesting can be said about strong functors in connection to arbitrary

natural transformations, natural transformations are required to satisfy an additional

condition; such natural transformations are also called strong. The main result of this

section says that relators that have membership are necessarily strong. Furthermore,

any natural transformation (between relators that have membership) is strong. So all

conditions related to strength come for free if we have a relator that has membership;

but there are strong relators that do not have membership. The conclusion is that

our current proposal for the definition of a container type, namely a relator that has

membership, refines earlier attempts in the literature. Readers who are not familiar

with category theory may wish to review our introduction to finite products in

section 2.8 before proceeding.

Let F be a functor. A strength of F is a collection of functions θ : F (A × B) ←
F A× B that is natural in the following sense:

F (h × k) · θ = θ · (F h × k) for all functions h and k .

Furthermore, there are two conditions to ensure that θ interacts properly with

products:

F rid · θ = rid and F assl · θ = θ · (θ × id) · assl .

A functor that has a strength is said to be strong. It is possible for a functor to have

several different strengths; every functor of Fun is strong.

It is worth thinking about the strengths of our three example relators. Using

a so-called list comprehension (a common device in functional programming) the

strength of the list functor is given by

θ(x , b) = [(a , b) |a ← x].

Similarly, the strength of the powerset functor is

θ(x , b) = {(a , b) |a ∈ x }.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

212 P. Hoogendijk and O. de Moor

Finally the strength of the exponential functor is

θ(f , c) = λb : (f b, c).

Some readers may be puzzled by our introduction of strength as a data structure

creation mechanism, as it may not be immediate what is being created here. Perhaps

the terminology becomes more perspicuous when one programs the so-called copy

map in terms of strength. For a functor F , the copy map is a collection of arrows

c : F A← F 1× A, defined by

c = F lid · θ,
where lid : A← (1×A) is the obvious isomorphism. The intention of this definition

is that c takes a shape (a value of type F 1) and a seed value (of type A) and that it

returns an F -structure of the same shape all of whose elements are equal to the seed

value. Clearly copy maps are closely related to the notion of fans; we shall however

not further elaborate the connection. Copy maps are equivalent to strengths for a

certain class of functors (to the categorically wise: functors that preserve pullbacks):

one can define copy maps independently, and then prove that there exists a one-

to-one correspondence between copy maps and strengths. The interested reader is

referred to Jay (1994).

Another useful operation that can be programmed in terms of strength is the map

transformation. Let F be a functor of Fun that has strength θ. We can then define

map : (F A← F B)← (A← B) by

mapf x = (F app) (θ(x , f)),

where app(a , f) = f a . One could say that map internalises the action of F as

a collection of arrows within Fun . The above construction of map generalises to

any category that has exponentials. Again map can be defined as an alternative

to strengths: the strengths of F are in one-to-one correspondence with its map

transformations. Details can be found in Kock’s (1972) influential paper. Using

Kock’s correspondence we get immediately that all functors of Fun are strong. In

particular, the functor F in Freyd’s counterexample is strong, and thus we have an

example of a strong functor that does not have membership.

The correspondence between strengths, copy maps, and map transformations

hopefully convinces the reader of the importance of its rather technical definition.

We now proceed to detail the connection with fans. As we shall see, there is a

one-to-one correspondence between fans and a special kind of strength.

Let F be a relator that has strength θ. The strength θ is said to be relational if it

satisfies the naturality condition

F (R × id) · θ = θ · (F R × id).

Note that the inclusion ⊇ is almost immediate from the definition of θ; the additional

requirement is therefore that we also have ⊆. It can be shown that if F preserves

binary intersections of relations, then any strength of F is relational. We have been

unable to prove that for arbitrary F , but we have also been unable to find a strength

that is not relational. This is disappointing, and the matter obviously needs to be

resolved, but in any case we can make progress:

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 213

Fact 17

Let F be a relator. Then the relational strengths of F are in one-to-one correspon-

dence with the fans of F .

This result does not use division or the identification axiom. In particular, it does

not require that F has membership. However, if one does make these additional

assumptions, one obtains

Fact 18

Let F be a relator that has membership. Then F has a unique strength, and that

strength is relational.

As an aside, we note that using the axiom of extensionality (and some weakenings

of that axiom), one can also establish uniqueness of strength (Moggi, 1991). It

is unlikely that any interesting improvements can be made without assuming the

identification axiom (or subextensionality, which implies identification): without it,

even the identity functor need not have a unique strength! (To the categorically

wise: consider the topos of G-sets SetG , where G is a non-trivial abelian group.) The

condition that F has membership cannot be omitted in the above result, for there are

relators that have neither membership nor strength: an example is F (R, S) = (S ,R)

on Rel2.

As indicated in the brief overview at the beginning of this section, the theory

of strong functors requires that natural transformations behave consistently with

respect to strength. Let F and G be relators with strengths θ and κ respectively. A

lax natural transformation α : F ←↩ G is said to be strong if

θ · (α× id) = α · κ.

For the unique strength constructed from membership, this condition is always

satisfied:

Fact 19

Let F and G be relators that have membership. Then any lax natural transformation

F ←↩ G is strong.

This saves considerable proof effort when working with strength, and the result

might have applications in the work on computational monads, which has recently

attracted a lot of attention in the functional programming community. It is precisely

this type of saving in tedious calculations that we hope to gain by identifying

properties that are common to all container types. As in the case of fans, strength

does not require further refinement of our definition of container types as relators

that have membership.

The proofs of the results in this subsection require some excruciating symbol

manipulation: such intricate yet tedious proofs are a common feature of arguments

involving strength. As our results show, most of these manipulations can be entirely

avoided when our definition of container types is adopted. Readers who have a taste

for symbol pushing are invited to read the next subsection, or indeed to reconstruct

it for themselves; others might wish to jump to the conclusions.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

214 P. Hoogendijk and O. de Moor

6.1 Proofs

To establish the connection between fans, strength, and membership we shall need

an alternative (but equivalent) definition of fans that is in terms of products instead

of intersections. As indicated in section 2.8, we can do this by exploiting the close

relationship between Π and !, and between 〈 , 〉 and intersection.

Recall the original definition of fans: a lax natural transformation φ : F ←↩ id is

a fan if the mapping λR : F R · φ preserves finite intersections. Given the intimate

connection between intersections and products, the following fact will come as no

surprise:

Fact 20

Let F be a relator, and let φ be a lax natural transformation of type id ←↩ F . Define

µ = φ◦. Then φ is a fan for F iff

(µ : 1← F1) = ! , and

(µ : A× B ← F (A× B)) = 〈µ · F outl , µ · F outr〉.

Proof

First assume that φ is a fan for F . We aim to show that µ satisfies the two above

equations:

µ : 1← F1

= {identity arrow}
µ · F id

= {since (id : 1← 1) = Π}
µ · FΠ

= {converse, definition of µ}
(FΠ · φ)◦

= {since φ is a fan}
Π◦

= {since Π◦ = Π =!}
!

For the second equation, we reason:

〈µ · F outl , µ · F outr〉
= {definition of split}

outl◦ · µ · F outl ∩ outr◦ · µ · F outr

= {definition of µ, converse}
(φ · outl)◦ · F outl ∩ (φ · outr)◦ · F outr

= {naturality of φ}
(F outl · φ)◦ · F outl ∩ (F outr · φ)◦ · F outr

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 215

= {converse, F relator}
(F (outl◦ · outl) · φ ∩ F (outr◦ · outr) · φ)◦

= {φ is a fan}
(F (outl◦ · outl ∩ outr◦ · outr) · φ)◦

= {since outl◦ · outl ∩ outr◦ · outr = id}
φ◦

= {definition of µ}
µ

This completes the proof that the old definition of fan implies the new one. Now

assume that µ satisfies the two equations given above. It is our task to show that φ

is a fan. For the first equation:

FΠ · φ
= {since Π = !◦ · !, F relator}

F !◦ · F ! · φ
= {φ : F ←↩ id}

F !◦ · φ · !
= {converse, F relator, definition of µ}

(µ · F !)◦ · !
= {given: µ · F ! =!}

!◦ · !
= {since Π = !◦ · !}

Π

The proof that λR : F R · φ also preserves binary intersections goes as follows:

(abbreviate z = 〈F outl ,F outr〉)
F (R ∩ S) · φ = F R · φ ∩ F S · φ

≡ {since R ·U ∩ S · V = 〈R◦, S ◦〉◦ · 〈U ,V 〉, F relator}
F 〈R◦, S ◦〉◦ · F 〈id , id〉 · φ = 〈F R◦,F S ◦〉◦ · 〈φ, φ〉

≡ {φ : F ←↩ id , and 〈id , id〉 function, Lemma 5}
F 〈R◦, S ◦〉◦ · φ · 〈id , id〉 = F 〈R◦, S ◦〉◦ · z ◦ · 〈φ, φ〉

⇐ {since 〈φ, φ〉 = (φ× φ) · 〈id , id〉}
φ = z ◦ · φ× φ

≡ {φ = µ◦, converse}
µ = µ× µ · z

≡ {meaning of z , product absorption, properties of µ}
true

q

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

216 P. Hoogendijk and O. de Moor

It is now fairly easy to set up the correspondence between fans and relational

strengths, as there is almost a one-to-one correspondence between the required

properties. First, we show how to construct a strength from a fan.

Fact 21

Let F be a relator. Assume that φ is a fan for F . Define µ = φ◦. Then

θ = 〈F outl , µ · F outr〉◦
is a relational strength of F . Furthermore, we have

φ = F lid · θ · outr◦,

where lid : A← (1× A) is the obvious isomorphism.

Proof

That θ is lax natural and satisfies the additional naturality property of a relational

strength follows from Lemma 4, and

θ = 〈F outl ,F outr〉◦ · (id × φ).

The two equations

F rid · θ = rid and F assl · θ = θ · (θ × id) · assl

follow from Fact 20; details are omitted. To show that θ is a function, we need to

show both totality and single-valuedness. For totality, we shall show that Domθ = id ,

where Dom X = id ∩X ◦ ·X = Ran(X ◦):

Domθ

= {definition of θ, Dom(R) = Ran(R◦), range of split}
id ∩ outl◦ · F (outl · outr◦) · φ · outr

= {since Π = outl · outr◦}
id ∩ outl◦ · FΠ · φ · outr

= {φ fan}
id ∩ outl◦ ·Π · outr

= {both outl and outr are total}
id ∩Π

= {intersection}
id

To prove that θ is single-valued, we reason as follows,

θ · θ◦
= {definitions of θ, split and intersection}

F (outl◦ · outl) ∩ F outr◦ · φ · φ◦ · F outr

⊆ {Lemma 14}
F (outl◦ · outl ∩ outr◦ · outr)

= {since outl◦ · outl ∩ outr◦ · outr = id}
id

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 217

It remains to show that φ can be recovered from θ:

F lid · θ · outr◦

= {definition of θ}
F lid · 〈F outl , µ · F outr〉◦ · outr◦

= {converse, split cancellation (F outl total)}
F lid · F outr◦ · µ◦

= {F relator, lid · outr◦ = id , µ◦ = φ }
φ

q

Fortunately, the transition from relational strengths to fans is much easier to

verify, because the definition of fans is simpler, and so there is less to check. In

fact, we omit the proof, because it is a mostly mechanical exercise. We have thus

completed our discussion of the correspondence between fans and strengths:

Restatement of Fact 17. Let F be a relator. Then the relational strengths of F are in

one-to-one correspondence with the fans of F .

Together with Fact 13, this result proves that a relator with membership has a

unique relational strength, but we can in fact do slightly better than that. Let F be

a relator with membership relation ε. Call

〈F outl , (ε\id)◦ · F outr〉◦
=

F outl◦ · outl ∩ ε\(outr◦ · outr).

the canonical strength Θ of F . To prove that the canonical strength is the only

strength, it suffices to prove that θ ⊆ Θ for all strengths θ of F since strengths

are functions. By shunting of functions, it follows that θ ⊆ Θ is equivalent to the

conjunction

F outl · θ = outl and outr · ε · θ ⊆ outr .

We shall prove these two equations as separate lemmas.

Lemma 22

Let F be a functor with strength θ. Then F outl · θ = outl .

Proof

F outl · θ
= {naturality of outl}

F outl · F (id × !) · θ
= {naturality of θ}

F outl · θ · (id × !)

= {since (outl : A← A× 1) = rid , θ strength}

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

218 P. Hoogendijk and O. de Moor

outl · (id × !)

= {naturality of outl}
outl

q

Lemma 23

Let F be a relator with membership relation ε, and let θ be a strength of F . Then

outr · ε · θ ⊆ outr .

Proof

Define G R = id × R. Then outr is the membership relation of G , and therefore

the largest lax natural transformation id ←↩ G . The composition outr · ε · θ is a lax

natural transformation of the same type. q

It seems fitting that we end our exploration of uniqueness of strength with

such a delightful little proof. We believe that the theory of largest lax natural

transformations put forward here simplifies many polytypic arguments, especially

ones that would otherwise require an appeal to extensionality (pointwise reasoning).

Indeed, we first tried to prove the results of this paper by pointwise means, and

although we mostly succeeded at the time, the proofs were rather impenetrable. The

achievements so far are summed up in:

Restatement of Fact 18. If F is a relator that has membership, then it has a unique

strength, and that strength is relational.

In what follows, we shall denote the unique strength of F by θF , and its unique

fan by φF . Now it only remains to show that all lax natural transformations are

strong, in the sense that

θF · (α× id) = α · θG ,

for each α : F ←↩ G . We do so by proving an inclusion for each direction of the

equation:

Lemma 24

Let F and G be relators that have membership, and let α be a lax natural transfor-

mation of type F ←↩ G . Then

θF · (α× id) ⊇ α · θG .

Proof

α · θG

= {canonical strength of G}
α · 〈G outl , φG

◦ · G outr〉◦
⊆ {converse, split: 〈X ,Y 〉 · Z ⊆ 〈X · Z ,Y · Z 〉}
〈G outl · α◦, φG

◦ · G outr · α◦〉◦

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 219

⊆ {converse, α : F ←↩ G}
〈α◦ · F outl , φG

◦ · α◦ · F outr〉◦
⊆ {α · φG : F ←↩ id , and φF largest of this type}
〈α◦ · F outl , φF

◦ · F outr〉◦
= {converse, product absorption}
〈F outl , φF

◦ · F outr〉◦ · (α× id)

= {canonical strength of F}
θF · (α× id)

q

Lemma 25

Let F and G be relators that have membership, and let α be a lax natural transfor-

mation of type F ←↩ G . Then

θF · (α× id) ⊆ α · θG .

Proof

First we note that, because θ is a function, the proof obligation is equivalent to

(α× id) · θG
◦ ⊆ θF

◦ · α
or, equivalently,

θG · (α◦ × id) ⊆ α◦ · θF .

This inequation can be proved as follows:

θG · (α◦ × id)

= {canonical strength of G}
〈G outl , φG

◦ · G outr〉◦ · (α◦ × id)

= {converse, product absorption}
〈α · G outl , φG

◦ · G outr〉◦
⊆ {α : F ←↩ G}
〈F outl · α, φG

◦ · G outr〉◦
⊆ {converse, modular law: 〈R · S ,T 〉 ⊆ 〈R,T · S ◦〉 · S }

α◦ · 〈F outl , φG
◦ · G outr · α◦〉◦

⊆ {converse, α : F ←↩ G}
α◦ · 〈F outl , φG

◦ · α◦ · F outr〉◦
⊆ {α · φG : F ←↩ id , and φF largest of this type}

α◦ · 〈F outl , φF
◦ · F outr〉◦

= {canonical strength of F}
α · θF

q

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

220 P. Hoogendijk and O. de Moor

We can now conclude

Restatement of Fact 19. Let F and G be relators that have membership. Then any

lax natural transformation F ←↩ G is strong.

We find this fact quite remarkable, as it shows that all conditions regarding strong

functors in the literature are vacuously satisfied. In particular, we obtain that any

monad (on a on a container type) is strong.

7 Related work

Categories of relations Of course all the machinery we have used in this paper is

well-established in the category theory community. The calculus of relations itself

has a rich history, going back to De Morgan (1860), Peirce (1870) and Schröder

(1895). The subject as we know it today was mostly shaped by Tarski and his

students in a series of articles, starting with Tarski (1941). An overview of the

origins of the relational calculus can be found in Maddux (1991) and Pratt (1992).

During the 1960s, several authors started to explore relations in a categorical setting

(Brinkmann, 1969; Mac Lane, 1961; Puppe, 1962). This resulted in a concensus

that regular categories are the appropriate setting for studying relations in general

(Grillet, 1970; Kawahara, 1973b). The latter paper also has the result about relators

that forms the lynchpin of the present paper. The study of categories of relations

has since received much more attention (Carboni et al., 1984; Carboni & Street,

1986; Carboni & Walters, 1987; Carboni et al., 1991). The definitive introduction

to this area of category theory is the text book by Freyd and Ščedrov (1990). In

the terminology of that text, all the proofs in this paper go through in an arbitrary

logos C, that satisfies the identification axiom.

The main advantage of the categorical viewpoint of relations is that one can

freely move between functions and relations, choosing whichever is most convenient

for the proof in hand. We have not capitalised much on this advantage, because

it requires the introduction of some extra categorical machinery (pullbacks, image

factorisation, strong epimorphisms), making the paper less self-contained. As Freyd’s

example illustrates, however, the freedom afforded by such extra machinery can lead

to new results that are very hard to uncover otherwise.

Program derivation At the start of this paper we mentioned that this theory was

developed for the purpose of program specification and derivation: detailed examples

of its use can be found in earlier publications by ourselves (in particular Chapters

6 and 7 of Bird et al. (1996), as well as Bird & De Moor (1996)). Tuijnman (1996)

studies strength in the context of program derivation. It seems likely that at least

some of his proofs can be simplified using the results presented here, but we have

not investigated this

Programming language design There are other approaches to the generic treatment

of data types that are more geared towards programming language design. Drawing

on the categorical view of types as functors, Cocket and Fukushima designed the

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 221

programming language Charity (Cockett & Fukushima, 1991). This was followed by

the design of an extension of Haskell, called PolyP (Jeuring & Jansson, 1996). The

designers of PolyP explicitly set out to implement the programs we derived through

the theory of membership in Bird & De Moor (1996). A yet more recent development

is the design of Functorial ML (Bellé et al., 1996). The work on Functorial ML

has a sophisticated categorical semantics based on the idea of a shapely functor.

Shapely functors (Jay, 1995b) give equal weight to the contents and the structure of

a composite value. As we have pointed out, not every container type in our sense

is shapely. A rather nice reworking of these results has recently been proposed by

Hinze (1999). A formal connection between the calculus of relational specifications,

and implementations in Functorial ML would clearly be of great value.

Many of the above references define properties of data types by induction on a

class of functors. It is a natural question whether our definition of ‘container type’

is closed under the constructors of these classes. This is indeed the case. Write (µF)

for the initial algebra of F , if it exists. The class of Kleene functors is inductively

defined as follows:

• The identity functor Fun ← Fun is a Kleene functor.

• For any set A, the constant functor K A (sending every arrow to the identity

on A) is a Kleene functor.

• If F and G are Kleene functors, so are their pointwise sum and product

(λA : F A + G A) and (λA : F A× G A).

• If F and G are Kleene functors, so is F · G .

• Let (⊗) is a binary functor so that for each set A, (λX : A ⊗ X) is a Kleene

functor. Then the functor (λA : µ(λX : A⊗X)) is a Kleene functor.

The terminology derives from the fact that the combining operations are akin to

those of a Kleene algebra. It is well-known (Manes & Arbib, 1986) that the class of

Kleene functors is well-defined, in the sense that the initial algebras referred to in

the last clause exist.

Fact 26

Kleene functors are container types.

The proof of this fact is easy, except perhaps for finding the membership of initial

algebras. Let (⊗) be a binary functor as in the last clause of the definition of Kleene

functors. Let αA : T A ← (A ⊗ T A) be the initial algebra of (λX : A ⊗ X). It is

our aim to show that T has membership. Assume (inductively) that λX : X ⊗ B

has membership relation ε1 and (λX : A⊗X) has membership relation ε2. Then the

membership relation of T is given by

ε1 · α◦ · (ε2 · α◦)∗
Here R∗ denotes the reflexive transitive closure of R. Intuitively, we can read this

result as follows. The relation (ε2 ·α◦) can be viewed a non-deterministic mapping that

given a tree will return one of its immediate subtrees. Its reflexive transitive closure

thus returns any subtree. The relation (ε1 · α◦) can be viewed as a nondeterministic

mapping that takes a tree and returns any element that occurs as a label at the root

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

222 P. Hoogendijk and O. de Moor

of the tree. Hence the above formula states that to find an element in a tree, one

nondeterministically selects an arbitrary subtree, and then returns a label at the root

of the selected subtree. A formal proof can be found in Hoogendijk’s thesis, who in

fact proves similar results for a wider class than unary Kleene functors (Hoogendijk,

1996).

We conclude our discussion of related work with a remark about Jay (1995b).

Jay convincingly argues that an appropriate notion of data type for programming

languages is that of a shapely functor. A functor F is shapely (over lists) if it preserves

pullbacks, and if there exists a natural transformation l : list ← F , satisfying some

further conditions. A shapely functor of Fun is a relator (all functors of Fun that

preserve pullbacks are). Furthermore, such a functor F has a membership relation,

namely δ · l , where δ is the membership relation of the list functor. To see this, note

that for any R,

(δ · l)\R = l◦ · (δ\R) = l◦ · δ\id · F R = (δ · l)\id · F R.

In the first and last step, we used the fact that l is a function.

8 Conclusions

To sum up, we propose the following

Definition

A container type is a relator that has membership.

We have argued the validity of this definition by deriving a large number of

mathematical properties of container types. One might object that many of these

properties (perhaps all) seem to be shared by all data types in the categories Fun and

Rel, not just those that contain data. This seeming generality is however an artefact

of our exposition in terms of these two specific categories. In certain other categories

(topoi), the exponential functor is a relator only if the internal axiom of choice is

satisfied. This indicates that our definition of relator may need modification for

those who accept only constructivist reasoning about their specifications. A weaker

definition of relators may be found in Mitchell & Ščedrov (1993). It is mainly

because of this problem with the exponentional functor that our definition works

for container types only, and not for arbitrary data types.

Another shortcoming of this paper is that we have dealt only with data types that

have a single kind of element: to deal with more general data types one needs to

consider functors between powers of C, rather than just endofunctors of C (which

is what we have done here). The details of such a treatment are, however, rather

technical (Hoogendijk, 1996).

It is of course quite likely that we have missed out a number of operations that

are common to all container types; it remains to be seen whether these can be coded

in terms of membership. The results on fans and strength give us some confidence

that this is indeed the case. We only became aware of Manes (1998) when making a

final revision to this paper, and connections between the work of Manes and ours

remain to be explored.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 223

Acknowledgements

We would like to thank Peter Freyd for supplying the example of a functor of

Fun that does not have membership, and for general discussion and encouragement.

Roland Backhouse suggested that we should take a closer look at the notion of fans,

and he invited Oege de Moor for one month to Eindhoven to get the collaboration

started. Oege de Moor would also like to thank Fujitsu for supporting this research

during his stay at Tokyo University in 1993/94. This paper was revised while

Oege de Moor was on sabbatical leave at Microsoft Research, Cambridge. The

five anonymous referees went over and above the call of duty, providing extremely

helpful suggestions for the revision of this paper. We are grateful to them all.

References

Aarts, C. J., Backhouse, R. C., Hoogendijk, P. F., Voermans, E. & Van der

Woude, J. C. S. P. (1992) A relational theory of datatypes. Available from URL

http://www.win.tue.nl/win/cs/wp/papers/papers.html.

Backhouse, R. C., De Bruin, P., Malcolm, G., Voermans, T. S. & Van der Woude, J. C. S. P.

(1991) Relational catamorphisms. In: Möller, B. (ed.), Constructing Programs from Speci-

fications, pp. 287–318. Elsevier.

Backhouse, R. C., Doornbos, H. & Hoogendijk, P. (1993) A class of commuting relators.

Available from URL http://www.win.tue.nl/win/cs/wp/papers/papers.html.

Bellé, G., Jay, C. B. & Moggi, E. (1996) Functorial ML. Proceedings of PLILP ’96: Lecture

Notes in Computer Science 1140, pp. 32–46. Springer-Verlag.

Bird, R. S. & De Moor, O. (1996) Algebra of Programming. International Series in Computer

Science. Prentice Hall.

Bird, R. S., Hoogendijk, P. F. & De Moor, O. (1996) Generic programming with relations and

functors. J. Functional Programming, 6(1), 1–28.

Brinkmann, H. B. (1969) Relations for exact categories. J. Algebra, 13, 465–480.

Carboni, A. & Street, R. (1986) Order ideals in categories. Pacific J Math., 124(2), 275–288.

Carboni, A. & Walters, R. F. C. (1987) Cartesian bicategories I. J. Pure & Appl. Algebra,

49(1–2), 11–32.

Carboni, A., Kasangian, S. & Street, R. (1984) Bicategories of spans and relations. J. Pure &

Appl. Algebra, 33(3), 259–267.

Carboni, A., Kelly, G. M. & Wood, R. J. (1991) A 2-categorical approach to geometric

morphisms I. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 32(1), 47–95.

Cockett, J. R. B. & Fukushima, T. (1991) About Charity. Technical Report 92/480/18,

Department of Computer Science, University of Calgary, Canada. (Available from URL

http://www.cpsc.ucalgary.ca/projects/charity/home.html.)

Cockett, J. R. B. & Spencer, D. (1992) Strong categorical datatypes I. In: Seely, R. A. G. (ed.),

Category Theory 1991: CMS Conference Proceedings, 13, 141–169. Canadian Mathematical

Society.

De Morgan, A. (1860) On the syllogism, no. IV, and on the logic of relations. Trans. Cambridge

Philosophical Soc., 10, 331–358.

De Morgan, A. (1966) “On the Syllogism” and other Logical Writings. Yale University Press.

Doornbos, H. (1996) Reductivity Arguments and Program Construction. PhD thesis, Depart-

ment of Computing Science, Eindhoven University of Technology, The Netherlands.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

224 P. Hoogendijk and O. de Moor

Freyd, P. J. & Ščedrov, A. (1990) Categories, Allegories. Mathematical Library, vol. 39.

North-Holland.

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. & Scott, D. S. (1980) A

Compendium of Continuous Lattices. Springer-Verlag.

Grillet, P. A. (1970) Regular categories. In: Barr, M., Grillet, P. A. & Van Osdol, D. H.

(eds.), Exact Categories and Categories of Sheaves: Lecture Notes in Mathematics 236,

pp. 121–222. Springer-Verlag.

Hinze, R. (1999) Polytypic programming with ease. Technical Report IAI-TR-99-2, Institut

für Informatik III, Universität Bonn.

Hoare, C. A. R. & He, J. (1986a) The weakest prespecification, I. Fundamenta Informaticae,

9(1), 51–84.

Hoare, C. A. R. & He, J. (1986b) The weakest prespecification, II. Fundamenta Informaticae,

9(2), 217–251.

Hoogendijk, P. F. (1996) A generic theory of datatypes. PhD thesis, Department of Computing

Science, Eindhoven University of Technology, The Netherlands.

Hoogendijk, P. F. & Backhouse, R. C. (1997) When do datatypes commute? In: Category

Theory and Computer Science: Lecture Notes in Computer Science 1290, pp. 242–260.

Springer-Verlag.

Jay, C. B. (1994) Matrices, monads and the fast fourier transform. Proc. Massey Functional

Programming Workshop, pp. 71–80.

Jay, C. B. (1995a) Polynomial polymorphism. In: Kotagiri, R. (ed.), Proc. 18th Australasian

Computer Science Conference, pp. 237–243. Glenelg, South Australia.

Jay, C. B. (1995b) A semantics for shape. Science of Computer Programming, 25, 251–283.

Jeuring, J. & Jansson, P. (1996) Polytypic programming. In: Launchbury, J., Meijer, E. &

Sheard, T. (eds.), Advanced Functional Programming, Second International School: Lecture

Notes in Computer Science 1129, pp. 68–114. Springer-Verlag.

Jeuring, J. T. (1995) Polytypic pattern matching. In: Peyton-Jones, S. (ed.), Functional Pro-

gramming Languages and Computer Architecture, pp. 238–248. ACM.

Kawahara, Y. (1973a) Notes on the universality of relational functors. Memoirs of the Faculty

of Science, Kyushu University, Series A, Mathematics, 27(3), 275–289.

Kawahara, Y. (1973b) Relations in categories with pullbacks. Memoirs of the Faculty of

Science, Kyushu University, Series A, Mathematics, 27(1), 149–173.

Kock, A. (1972) Strong functors and monoidal monads. Archiv für Mathematik, 23, 113–120.

Mac Lane, S. (1961) An algebra of additive relations. Proc. Nat. Academy Sci., 47, 1043–1051.

Maddux, R. D. (1991) The origin of relation algebras in the development and axiomatization

of the calculus of relations. Studia Logica, 50(3–4), 421–455.

Manes, E. G. (1998) Implementing collection classes with monads. Math. Structures in

Computer Sci., 8(3), 231–276.

Manes, E. G. & Arbib, M. A. (1986) Algebraic approaches to program semantics. Texts and

Monographs in Computer Science. Springer-Verlag.

Meertens, L. (1996) Calculate polytypically! Proc. 8th Int. Symposium on Programming

Languages, Implementations, Logics and Programs: Lecture Notes in Computer Science,

pp. 1–16. Springer-Verlag.

Mitchell, J. C. & Ščedrov, A. (1993) Notes on sconing and relators. In: Boerger, E. (ed.),

Computer Science Logic ’92, Selected Papers: Lecture Notes in Computer Science 702,

pp. 352–378. Springer-Verlag.

Moggi, E. (1991) Notions of computation and monads. Inform. & Computation, 93(1), 55–92.

Peirce, C. S. (1870) Description of a notation for the logic of relatives, resulting from an

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

Container types categorically 225

amplification of the conceptions of Boole’s calculus of logic. Memoirs of the American

Academy of Sciences, 9, 317–378.

Peirce, C. S. (1933) Collected Papers. Harvard University Press.

Pratt, V. R. (1992) Origins of the calculus of binary relations. Logic in Computer Science,

pp. 248–254. IEEE Press.

Puppe, D. (1962) Korrespondenzen in Abelschen Kategorien. Mathematische Annalen, 148,

1–30.

Schröder, E. (1895) Vorlesungen über die Algebra der Logik (exakte logik). Dritter band:

Algebra und Logik der Relative. Teubner, Leipzig. (Reprinted by Chelsea Publishing Co.,

New York, 1966.)

Tarski, A. (1941) On the calculus of relations. J. Symbolic Logic, 6(3), 73–89.

Tuijnman, D. (1996) A Categorical Approach to Functional Programming. PhD thesis, De-

partment of Computer Science, University of Ulm, Germany.

https://doi.org/10.1017/S0956796899003640 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003640

