To express a Determinant of the μ th Order in terms of Compound Determinants of the 2nd Order, and vice-versa.

By R. F. Muirhead.

(Read 13th March. Received same date.)

1. Let ϕ ($a b^{\prime} c^{\prime \prime}$) denote the compound determinant,

$$
\left|\begin{array}{c}
\left(\begin{array}{ll}
b & c^{\prime \prime}
\end{array}\right),\left(\begin{array}{c}
a^{\prime} c^{\prime \prime} \\
\left(b c^{\prime \prime}\right),(
\end{array} a c^{\prime \prime}\right)
\end{array}\right|, \text { where }\left(b^{\prime} c^{\prime \prime}\right) \text { denotes }\left|\begin{array}{l}
b^{\prime} c^{\prime} \\
b^{\prime \prime} c^{\prime \prime}
\end{array}\right| \text { etc. }
$$

Then if A, B, etc., denote the co-factors of the elements a, b, etc. in the determinant ($a b^{\prime} c^{\prime \prime}$), we have

$$
\phi\left(a b^{\prime} c^{\prime \prime}\right)=\left|\begin{array}{c}
\mathbf{A}-\mathbf{B} \\
-\mathbf{A}^{\prime} \\
\mathbf{B}^{\prime}
\end{array}\right|=c^{\prime \prime}\left(a b^{\prime} c^{\prime \prime}\right) .
$$

2. Again, denoting by $\phi\left(a b^{\prime} c^{\prime \prime} d^{\prime \prime \prime}\right)$ the compound determinant

$$
\begin{aligned}
& =d^{\prime \prime \prime}{ }^{2} \cdot\left(c^{\prime \prime} d^{\prime \prime \prime}\right) \cdot\left(a b^{\prime} c^{\prime \prime} d^{\prime \prime \prime}\right) \text {. }
\end{aligned}
$$

Here A, B, etc., are the cofactors of a, b, etc., in the determinant ($a b^{\prime} c^{\prime \prime} d^{\prime \prime \prime}$).
3. The general formula of which the two preceding are special cases is
$\phi\left(a_{1} b_{2} c_{3} \ldots \ldots t_{n}\right)=\left(t_{n}\right)^{2^{n-3}} \cdot\left(s_{n-1} t_{n}\right)^{2^{n-4}} \ldots \ldots\left(c_{3} d_{4} \ldots \ldots t_{n}\right) \cdot\left(a_{1} b_{2} c_{2} \ldots \ldots t_{n}\right)$
which can be established by mathematical induction without difficulty, observing that

$$
\phi\left(a_{1} b_{2} c_{2} \ldots \ldots t_{n} u_{n+1}\right) \equiv\left|\begin{array}{l}
\phi\left(b_{2} c_{3} \ldots \ldots u_{n+1}\right), \phi\left(a_{2} c_{3} \ldots \ldots u_{n+1}\right) \\
\phi\left(b_{1} c_{3} \ldots \ldots u_{n+1}\right), \phi\left(a_{1} c_{3} \ldots \ldots u_{n+1}\right.
\end{array}\right|
$$

and using the well-known theorem that in the determinant ($a_{1} b_{2} \ldots t_{n}$)

$$
\left|\begin{array}{l}
\mathbf{A}_{1} \mathbf{B}_{1} \\
\mathbf{A}_{2} \mathbf{B}_{2}
\end{array}\right|=\left(c_{8} d_{2} \ldots \ldots t_{n}\right) \cdot\left(a_{1} b_{2} c_{2} \ldots \ldots t_{n}\right)
$$

4. Now let us denote $\phi\left(a_{1} b_{2} c_{3} \ldots \ldots t_{n}\right)$ by ϕ_{1}

$$
\phi\left(b_{2} c_{3} \quad \ldots \ldots t_{n}\right) \text { by } \phi_{2}
$$

$$
\phi\left(r_{n-2} s_{n-1}, t_{n}\right) \text { by } \phi_{n-2}
$$

$$
\phi\left(s_{n-1} t_{n}\right) \text { by } \phi_{n-1}
$$

Also denote

$$
\begin{gathered}
\left(a_{1} b_{2} \ldots \ldots t_{n}\right) \text { by } \Delta_{1} \\
\left(b_{2} c_{3} \ldots \ldots t_{n}\right) \text { by } \Delta_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots . \\
\left(s_{n-1} t_{n}\right) \text { by } \Delta_{n-1} \\
t_{n} \text { by } \Delta_{n} \text { or } \phi_{n}
\end{gathered}
$$

so that

$$
\phi_{n-1}=\Delta_{n-1}=\left|\begin{array}{ll}
s_{n-1}, & t_{n-1} \\
s_{n}, & t_{n}
\end{array}\right|
$$

The formula of the preceding article can now be written

$$
\phi_{1}=\Delta_{n}^{2^{n-3}} \cdot \Delta_{n-1}^{2^{n-4}} \cdot \Delta_{n-2}^{2^{n-5}} \cdots \cdots \cdots \cdots \cdots \cdots \cdot \Delta_{3}^{2^{2}} \cdot \Delta_{4}^{2} \cdot \Delta_{3} \Delta_{3}^{0} \Delta_{1}
$$

Hence also

$\phi_{4}=\Delta_{n}^{2^{n-6}} \cdot \Delta_{n-1}^{2^{n-7}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \Delta_{8} \Delta_{s}^{0} \Delta_{\mathrm{d}}$
...............................
........
$\phi_{n-3}=\Delta_{n}^{2} \Delta_{n-1} \Delta_{n-2}^{0} \Delta_{n-3}$
$\phi_{n-2}=\Delta_{n} \Delta_{n-1}^{0} \Delta_{n-2}$
$\phi_{n-1}=\Delta_{n}^{0} \Delta_{n-1}$
$\phi_{n}=\Delta_{n}$
5. Hence we deduce
$\phi_{3} \phi_{4}^{2} \phi_{5}^{3} \ldots \ldots \phi_{n-1}^{n-3} \phi_{n}^{n-2}=\Delta_{3} \cdot \Delta_{4}^{2} \cdot \Delta_{5}^{2^{2}} \ldots . . \Delta_{n-1}^{2^{n-1}} \cdot \Delta_{n}^{2^{n-3}}$.
To prove this we have to show that the exponent of Δ_{n-r} in the product, viz.,

$$
\begin{aligned}
& 2^{n-r-5}+2.2^{n-r-8}+3.2^{n-r-7}+\ldots+(\overline{n-r-5}) 2+(n-r-4)+(n-r-2) \\
& \text { is }=2^{n-r-s} .
\end{aligned}
$$

Now the former expression may be written

$$
\begin{aligned}
& 2^{n-r-5}+2^{n-r-8}+2^{n-r-r}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+2^{2}+2^{1}+1+1 \\
& +2^{n-r-6}+2^{n-r-7}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+2^{2}+2^{1}+1+1 \\
& + \\
& +2^{2}+2^{1}+1+1 \\
& +2^{1}+1+1 \\
& +1+1+2 \\
& =2^{n-r-4}+2^{n-r-3}+2^{n-r-2}+\ldots \ldots \ldots \ldots \ldots+2^{2}+2+2 \\
& =2^{n-r-3}
\end{aligned}
$$

Comparing this result with the expression for ϕ_{1} we find

$$
\begin{aligned}
\Delta_{1} & =\phi_{1} \div\left\{\phi_{3} \phi_{4}^{2} \phi_{5}^{3} \ldots \ldots \cdot \phi_{n-1}^{n-3} \phi_{n}^{n-2}\right\} \\
& =\phi_{1}^{1} \phi_{2}^{0} \phi_{3}^{-1} \phi_{4}^{-9} \phi_{5}^{-3} \ldots \ldots \ldots \phi_{n-1}^{-n+3} \phi_{n}^{-n+2}
\end{aligned}
$$

Thus the general determinant of nth order is expressed in terms of compound determinants of the 2 nd order.

